JPS59171898A - 放射性廃液の乾燥処理方法 - Google Patents

放射性廃液の乾燥処理方法

Info

Publication number
JPS59171898A
JPS59171898A JP4755083A JP4755083A JPS59171898A JP S59171898 A JPS59171898 A JP S59171898A JP 4755083 A JP4755083 A JP 4755083A JP 4755083 A JP4755083 A JP 4755083A JP S59171898 A JPS59171898 A JP S59171898A
Authority
JP
Japan
Prior art keywords
drying
waste liquid
boric acid
liquid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4755083A
Other languages
English (en)
Other versions
JPH0631842B2 (ja
Inventor
松浦 宏之
神山 寿
冨田 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP4755083A priority Critical patent/JPH0631842B2/ja
Publication of JPS59171898A publication Critical patent/JPS59171898A/ja
Publication of JPH0631842B2 publication Critical patent/JPH0631842B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [発明の技術分野j 本発明は、放射性廃液の乾燥処理方法に係り、特に加圧
水型原子炉で発生する放射性廃液を乾燥粉体化し減容す
る乾燥処理方法に関する。
[発明の技術的背景コ PWR(加圧水型原子炉)やBWR(υi:騰本型原子
炉)等の原子力発電所において、蒸発器で濃縮された放
射性の濃縮廃液が発生する。この濃縮j廃液は従来セメ
ン1〜固化あるいはアスファル1゛固化処即されてぎた
が、P W Rr発生づる水酸化ナトリウムと硼酸を主
成分とづる濃縮廃油の場合、セメント囚化法では1m酸
がセメントの硬化反応を妨害し、充分な強度を有する同
化体を形成ザることが困難であること、及び充分な強度
を有する同化体を形成づ−るには廃液の混入量を著しく
制限しなければならないこと等の問題があった。また、
アスファルト−同化法においても、形成される同化体の
強度がないことや温度が高くなると液体化し燃え易くな
ること等の欠点があった。
最近、B WRにおいて発生J−るilD稲廃液を乾燥
処理して粉体化した後、熱硬化性樹脂にてグラスチック
同化する方法あるいはペレット化する方法が開発された
。これらの処理方法は減容性が高いこと、同化体の性質
が優れていること、あるいは将来の同化形態に柔軟性を
持たせた中間貯蔵が可能なこと等の利点を右づるが、P
wRで発生する濃縮廃液・は硼酸と水酸化カルシウムを
主成分とするため、B W Rの(iiIl酸す1〜リ
ウムを主成分とするHB5.稲廃油と比べて乾燥粉体止
りることが極めて国力(あることが知られている。即ち
