JPS5917127A - Display device for air pressure in tire - Google Patents

Display device for air pressure in tire

Info

Publication number
JPS5917127A
JPS5917127A JP57125746A JP12574682A JPS5917127A JP S5917127 A JPS5917127 A JP S5917127A JP 57125746 A JP57125746 A JP 57125746A JP 12574682 A JP12574682 A JP 12574682A JP S5917127 A JPS5917127 A JP S5917127A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
air pressure
signal
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57125746A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
勝亦 正晃
Takashi Kawakami
隆 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP57125746A priority Critical patent/JPS5917127A/en
Publication of JPS5917127A publication Critical patent/JPS5917127A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2241Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in or for vehicle tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0427Near field transmission with inductive or capacitive coupling means
    • B60C23/0428Near field transmission with inductive or capacitive coupling means using passive wheel mounted resonance circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0447Wheel or tyre mounted circuits
    • B60C23/0449Passive transducers, e.g. using surface acoustic waves, backscatter technology or pressure sensitive resonators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PURPOSE:To convert the change in the resonance frequency of a surface acoustic wave element to a change in air pressure with an arithmetic circuit and to display said change by detecting the change in the air pressure in a tire as a change in said resonance frequency. CONSTITUTION:The signal from a sweep oscillation means 15 is transmitted by a signal from a controller 23 via a transmission means 9 to the 1st and the 2nd surface acoustic wave elements 5, 7. When the elements 5, 7 resonate, energy consumption is induced by a resonance system constituted of said elements and a reception antenna 11, by which the signal level at the antenna 13 is decreased. The resonance point of the decrease in the level is detected with a detection means 17 and is fed to a controller 23. A counter 25 counts the frequency of the means 15 and inputs the same to memories 27, 29. The outputs of the memories are inputted to a subtractor and are fed to a pressure converter 33, by which the outputs are converted to the pressure value signal corresponding to the input frequency. As a result, a display means 21 receives the pressure value signal as the calculated result from an arithmetic means 19 and displays the prescribed air pressure.

Description

【発明の詳細な説明】 この発明は、自動車等の車両に装備された車輪タイヤ内
の空気圧を表示するタイヤ空気圧表示装置に関づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tire air pressure display device that displays air pressure in wheel tires installed on a vehicle such as an automobile.

従来のタイヤ空気圧表示装置としては、例えば第1図に
示すようなものがある。すなわち、図示しないタイA7
側には水晶振動子105と開閉スイッチ103とタイヤ
側受信アンテナ111とが設(プられ、図示しない車体
側には送信器115及び受信器117と送受切替器12
3と車体側送信アンテナ113とが設けられている。そ
して、送受切換器123により送信器115を作動させ
ておけば、車体側送信アンテナ113、タイヤ側受信ア
ンテナ111を介して水晶振動子105へ断続し1=発
振信号が送信され、タイヤ空気圧が所定値以下になると
開閉スイッチ103が閉じられタイA7側の水晶振動子
105が共振覆る。このとき、送受切替器123の切替
ににり受信器117が作動されて水晶振動子105から
放出される共振エネルギが受信され、この受信に基づい
(所定の表示を行なわけることにより、タイヤ空気圧を
表示するものである。
As a conventional tire pressure display device, there is one shown in FIG. 1, for example. In other words, tie A7 (not shown)
A crystal oscillator 105, an open/close switch 103, and a tire side reception antenna 111 are installed on the side, and a transmitter 115, a receiver 117, and a transmission/reception switch 12 are installed on the vehicle body side (not shown).
3 and a vehicle body side transmitting antenna 113 are provided. If the transmitter 115 is activated by the transmitter/receiver switch 123, an oscillation signal (1 = oscillation signal) is transmitted intermittently to the crystal oscillator 105 via the vehicle body side transmitting antenna 113 and the tire side receiving antenna 111, and the tire air pressure is set to a predetermined value. When the value falls below the value, the open/close switch 103 is closed and the crystal resonator 105 on the tie A7 side resonates. At this time, the receiver 117 is activated by switching the transmitter/receiver switch 123, and the resonance energy emitted from the crystal oscillator 105 is received. It is to be displayed.

