JPS59171300A - Condenser microphone - Google Patents

Condenser microphone

Info

Publication number
JPS59171300A
JPS59171300A JP4494583A JP4494583A JPS59171300A JP S59171300 A JPS59171300 A JP S59171300A JP 4494583 A JP4494583 A JP 4494583A JP 4494583 A JP4494583 A JP 4494583A JP S59171300 A JPS59171300 A JP S59171300A
Authority
JP
Japan
Prior art keywords
diaphragm
spacer
holes
back electrode
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4494583A
Other languages
Japanese (ja)
Inventor
Masayuki Tone
利根 昌幸
Tsutomu Yano
屋野 勉
Takayoshi Saito
孝悦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4494583A priority Critical patent/JPS59171300A/en
Publication of JPS59171300A publication Critical patent/JPS59171300A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PURPOSE:To prevent a resonance frequency from being lowered at a high ambient temperature by inserting a metallic thin film spacer having lots of through- holes and an insulator between a metallic diaphragm and a back electrode. CONSTITUTION:The condenser microphone consists of a diaphragm 6 made of metallic foil, a spacer 9 comprising metallic thin film having plural through- holes 7, the metallic back electrode 5 and an insulating film 10. In this constitution, a DC bias voltage is impressed between the diaphragm 6 and the back electrode 5 and a sound pressure P is applied to the diaphragm 6, then the length of the through-holes 7 is changed and a capacitance between the diaphragm 6 and the back electrode 5 is changed and this is extracted as a voltage change. Since a metallic foil having a less expansion coefficient than a plastic film by nearly 1 digit is used in this way, no deflection is produced in a high ambient temperature and the resonance frequency is not decreased. Since the spacer 9 is also the metallic thin film, the holes 7 are formed with high precision and the control of the resonance frequency is easy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(ri、浴接ロホノ[・や組立ロボットあるいは
自動焦点カメラなとの窒中用距jl+LI j’j’1
(1(It十ンツとして用いろ、rするコンデンサ型マ
イ、クロポンに1月する0 従来列の(’!iG成とそ(9問題点 従来の空中超音波用コンデンサ型マイクロホンは、第1
図υ(、j:す2−とく、片面(−i波数射面側)に蒸
着電極1を有呟この蒸沼竜毬1が金1欄製リング2に電
気的−、i3j+を・1〕するよ・)に張設さ租たプラ
スチック振動1模ミを、複数の凹玲S仝隙4をもつ背イ
:ヌ51て密接さぜ、蒸着電極1と片極5の間に直流バ
イアス電圧を印加する構造を有(7ている。そして、振
動膜3(・で音−圧Pか加わ−)たとき、斤月EP(・
て応した糸動膜3の変位によって、蒸尤電極1と背極5
の凹部2隙4を含む部沙の間隔dか変化し、この静電容
赦変化を外部電気回路(図示せず)に取出す構成(、で
な−)ている。
[Detailed description of the invention] Industrial application field of the present invention
(1) It should be used as a condenser microphone, which is used as a condenser microphone.
Figure υ (, j: S2-, this vapor-deposited electrode 1 is placed on one side (-i wave number emitting surface side), and this steam swamp dragon ball 1 is electrically connected to the gold 1-column ring 2 with -, i3j+ ・1] A plastic vibrating wire (1), which is stretched over a plastic vibrator (1), is closely spaced on the back (51) with a plurality of concave holes (4), and a DC bias voltage is applied between the evaporation electrode (1) and one pole (5). It has a structure that applies (7).And when the sound pressure P is applied to the vibrating membrane 3 (・), the sound pressure P is applied (・).
Due to the corresponding displacement of the filament membrane 3, the vapor electrode 1 and the back electrode 5 are
The distance d between the parts including the recesses 2 and the gaps 4 changes, and this electrostatic tolerance change is taken out to an external electric circuit (not shown).

ここで、背極5の表面(5・(胃形成されている凹部空
jj3i 4は、第2図(・ζ示ずごとぐ同心円状の溝
4−1でで、よく、又第31図、第4図に示すごとく、
各々独立し7’j Fn数の円形4−2.正方形4−3
なとの1イ万11石形状全イ〕する空隙でもよい。
Here, the surface of the back electrode 5 (5) has a concentric groove 4-1 as shown in FIG. As shown in Figure 4,
Each independent circle with 7'j Fn number 4-2. Square 4-3
It may also be a void that has the shape of 1,111 stones.