、水酸化ナトリウム及びtlill酸J、り成る水浴液
(,1乾燥の進行に伴41′ってrt+rr Mを(l
−した結合が進み、高分子化して水アメ状の粘瓜の高い
ものとなるので、乾燥処理操作が(1をめで囲動どなり
、粉体化されずにむしろガラス化されることにイするか
らである。
ところで、このJ、うな乾燥処理の囲動な水酸化す1ヘ
リウムと硼酸を主成分とづるi茄Rf: I廃液に対し
ても、硼酸の重量密度に対する水酸化すトリウムの重量
密度の比が0.28〜0./I−0の狭い範囲では(8
コ縮廃液は※2燥粉体化されることが見出され、このよ
うな範囲に濃縮廃液を調整して乾燥処理する方法が11
?采されている。しかしなから、この方法ては粉体化可
能イ≧範囲が非1;3にせまく、水酸化ナトリウムやf
j’l 酸の分析埴に誤差が生じれば容易1こ乾燥処理
操作11どなる。、特に、硼酸の分析が比較的テi(シ
<誤Z−を外じやすいので、この可OL性は大きく、こ
の!小理方法の大きな欠点と考えられる。
また、この他に、!R楡1完液中の(:す、“1酸合−
イ()ノご、9の化学薬剤を添加づ−ることによつ−C
不溶(ヒし/ご1モ2、薄膜]−バボレークど横型乾燥
i戊の才11み含し↓l: J、す)層線廃液を乾燥し
:l′1″!子化づる方法ら提案さ4′ム(いる。この
方法では、硼酸にJ、る高分子1[コは411)むいた
め、通常のスラリー状廃液を乾燥処Jqlづる場合と、
同様に乾燥処理が1コな]つれイ)が、通常の※と燥機
て乾燥するにはいろいろ困グ・「な問題かあり、この場
合には、湧IB!エバポレータで固形分:+hs If
lか約60重111%程度になるま(濃縮廃液中の水ヅ
1を除去した後、ン昆合パドルを右づイ、 liX’、
 j+I′l乾燥機て乾燥粒子化している。このJ、う
(こ、乾燥工程を2「(2に分(Jだのは、薄膜−[パ
ボレータのみてツ>2 jyhG J ’i:行なうこ
と、処理物の加熱壁面へのイ・]ル〜ゝり回りiγへの
負荷増大等にJ、り乾燥処理か非常に内5!ii M 
1,7るど判断したためであるが、)門縮廃液を2段−
1稈で乾燥づ−ることは装置か複に1[にイ〔リリさ、
メンプナンス上及び装置RωF人さイア欠点(・ある。
「発明の目的] 本発明は、かかる点に対処し−CC10れたしのて・、
乾燥匠に過瓜の(戊成約負1■をか(〕ることなく容易
に水酸化す1〜リウムと硼酸とを主成分とする放0づ性
廃液を一回の工程で乾燥粉体化り−ることができる危0
’l↑り一廃?Ikの乾燥処理方法を捉供づ−ることを
目的とりる。
[発明の概要] リイ1つち本発明は、水69化す1−リウムと!11.
11酸とを主成分とづ−る成用性廃液に硼酸を不溶化づ
−る化学凝剤を添加し1.:後、可動翼をM ’J−る
竪型a9膜乾燥(人にJ、り放射性f′tfc教を乾燥
させ粉体化することを1!、J徴とりるしのである。
[発明の実施例1 以下、実験及び実施例について木′尾明を訂細にd(明
づる。
まり゛、PWRの濃縮廃液の粉体化範囲を調l\るため
に、種々の密度の模I賢廃液を(′1成し、実験を15
1L、、った。即ち、イ詞ン交Jtl水中にVIJ’l
 Wiを12重り習6洛解してこれに水酸化ナトリウム
を添加してI)目を7.8.9.10,11に調整し、
この枳擬廃故に水酸化カルシウムを■n長と水酸化ナト
リウムに対し−(’ 10数重足%〜30故tit宇?
i′1の範囲内に添加して自白の沈澱を生成させた後、
この沈〔殿生成物を含む試”A”l イfflを加熱し