しかしながら、このようなタイ驚7空気圧表示装置では
、タイ丸7空気圧が所定の汁力Jこり人さいか小さいか
だ1ノを表示づるのみのものであるため、走1う中にタ
イヤ空気圧がどの位にあるかを正確に知ることができな
い。ところが走行車速が高まるとこれに相当した高めの
空気圧が必要となる等走行中のタイヤの危険空気圧は走
行車速によって変化するため、タイヤ空気圧が現在どの
位にあるかを正確に知ることは安全上極めて重要な事で
ある。
However, such tire pressure display devices only display whether the tire pressure is a specified tire pressure or a small raft. It is not possible to know exactly what position it is in. However, as the speed of the vehicle increases, a correspondingly higher air pressure is required.Dangerous air pressure in tires while driving changes depending on the speed of the vehicle, so it is important for safety to know exactly what the tire pressure is currently. This is extremely important.

そこで、タイA7空気圧がどの位にあるかを逐次検出づ
るために複数の水晶振動子を設り、各々異なった所定圧
力値を検出覆るようにすることが考えられる。しかしな
がらこの場合は、水晶振動子を圧ノ〕値の数に対応する
だ【ノ備えなければならず、]ス1−アップの原因にな
るという問題点がある。
Therefore, it is conceivable to provide a plurality of crystal oscillators to sequentially detect the level of the air pressure in the tie A7, each detecting a different predetermined pressure value. However, in this case, there is a problem that a crystal resonator must be provided corresponding to the number of pressure values, which causes a start-up.

この発明は、上記の問題点に鑑み創案されたもので、菌
中な構造によりタイV空気圧の変化を逐次表示Jること
のできるタイヤ空気圧「表示装置を提供するものである
The present invention was devised in view of the above-mentioned problems, and provides a tire pressure display device that can sequentially display changes in tire pressure using a compact structure.

この目的を達成するためにこの発明は、少なくともタイ
ヤ空気圧に応動して共振周波数が変化するように備えら
れた表面弾性波素子と、この表面弾性波素子が少なくと
もタイヤ空気几変化によって変化づる共振周波−数の範
囲にわたって順次連続的に周波数が変化する掃引発振手
段と、この掃引発振手段の発振信号を前記表面弾性波素
子に非接触で伝達する信号伝達手段と、前記発振信号が
順次連続的に変化しでいるとき前記表面弾性波素子の共
振する周波数を検知する検知手段と、この検知手段が検
知した共振周波数からタイ17空気圧を演算する演算手
段と、この演算手段による演算結果を表示する表示手段
とを有することを特徴とするものである。
To achieve this object, the present invention provides a surface acoustic wave element that is provided with a resonant frequency that changes at least in response to tire air pressure, and a surface acoustic wave element that is provided with a resonant frequency that changes at least in response to changes in tire air pressure. - a sweep oscillation means whose frequency changes sequentially and continuously over a range of numbers; a signal transmission means which transmits the oscillation signal of the sweep oscillation means to the surface acoustic wave element in a non-contact manner; a detection means for detecting the resonance frequency of the surface acoustic wave element when the surface acoustic wave element is changing; a calculation means for calculating the air pressure of the tie 17 from the resonance frequency detected by the detection means; and a display for displaying the calculation result by the calculation means. It is characterized by having a means.

以下、第2図〜第6図に基づき、この発明の第1実施例
を詳細に説明する。
Hereinafter, a first embodiment of the present invention will be described in detail based on FIGS. 2 to 6.

第2図に示すように、タイヤ1側にはタイV空気圧の増
減に応じて伸縮するベローズ3が設けられている。この
ベローズ3の伸縮面には第1表面弾性波素子5の一端が
固定され、第1表面弾性波素子5の他端は図示しないが
ベローズ3の伸縮に対しで動かないように固定されてい
る。従つ′C第1表面弾性波素子5はタイヤ空気D−と
タイヤ温度との変化にg5動りる。第1表面弾1g波素
子5に隣接しC第2表面弾性波素子7が設()られCい
る。
As shown in FIG. 2, a bellows 3 is provided on the tire 1 side, which expands and contracts in response to increases and decreases in tie V air pressure. One end of the first surface acoustic wave element 5 is fixed to the expansion/contraction surface of the bellows 3, and the other end of the first surface acoustic wave element 5 (not shown) is fixed so as not to move as the bellows 3 expands/contracts. . Therefore, the first surface acoustic wave element 5 moves g5 due to changes in tire air D- and tire temperature. A second surface acoustic wave element 7 is provided adjacent to the first surface acoustic wave element 5.