−力、半径a(:m)の円形振動膜を有する二1ンブン
サ型マ・イクロホンの」(据置波数)’r[1(z〕4
づ、振」彷膜の張力をT [: N7m )  面密度
をMl、A9/nl” 、11とず・Sと て与、えられるが、従来の紫中超f波用コンテンν−型
マイクロホンは振動膜3としてプラスチックフィルムを
用いているため、周囲温度が高温になった時、振動膜3
が伸長したるみを生じるため、振動膜3の張力Tが常温
における初期の設定値よシ小さくなり、その結果第(1
)式によって示される共振周波数が低下するという欠点
があった。
-(stationary wave number)'r[1(z]4
The tension of the membrane is given as T[:N7m], the areal density is given as Ml, A9/nl'', 11 and S, but the conventional content ν-type microphone for ultra-violet ultra-f waves is Since a plastic film is used as the vibrating membrane 3, when the ambient temperature becomes high, the vibrating membrane 3
As a result, the tension T of the diaphragm 3 becomes smaller than the initial setting value at room temperature, and as a result, the
) has the disadvantage that the resonance frequency shown by the equation decreases.

この欠点を除くため、第6図に示すように、熱膨張係数
の小さいチタン合金などの金属振動膜6を用い、複数の
貫通孔7を有する厚さ数千1tm以下のプラスチック薄
膜などから成る絶縁体スペーサ8に密接して振動膜6を
背極6に対向させる構成が考えられているが、絶縁体ス
ペーサ8はプラスチック薄膜であるため、取扱いが困難
であり、また共振周醜数が数百KHz以上の場合、絶縁
体スペーサ80貫通孔7の断面寸法は0.1mmのオー
ダーとなり、厚さ数十μ・m以下のプラスチック薄膜に
0.1 mm程度の微細加工を行なうことは容易ではな
い。
In order to eliminate this drawback, as shown in FIG. 6, a metal vibrating membrane 6 made of titanium alloy or the like with a small coefficient of thermal expansion is used, and an insulating film made of a plastic thin film with a thickness of several thousand 1 tm or less and having a plurality of through holes 7 is used. A configuration in which the vibrating membrane 6 faces the back electrode 6 in close contact with the body spacer 8 has been considered, but since the insulator spacer 8 is a thin plastic film, it is difficult to handle, and the resonance circumference number is several hundreds. In the case of KHz or more, the cross-sectional dimension of the insulator spacer 80 through hole 7 is on the order of 0.1 mm, and it is not easy to perform microfabrication of about 0.1 mm on a plastic thin film with a thickness of several tens of μm or less. .

発明の目的 本発明は以上のような問題点に鑑みてなされたもので、
高温雰囲気中における共1辰周波数の低下を防止すると
共に、絶縁体スペーサの寸法精度の向上をはかり、かつ
取扱いが容易なコンデンサ型マイクロホンを提供するこ
とを目的とする。
Purpose of the Invention The present invention has been made in view of the above problems.
It is an object of the present invention to provide a capacitor type microphone which prevents a drop in common frequency in a high temperature atmosphere, improves the dimensional accuracy of an insulating spacer, and is easy to handle.

発明の構成 本発明は上記目的を達成するため、金属振動膜と背極と
の間に、多数の貫通孔を有する金属薄膜スペーサと絶縁
体とを介在させるものである。
Structure of the Invention In order to achieve the above object, the present invention interposes a metal thin film spacer having a large number of through holes and an insulator between a metal vibrating membrane and a back electrode.

実施例の説明 以下に本発明の実施例を図面を用いて説明する。Description of examples Embodiments of the present invention will be described below with reference to the drawings.

第6図は本発明の一実施例を示す構成図であって、チタ
ン合金などの金属箔から成る振動膜6゜複数の微小な貫
通孔7をMする厚さ数十μm以下の金属薄膜から成るス
ペーサ9.金属背極6.スペーサ9と背極3を絶縁する
ためのプラスチックフィルムなどから成る絶縁膜10.
振動膜6を張設する振動膜保持リング2.およびシール
ドケース11から構成されている。振動膜保持リング2
は金属製で、振動膜6と電気的に導通が取られておシ、
振動膜保持リング2に張設された振動膜6はスペーサ9
に密接するように保持されるoここで振動膜6とスペー
サ9は必ずしも電気的に導通する必要はないが、i極間
浮遊容量を低減するために十分に密着させ電気的に導通
を取ることが望ましい。
FIG. 6 is a configuration diagram showing an embodiment of the present invention, in which a vibrating membrane 6 made of metal foil such as titanium alloy is made of a metal thin film with a thickness of several tens of μm or less with a plurality of minute through holes 7 formed therein. Spacer consisting of9. Metal back electrode6. An insulating film 10 made of a plastic film or the like for insulating the spacer 9 and the back electrode 3.
A vibrating membrane holding ring 2 on which the vibrating membrane 6 is stretched. and a shield case 11. Vibrating membrane retaining ring 2
is made of metal and is electrically connected to the vibrating membrane 6.
The vibrating membrane 6 stretched on the vibrating membrane holding ring 2 is connected to a spacer 9
The diaphragm 6 and the spacer 9 do not necessarily need to be electrically conductive, but they should be brought into close contact with each other to ensure electrical continuity in order to reduce the stray capacitance between the electrodes. is desirable.