く水4・、′こ全に、ミ・ン光ざけ、残った乾燥物を観
察した。乾燥物の形f6量としては)jラス状、′(5
)棒状あるいはこ4’lらの中間状態である石含状のも
のが児られた。実験れIl宋4り11表に示でか、この
表において組成のΦ串01.は水酸化カルシウムを添加
後の試料液中の全固形分(−おりる各成分の割合を表わ
したちの−(、試λ’!1’rl’i(中の密度を人ね
1Jbのでに11ない、。
(以下余白) また、以上の実験に基づいて水酸化ノ1〜リウム、硼酸
、水酸化カルシウムの合計に、λ・j!lる各成分の重
徂比による粉体化の範囲を第1図に示づ一0図中、曲線
を境に斜線側がわ)イホ域である4、このJ、うに、p
l−1が7へ・11の範囲にある水酸化すF・リウムど
硼酸を主成分とJろ水溶液中に水酸化カルシウムも含め
た固形分に対して約30市M1%以上の水酸化カルシウ
ムを+I[+えれば、乾燥処理により第3)体化づ゛る
ことが可「認された。
次に、水酸化カルシウムで沈設処理した模擬廃液中の全
固形分潤度が15重量%以下°Cでの固形分の組成がぞ
れそ゛れ第1図にJ3いてA、口、Cζ示されるもので
ある各模擬廃液について、負′32図に示り一堅型イル
膜仝2燥1幾を用いて乾燥実験を行イiつだ。
この堅型薄膜乾燥賎は、処理液を加ツ)Jる加熱外套1
と、この加熱外套1の内部に挿入された1、J−夕2ど
、このLl−タ2に可動に取(J1プられた撹拌翼、即
ち可動翼3ど、」二部の給液口4より供給された処理液
を均一に仏然面に拡11にさせるだめの拡散板5と、加
熱にJ、り蒸発した蒸気が、放出されりン蒸気出口6と
、下部に設りられた粉体比ロアどから成ってiJ5つ、
可動翼3が絶えず伝熱面を清alにしスケール伺肴によ
る伝熱効率低下を防止しでいる。給液1]4に取入れら
れた濃縮廃液は、ロータ2上部の拡散板5ににり均一に
伝熱面に拡散さ41、伝熱面をはげしく拡散され4Tが
ら流下覆る。
その間加熱により蒸発した蒸気は上昇して上部蒸気用[
16J、り放出さl′?、残った;■n Ilj+廃液
【J更に濃縮され−Cスラリー状になるが、可動翼3の
ため、過度の低域的負荷はかからず、乾燥速度が遅くな
ることなく粉体状になるまで、落下しつつ乾燥される。
第3シ1の(a )、(1))、(c)t;l;処理物
の状態とその時の可動913の動きをそれぞれ示すしの
で、(a)は加熱蒸発ゾーン、(b)はスラリーゾーン
、(c ) Iに粉体ゾーンにおける状態である。
乾燥実験の結末、A点の組成に調整した試料液は乾燥開
始後数十分で可動すQ3の回転が不能となり、乾燥1;
笈モータに大さな負荷がかかつて乾燥処理続行は不可能
となったが、B煎及び0点の組成の試料液は、堅型薄膜
乾燥椴内で粉体化し砂状のものか得られた。得られた粉
体の性状を第2表に承りとともに、堅型薄膜乾燥憚の給
液量とわ)棒金水率の関係を、第4図に示す。
第4図7)Yら、第1図の粉体域に、倣縮廃?rLρ1
水h%化刀ルシウムの添加により調整ざγtVい(しば
、堅型簿Bψ乾燥倣を用い−C最高約4t)J2/Hr
の給液量で乾燥処理h\可能であるここが萌1) 7)
1である。
仏に小発明の好適な一実施例を第5図にJ−り詳細に説
明する。第5図は、PWR原子力発゛旨所において発生
した濃縮廃液処理装置の系統四である。
図中、給液タンク10の上部には、廃液収集性11と硼
酸不溶化剤供給菅12が連結されている。
硼酸不溶化剤供給菅12の細端は水酸化カルシウムを収