この第2表面弾性波素子7はl\L1−ズ3には接触せ
ずタイヤ温度変化のみに応動し、この応動は第1表面弾
性波素子5が応動する温度変化と同一の温度変化にJ、
るものである。第1表面弾性波素子5及び第2表面弾↑
(F波素子7はN53図に示り−ようなもので、一定の
厚みを有りる基数5a(7a)上に一対の反則器巳”)
+1(71)>をイ1し、反射器5b(7b)間に−え
jの櫛の歯状電極をインターデジタルに絹合わせたりだ
れ状電極5C(70)を有している。第1.第2表面弾
性波素子5.7は第4図に示りJ、うに温度(七)が変
化りると共振周波数が変化覆る特性を有し、その使用範
囲は温度[。℃以」ニである。又第1.第2表面弾性波
素子5.7の進行方向に応力が加えられると第5図に示
すように弾性係数の変化に伴う表面弾性波の伝播速度の
変化が起り共振周波数が変化りる性質を4−i L/ 
”Cいる。従って、第1表面弾性波素子5はタイA7空
気圧Pと温度tどの変化に応動しC共振周波数が変化し
、第2表面弾性波素子7は温度変化のみに応動して共振
周波数が変化する。第1゜第2表面弾性波素子5.7に
は第2図のように信号を非接触ぐ伝達りる信号伝達手段
9のタイ(7側受信アンラナ11が並列に接続されてい
る。
This second surface acoustic wave element 7 does not contact the l\L1-z 3 and responds only to tire temperature changes, and this response is caused by the same temperature change as that to which the first surface acoustic wave element 5 responds. ,
It is something that First surface acoustic wave element 5 and second surface acoustic wave ↑
(The F-wave element 7 is as shown in Figure N53, with a pair of fouling devices on the base 5a (7a) with a constant thickness)
+1 (71)>, and has a comb-shaped electrode 5C (70) between the reflectors 5b (7b) and interdigitated interdigitated comb-like electrodes. 1st. The second surface acoustic wave element 5.7, shown in FIG. 4, has the characteristic that the resonant frequency changes as the temperature (7) changes, and its use range is within the temperature range. ℃ or below. Also, number 1. When stress is applied in the traveling direction of the second surface acoustic wave element 5.7, the propagation velocity of the surface acoustic wave changes as the elastic coefficient changes, as shown in Figure 5, and the resonance frequency changes. -i L/
Therefore, the first surface acoustic wave element 5 changes its resonance frequency C in response to changes in the air pressure P and temperature t of the tie A7, and the second surface acoustic wave element 7 changes its resonance frequency in response only to changes in temperature. The first and second surface acoustic wave elements 5 and 7 are connected in parallel to the tie (7 side receiving unlaner 11) of the signal transmission means 9 for transmitting signals in a non-contact manner as shown in FIG. There is.

一方、図示しない車体側には、信号伝達手段9の車体側
送信アンテナ13、掃引信号手段15、検知手段17、
演算手段19、及び表示手段21が備えられている。
On the other hand, on the vehicle body side (not shown), a vehicle body side transmission antenna 13 of the signal transmission means 9, a sweep signal means 15, a detection means 17,
A calculation means 19 and a display means 21 are provided.

前記車体側送信アンテナ13は掃引発信手段15から伸
びており、掃引発信手段15は]ンl−Ll−ラ23か
らの信号を受(ブで、第1表面弾性波素子5がタイヤ空
気圧変化及び温度変化により、第2表面弾性波素子7が
温度変化により各々変化する共振周波数の範囲にわたり
順次連続的に周波数が変化りる。
The vehicle body-side transmitting antenna 13 extends from a sweep transmitting means 15, and the sweep transmitting means 15 receives a signal from the L-L-L-RA 23. Due to the temperature change, the frequency of the second surface acoustic wave element 7 changes sequentially and continuously over the range of resonance frequencies that each change due to the temperature change.

前記検知手段17は、前記掃引発振手段15の発振信号
が順次連続的に変化しているとき前記第1、第2表面弾
性波素子5.7の共振づ°る周波数を検知して=1ント
〔」−ラ23’\入カする。
The detection means 17 detects the resonance frequency of the first and second surface acoustic wave elements 5.7 when the oscillation signal of the sweep oscillation means 15 is sequentially and continuously changing, and detects the resonance frequency of the first and second surface acoustic wave elements 5.7. [''-ra23'\enter.