以上の構成において、憑動膜6と背極6の閤て直流バイ
アス電圧、が印加される。音圧Pが振動膜6に加わると
、スペーサ9に設けられた貫通孔7の畏さが変化し、従
って振動膜θと背極5の間の電極間容量が変化するため
、これを電圧変化として外部′電気回路に取出すことが
できる0第6図において振動膜6に厚さ2μmのチタン
箔、スペーサ9に厚さ3.011mのステンレス箔を用
い、スペーサ9にエツチングによって半径0.2TII
nの多数の貫通孔7を設け、振動膜6(/こチタンの引
張り強度の樋度の張力(T = 500 N/ m )
を加えたとき、M=9X10−’にり/m’となり第(
1)式よシ共振周波数frは約450 KHzとなる0
以上説明したように本笑施例において、振動膜6はプラ
スチックフィルムより約1桁線膨張係数の小さいチタン
あるいはチタン合金なとの金属箔を用いているので高温
雰囲気中でも振動膜6がたるみを生じることがなく、従
って共振周波数が低下することはない。またスペーサ9
はステンレスなどの金属箔を用いているために、エツチ
ング等の方法によシ極めて微小な多数の貫通孔7を寸法
精度よく設けることができるので、共振周波数を高精度
にコントロールすることが可能である。さらにスペーサ
っけ金属箔を用いているので、プラスチック薄膜を用い
た場合に比べ、しわな・どが生じ(・てくく取扱いが容
易である。
In the above configuration, a DC bias voltage is applied between the movable membrane 6 and the back electrode 6. When sound pressure P is applied to the diaphragm 6, the height of the through hole 7 provided in the spacer 9 changes, and therefore the interelectrode capacitance between the diaphragm θ and the back electrode 5 changes, which is caused by a voltage change. In Fig. 6, titanium foil with a thickness of 2 μm is used for the vibrating membrane 6, stainless steel foil with a thickness of 3.011 m is used for the spacer 9, and the spacer 9 has a radius of 0.2 TII by etching.
A large number of through holes 7 are provided, and the vibration membrane 6 (Tension of the tensile strength of titanium (T = 500 N/m)
When adding, M=9X10-'Nori/m' and the (
1) According to the formula, the resonant frequency fr is approximately 450 KHz.
As explained above, in this embodiment, the vibrating membrane 6 uses metal foil such as titanium or titanium alloy, which has a linear expansion coefficient about one order of magnitude smaller than that of a plastic film, so the vibrating membrane 6 will sag even in a high-temperature atmosphere. Therefore, the resonant frequency does not decrease. Also spacer 9
Since this uses metal foil such as stainless steel, a large number of extremely small through holes 7 can be formed with high dimensional accuracy by methods such as etching, making it possible to control the resonance frequency with high precision. be. Furthermore, since metal foil with a spacer is used, it is easier to handle than wrinkles, etc., compared to when a plastic thin film is used.