納した硼酸不溶化剤タンク13に連結されており、途中
に硼酸不溶化剤ポン114と1iji醒不溶化剤供給流
量計15が設けられている。また給液タンク10には、
濃縮廃液中の水酸化ナトリウム及びill酸濃度を測定
J゛るための唇電度計16と0!1メータ17が取(=
Jtjられており、この潤度測定1’i’l宋及び硼酸
不溶化剤供給流量ii+15より硼酸不溶化剤供給ポン
プ1/4の作動が制御され、硼酸不溶化剤の供給伍が調
整される。また給液タンク10に(、i攪拌ポンプ18
を途中に設(づたリザイクル’i’:i”l 9か取1
qUられでおり、更には、給液タンク10の下部に途中
に給液ポンプ20と給液流量−21をイjし他(、:M
が堅型薄膜乾!・■鵬2.2に連結された給蔽菅23の
一端が連結されている。給液ボン720 L;L ip
 1J37 VAn in−ill’ 21 E ヨリ
1lii ill サp ル。竪型薄膜乾燥+5ffi
 22は第2図に示″rJ構造を右し、モータ24によ
り可動翼3が回転する。竪型薄膜乾燥)第22の下部に
(,1粉体IJI出管25が連結されてJ3す、このわ
)体排出’?入25の他9ガ;は、固化処理系に連結さ
れ(いる。また、堅型博膜乾燥1戊22の上部に取付り
られた加熱熱気]ul出管2Gは凝縮器27に連結され
ており、ここで加熱蒸気はガスと凝縮水に分離される。
以」ニのJ、うに構成された濃縮廃液処理X置1.1、
次のように動作する。
まず、P W R濃縮廃液が廃)1に収集笛・114通
して給液タンク10に集められ、濃縮廃液中の水酸化ナ
トリウムど11M酸の濃度が電うQ1良h116ど19
1]メータ17によって検出される。このiEm If
 i則定軌11果により全固形分中の水酸化カルシウム
密度が約30型組%以、[となるJ:うに、水酸化カル
シウムが硼酸不溶化剤タンク13」=り硼酸不溶化剤供
給@12を通じ給液タンク10中の濃縮廃液に供給され
、攪拌ポンプ18の作動【こより十分拡11(される。
硼酸不溶化処理を施された濃縮廃液は給液流mh121
を監ン髪しつつ訂1液ポンプ20を伯動さUることによ
り、竪型薄膜乾燥機22に一定速麻で供給される。、竪
型薄膜乾燥機22にJ)いC濃縮廃液は乾燥され、粉体
状どなって粉体排出管2!5より排出され、固化処理系
に送り込まれる。
以上の説明からし明らかな、」:うに、PWR原了力発
電所にJ3Lプる濃縮廃液も廃液中の全固形分中の水酸
化カルシウム潤度を少なくとも30%前少(こづれ(」
堅型訪膜※2燥機にJ:り容易に乾燥処理して粉体化り
−ることかでき、粉体化したP W R製綿D111り
tel B W R’+渭縮廃)イタと同様にプラスチ
ック固化処]!11やペレット化化%]jpが可能であ
る。
」メ下に、上記乾燥処理されたP W R濃縮廃液の粉
体をプラスチック固化した適用例及びペレット化した適
用例を例示する。
同化適用例1 固化剤どして熱硬化性樹脂である不飽和ポリエステル樹
脂を選択した。不飽和ポリエステル樹脂(:1ブ[1ビ
しIングリコールマレAフタレート系でスブーレンを単
量体としているしのを使用し、この樹脂と乾憬粉体どを
千m比で4:6の割合で均一混合し、ついで樹脂に対し
1%の割合で手合開始剤であるメヂルエヂルクl〜ンバ
ーオ:1−シトを、及びbj脂に対し0.5%の割合で
促進剤であるナフテンff6コバルトを加え、さらに均
一に混合した。混合終了後約30分で混合物はゲル化し