前記演符手段1つは周波数カウンタ25、第1メモリ2
7.第2メ七り29、減算器31、及び圧力変換器33
を右しくいる。周波数カウンタ25は掃引発振手段15
の周波数をカラン1〜して第1、第2メモリ27.29
へ入力する。第1メモリ27へはコン1〜ローラ23へ
入力された第1゜第2表面弾性波素子5.7の共振周波
数の内、第2表面弾性波素子7の共振周波数が入力され
、第2メモリ29へは第1表面弾性波素子5の共振周波
数が入力される。第1メモリ27.第2メモリ29の出
力は共に減算器31へ入力されC減算処理される。減算
器31の出力はFF力変換器33へ入力され、入力周波
数に対応した圧力値信号に変換される。
One of the note means includes a frequency counter 25 and a first memory 2.
7. Second mechanism 29, subtractor 31, and pressure transducer 33
I'm right. The frequency counter 25 is the sweep oscillation means 15
The frequency of 1 to 27.29 is input to the first and second memories.
Enter. The resonant frequency of the second surface acoustic wave element 7 among the resonant frequencies of the first and second surface acoustic wave elements 5 and 7 input to the controllers 1 to 23 is input to the first memory 27, and the second memory The resonant frequency of the first surface acoustic wave element 5 is input to 29. First memory 27. The outputs of the second memory 29 are both input to the subtracter 31 and subjected to C subtraction processing. The output of the subtracter 31 is input to the FF force converter 33, where it is converted into a pressure value signal corresponding to the input frequency.

前記表示手段21は演算手段19から出力される演算結
果としての圧力値信号を受【)で所定の1にカ表示をt
:JfKうちのである。
The display means 21 receives a pressure value signal as a calculation result outputted from the calculation means 19 and displays the pressure value at a predetermined value using [).
:JfK is mine.

つぎに上記一実施例の作用についCjlf>べろ。Next, regarding the operation of the above embodiment, Cjlf>Vero.

コントローラ23からの信号を受LSI−U掃引発振手
段15から信号が出力され、信号伝達手段9を介し°C
第1.第2表面弾性波素子5.7へ伝達される。この場
合、車体側送信アンテナ13に給電される信号ずなわら
掃引発振手段15の出力信号の周波数は第6図(a)、
振幅レベルの変化は第6図(b)、タイヤ側受信アンデ
ナ11に生ずる信号の振幅レベル変化は第6図(C)、
第1.第2表面弾性波素子5.7に流れる共振電流の変
化は第6図(d)、第6図(e )に示すようになる。
Upon receiving the signal from the controller 23, the LSI-U sweep oscillation means 15 outputs a signal, and the signal is outputted via the signal transmission means 9 at °C.
1st. It is transmitted to the second surface acoustic wave element 5.7. In this case, the frequency of the signal fed to the vehicle body side transmitting antenna 13 and the output signal of the sweep oscillation means 15 is as shown in FIG. 6(a).
Changes in the amplitude level are shown in FIG. 6(b), and changes in the amplitude level of the signal generated at the tire-side receiving antenna 11 are shown in FIG. 6(C).
1st. Changes in the resonance current flowing through the second surface acoustic wave element 5.7 are shown in FIGS. 6(d) and 6(e).

ここで給電された信号に第1.第2表面弾性波素子5.
7が共振する。第6図(a)r415.は第2表面弾性
波素子7が共振した周波数で、温度[0℃にaH)る固
有共振周波数をfoとし温度T℃におりる周波数の変化
分をΔftとすると、f、=IO+△fr と表わづことができる。同じ<f2は第1表面弾性波素
子5が共振した周波数で、温度to℃、圧力1気圧にお
ける固有共振周波数をTo  (第4図参照)とし、温
度1℃にお(プる周波数の変化分を△[丁、タイヤ空気
圧Pに15ける周波数変化分を△[Pと覆ると、 r2=r、+Δf T 11\[P と表わづことができる。
Here, the first signal is supplied with power. Second surface acoustic wave element5.
7 resonates. Figure 6(a) r415. is the frequency at which the second surface acoustic wave element 7 resonates, where fo is the natural resonance frequency at a temperature of 0°C (aH) and Δft is the change in frequency when the temperature reaches T°C, then f, = IO + △fr. can be expressed. The same <f2 is the frequency at which the first surface acoustic wave element 5 resonates. Let To (see Fig. 4) be the natural resonance frequency at a temperature of 1°C and a pressure of 1 atmosphere, and the change in frequency at a temperature of 1°C ( By substituting Δ[D and the frequency change multiplied by 15 times the tire air pressure P as Δ[P, it can be expressed as r2=r, +Δf T 11\[P.