発明の詳細 な説明したように本発明によれば、振動膜が金属薄膜か
らなるため、高温雰囲気中でも振動膜にたるみが生じず
共熾周波数が低下すること(dなく、丑たスペーサも金
属薄膜であるため、貫通孔を高精、度に設けることがで
きて共振周波数の1lilJ御が容易であり、しわなど
が生じにく〈取り扱いが容易である。
As described in detail, according to the present invention, since the diaphragm is made of a thin metal film, the diaphragm does not sag even in a high-temperature atmosphere, resulting in a reduction in the resonance frequency. Therefore, the through holes can be formed with high precision, the resonance frequency can be easily controlled within 1 lilJ, and wrinkles are less likely to occur (easy to handle).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラスチック振動膜を用いたコンデンサ
型マイクロホンを示す断面図、第2図〜第4図は背極の
形状を示す゛、P面図・第61菌は従来の金属W!i’
J辰動膜を片動膜コンデンサ型マイクロホンを示す断面
図、第6図は本発明のコンデンサ型マイクロホンの−、
実施例゛を示す断面図である。 2・・・・・・振glh膜保持リング、6・・・・・・
背極、6・・・・・・振動膜、7・・・・・負通孔、9
・・・・・・スペーサ、21o・・・・・・絶縁体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 −2 第5図 第6図
Fig. 1 is a sectional view showing a conventional condenser type microphone using a plastic diaphragm, and Figs. 2 to 4 show the shape of the back electrode. i'
6 is a cross-sectional view showing a unidirectional membrane condenser microphone.
FIG. 3 is a sectional view showing the embodiment. 2... Shaking GLH membrane retaining ring, 6...
Back electrode, 6... Vibration membrane, 7... Negative through hole, 9
...Spacer, 21o...Insulator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3-2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 多数の貫通孔が形成さ1また金属薄膜か1pなるスペー
サの一刀の11]I(r(金属薄膜からなる振動膜を形
成し、前記スペーサの他力の而に絶縁f4’を介して、
前記振動膜との間で内向1F極を構成する背・1jを形
成し2てなるコ〕/テンザ型マイクコホン、っ
A large number of through holes are formed, and a spacer made of a metal thin film 1P is formed.
[2] / Tenza type microphone cophone, which forms a back 1j that constitutes an inward 1F pole with the diaphragm.
JP4494583A 1983-03-17 1983-03-17 Condenser microphone Pending JPS59171300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4494583A JPS59171300A (en) 1983-03-17 1983-03-17 Condenser microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4494583A JPS59171300A (en) 1983-03-17 1983-03-17 Condenser microphone

Publications (1)

Publication Number Publication Date
JPS59171300A true JPS59171300A (en) 1984-09-27

Family

ID=12705618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4494583A Pending JPS59171300A (en) 1983-03-17 1983-03-17 Condenser microphone

Country Status (1)

Country Link
JP (1) JPS59171300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973149A2 (en) * 1998-07-16 2000-01-19 Massachusetts Institute Of Technology Ultrasonic transducers
JP2003018696A (en) * 2001-06-29 2003-01-17 Azden Corp Electret capacitor microphone
US6775388B1 (en) 1998-07-16 2004-08-10 Massachusetts Institute Of Technology Ultrasonic transducers
US8027488B2 (en) 1998-07-16 2011-09-27 Massachusetts Institute Of Technology Parametric audio system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973149A2 (en) * 1998-07-16 2000-01-19 Massachusetts Institute Of Technology Ultrasonic transducers
EP0973149A3 (en) * 1998-07-16 2000-12-27 Massachusetts Institute Of Technology Ultrasonic transducers
US6775388B1 (en) 1998-07-16 2004-08-10 Massachusetts Institute Of Technology Ultrasonic transducers
US8027488B2 (en) 1998-07-16 2011-09-27 Massachusetts Institute Of Technology Parametric audio system
US9036827B2 (en) 1998-07-16 2015-05-19 Massachusetts Institute Of Technology Parametric audio system
JP2003018696A (en) * 2001-06-29 2003-01-17 Azden Corp Electret capacitor microphone

Similar Documents

Publication Publication Date Title
US6806593B2 (en) Thin film electret microphone
CN101867858B (en) Raised microstructure of silicon based device
AU727839B2 (en) Wafer fabricated electroacoustic transducer
WO1997039464A9 (en) Thin film electret microphone
KR100977826B1 (en) MEMS microphone and manufacturing method thereof
JP2007208986A (en) Micro-machining type element and corresponding fabrication
JPS59171300A (en) Condenser microphone
US3821491A (en) Microphone construction
US4070741A (en) Method of making an electret acoustic transducer
JPS6072277A (en) Pressure sensitive element and pressure sensor
JPH0378040B2 (en)
US20030053649A1 (en) Electroacoustic transducer
JPH07184297A (en) Sound input output device
JPH01176200A (en) Piezoelectric diaphragm
JPS58209299A (en) Transducer
JPH07284199A (en) Vibration film and manufacture therefor
US11589164B2 (en) Acoustic transducer including a modified membrane
Obata et al. Experimental investigations on the sound and vibration of a Japanese hanging-bell
JPS6236525A (en) Detecting element for mechanical vibration, etc.
JPH06205493A (en) Device for extracting vibrational displacement of speaker unit
SU636816A1 (en) Electret transducer
JP2004096543A (en) Acoustic detection mechanism
JPS62200A (en) Piezo-electric type microphone
JPS5852400B2 (en) Electroacoustic transducer using a tuning fork type piezoelectric vibrator
KR20220001973A (en) Voice sensor with different thickness and voice sensing method using same