、5時間後に;よ重合熱が最高に達し、1日後には完全
に硬化した。固化体の物性は次の通りであっlζ。
圧縮強度:800μi” +、+:F 比   重 :1.59 この同化体を60日間水中に浸漬したか、なんら変化は
認められなかった。
固化適用例2 固化剤どして熱硬化性Iff+脂であるエル4シ4Δ1
脂を選択した。エル4シ樹脂(ま、ヒスンエノールΔと
]−ビクl」ルヒドリンの81を全反応にJ、り製造さ
れ!こしので、いわゆるビスフェノール△型エボキン樹
脂と呼(、玉れるしのを使用した。この樹)[(1と乾
燥粉体をΦ量比で1:1になる。J、うに均一混合し、
ついてb更化剤のジニ[ブレンI〜リアミンを二[ポー
(シ樹脂(こ対し9%の割合で加え均一混合し/j 0
混合物は発熱して1日後には固化体が形成された。得ら
れた同化体の物性は次の通りであった1゜圧縮強度: 
850 k); / +:+1比    小 :1.5
に の同化体を60口間水中に浸漬したが、イXんら変化は
認めらitなかった。
べ1ノソlへ化]1預用例1 j・j−創成形機を用い−(、成形圧を1.5トン/’
 Catどして20φの型枠中に乾燥粉体を充填し加圧
成形した。加圧保持01間は10秒とし、充填深さを2
0 !i+4とした。粉体の成形が可能であることが確
認され、圧縮破壊強度(ま150 kg 〕’ cJで
あった。
ペレツI〜化)凶用例2 乾燥i)休とこのわ)1本に対し8重量%の塩素化ポリ
エチレンを均一混合し、これを押出成形偶により混練り
して径〜1ら111φの(4・状に押し出した。この棒
状のらのを1 cmの長さに切断しペレッ1−とじた後
、その圧縮破壊試験を実施したところ、ペレツ1へはコ
ム状の弾性体となり、〜150 kg、/ c+にで応
力−び・j゛み曲線が]17れ曲る程1良で破壊点しJ
認められイ1がった。
「発明のソJ宋] 4(・発明にJ、れば、P WR原子力57:、電所に
おいて光生り−ろ水酸化ナトリウムと1111 Mとを
主成分とする諾R(ii Hピ液ζ・b、少雑な乾燥工
程を要りることなく゛どf易に※2燥処1!]! して
わ)体化づ゛ることができ、粉体化した放射性廃棄物は
B WR原了力発電所c発lt: iJる硫酸ブーI・
リウノ、ト成ブフの江■ld廐;段のJ易i′’iと同
様にプラスブック固化及びベレット1ヒのダ几狸が可能
て、減31’J(ごづくれ、か−)安全性())・jく
゛れた形態に処J里することかてさる。
【図面の簡単な説明】
第1図(ま(1]ツ酸不溶化処理したδ1版院液の水酸
化すトリウム、1別酸及び水酸化カルンウl\の組成化
による粉イ本化範囲を一示71着1j戊図、第2図は不
発明方?1:に使用される堅11す薄膜乾燥(戊の一実
hm例を示′?I破砕斜視図、第3図(a)、(bン、
(c )はそれ〜そ゛れ第2図にd”iIjる生な乾燥
処理段1:)Nを示り一横断面図、第・1図はq〕2図
の堅型薄股乾燥1星にJ、る乾燥処Ig!速度と形成さ
れた粉体の含水・t−の関係を示づグラフ、第5図は本
発明方法に使用さねるP W R濃縮廃液処理装置の一
実・箱間を示す配竹系絖図である。 2・・・・・・・・・・・・I] −タ3・・・・・・
・・・・・可動翼 10・・・・・・・・・・・・給液タンク1 t’l・
・・・・・・・・・・・11111酸不溶化剤タンク2
2・・・・・・・・・・・堅型薄膜乾燥(幾代」す1人
弁用)上   須 山 i/i  −第2図 第3図 (α)

Claims (1)

  1. 【特許請求の範囲】 (1ン水酸化ナトリウムと硼酸とを主成分とする放射性
    廃液に硼酸を不溶化する化学薬剤を添加した後、可動翼
    を有する竪型薄膜乾燥(幾により前記放射性廃液を乾燥
    さt粉体化することを特徴とする放射性廃液の乾燥処理
    方法。 <2xm酎を不溶化する化学薬剤は水酸化カルシウムで
    ある特許請求の範囲第1項記載の放射性廃液の乾燥処理
    方法。
JP4755083A 1983-03-22 1983-03-22 放射性廃液の乾燥処理方法 Expired - Lifetime JPH0631842B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4755083A JPH0631842B2 (ja) 1983-03-22 1983-03-22 放射性廃液の乾燥処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4755083A JPH0631842B2 (ja) 1983-03-22 1983-03-22 放射性廃液の乾燥処理方法

Publications (2)

Publication Number Publication Date
JPS59171898A true JPS59171898A (ja) 1984-09-28
JPH0631842B2 JPH0631842B2 (ja) 1994-04-27

Family

ID=12778263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4755083A Expired - Lifetime JPH0631842B2 (ja) 1983-03-22 1983-03-22 放射性廃液の乾燥処理方法

Country Status (1)

Country Link
JP (1) JPH0631842B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775495A (en) * 1985-02-08 1988-10-04 Hitachi, Ltd. Process for disposing of radioactive liquid waste
US4793947A (en) * 1985-04-17 1988-12-27 Hitachi, Ltd. Radioactive waste treatment method
US4800042A (en) * 1985-01-22 1989-01-24 Jgc Corporation Radioactive waste water treatment
US4804498A (en) * 1985-12-09 1989-02-14 Hitachi, Ltd. Process for treating radioactive waste liquid
JP2012058033A (ja) * 2010-09-07 2012-03-22 Toshiba Corp ホウ酸含有廃液の処理方法及び処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800042A (en) * 1985-01-22 1989-01-24 Jgc Corporation Radioactive waste water treatment
US4775495A (en) * 1985-02-08 1988-10-04 Hitachi, Ltd. Process for disposing of radioactive liquid waste
US4793947A (en) * 1985-04-17 1988-12-27 Hitachi, Ltd. Radioactive waste treatment method
US4804498A (en) * 1985-12-09 1989-02-14 Hitachi, Ltd. Process for treating radioactive waste liquid
JP2012058033A (ja) * 2010-09-07 2012-03-22 Toshiba Corp ホウ酸含有廃液の処理方法及び処理装置

Also Published As

Publication number Publication date
JPH0631842B2 (ja) 1994-04-27

Similar Documents

Publication Publication Date Title
DE3432690C2 (de) Verfahren zur kontinuierlichen Produktion von vernetzten Polymeren und Vorrichtung zur Durchführung desselben
JPS6365220B2 (ja)
BRPI0507793B1 (pt) processo para a produção de um polímero absorvente de água, e, polímero absorvente de água
SU1060119A3 (ru) Способ получени полимерного субстрата-поглотител
JPS59171898A (ja) 放射性廃液の乾燥処理方法
US3272893A (en) Method for the production of fluid pearls
WO1989000753A1 (en) Method and apparatus for solidifying radioactive waste
KR20110088501A (ko) 초흡수성 중합체의 제조 방법
JPH0664194B2 (ja) 使用済イオン交換樹脂のセメント固化処理方法
JP2000046992A (ja) 復水脱塩装置
TW202213386A (zh) 以廢離子交換樹脂的濕法降解廢液製備可硬化漿,並用以固化/固定其他廢棄物的方法,以及改良的廢離子交換樹脂與有機物的濕法氧化方法
US4361505A (en) Process for treating radioactive waste
Morancho et al. Isothermal kinetics of photopolymerization and thermal polymerization of bis-GMA/TEGDMA resins
KR20010080725A (ko) 겔형 공중합체 비이드 및 이로부터 제조된 이온 교환 수지
TWI255277B (en) Processing method for spent ion-exchange resins
JP5523237B2 (ja) 放射性廃棄物の固化処理方法
JP2816006B2 (ja) 放射性廃棄物の固化処理方法
Haas Resin-based preparation of HTGR fuels: operation of an engineering-scale uranium loading system
JPS58215543A (ja) 放射性廃棄物のプラスチツク固化体の硬化状況判定方法
Suzuki et al. Dynamic mechanical properties of interpenetrating polymer networks formed by UV curing processes
JPS5490284A (en) Production of methyl methacrylate polymer
US3180815A (en) Method of producing ion exchange filler particles of high electrical conductivity
Phillips Acrylic precipitation consolidants
JPS55130819A (en) Producing aqueous slaked lime solution and equipment therefor
Khan et al. Moisture sorption isotherms of wood and wood-plastic composites (WPC)