第1.第2表面弾性波素子5,7が共振りるとこの素子
5.7とタイヤ側受信アンテプづ1で構成される共振系
で:Lネルギ消費が起り、車体側送信アンテプづ3での
信号レベルが低下づる現象を起り。この信号レベルの低
下する共振点を検知手段17が検出して信号が出力され
る。この出力信号は第6図(f )で示される。検知手
段17の出力信号第6図([)はコントローラ23によ
つC第6図(2)と第6図(11)とC′示されるよう
な信号に振分りられ、周波数カウンタ25にて馴致され
た周波数に比例しICC語数化信号各々第6図(g)、
第6図(11)で示される信号を1−リガとして第1メ
モリ27及び第2メモリ2つに記憶される。づなわち第
1メモリ27へは第2表面弾性波素子7の共振周波数r
+ に比例したh!数値信号が、又第2メモリ29へは
第1表面弾性波素子5の共振周波数r2に比例した81
数値信号が記IIされる。第2メモリ29から出力され
る信号f2は減算器31において第1メモリ29から出
力される温度による周波数変化分子1が減算され、タイ
ヤ空気圧による周波数変化分°△[Pのみが取出される
。この周波数変化分△fpは圧力変換器33にて圧力に
変換処理され、この圧力値信号を受り表示手段21が所
定の圧力表示を行なう。従っτ、タイヤ空気圧が低下す
るとベローズ3が撓んC第1表面弾性波素子5にかかる
応力が変化し、共振周波数[2が変化するため、表示手
段21によりタイA)空気R′が逐次表示される。
1st. When the second surface acoustic wave elements 5 and 7 resonate, L energy consumption occurs in the resonance system consisting of the elements 5 and 7 and the tire side receiving antenna 3, and the signal level at the vehicle body side transmitting antenna 3 occurs. A phenomenon occurs in which the amount of water decreases. The detection means 17 detects the resonance point where the signal level decreases and outputs a signal. This output signal is shown in FIG. 6(f). The output signal of the detection means 17 in FIG. 6 ([) is distributed by the controller 23 into signals as shown in FIG. 6 (2), FIG. The ICC word count signal is proportional to the adapted frequency, respectively in FIG. 6(g),
The signal shown in FIG. 6 (11) is stored in the first memory 27 and the second memory as 1-trigger. That is, the resonant frequency r of the second surface acoustic wave element 7 is sent to the first memory 27.
h proportional to +! A numerical signal 81 proportional to the resonant frequency r2 of the first surface acoustic wave element 5 is also sent to the second memory 29.
A numerical signal is recorded. The signal f2 outputted from the second memory 29 is subtracted by the temperature-induced frequency change numerator 1 outputted from the first memory 29 in the subtracter 31, and only the frequency change °Δ[P due to the tire air pressure is extracted. This frequency change Δfp is converted into pressure by the pressure converter 33, and upon receiving this pressure value signal, the display means 21 displays a predetermined pressure. Therefore, when the tire air pressure decreases, the bellows 3 bends, C, the stress applied to the first surface acoustic wave element 5 changes, and the resonance frequency [2 changes, so the display means 21 sequentially displays the tie A) air R'. be done.

第7図は第2実施例を示し、この実施例では上記第1実
施例に温度変換器35及び温度表示器37を加えたもの
である。すなわら、温度変換器35が第1メモリ27よ
り出力される信@fIから温度による周波数の変化分△
[■のみを取出し、温度表示器37にてタイヤ温度の表
示を行なう。
FIG. 7 shows a second embodiment, in which a temperature converter 35 and a temperature indicator 37 are added to the first embodiment. In other words, the temperature converter 35 converts the signal @fI output from the first memory 27 by the frequency change △ due to temperature.
[Take out only ■ and display the tire temperature on the temperature display 37.

従って、素子5.7を一対備えるだけで、例えばタイヤ
空気圧が減少して走行抵抗ににリタイA7温度が上昇し
たような場合、タイヤ空気圧を表示することに加えCタ
イ■温度の上臂をも表示することができ、安全性が二重
になり信頼性が増1と共に安価であるという効果がある
。上記第1実施例と同一構成部分は同一符号をイ」シて
説明を省略する。
Therefore, with just one pair of elements 5.7, for example, if the tire air pressure decreases and the running resistance causes the tire A7 temperature to rise, in addition to displaying the tire air pressure, it will also display the upper part of the C tie temperature. This has the effect of double safety, increased reliability, and low cost. Components that are the same as those in the first embodiment are designated by the same reference numerals and their description will be omitted.

41お、この発明は1記実施例に限定されるものではな
い。例えば上記第1実施例では第1.第2表面押ス11
波素子5.7を一対備えたが、表面弾性波素子としく温
度による共振周波数変化のシ1′常に少ないものを適用
りれば、覆41わち温度係数がジl常に小さくタイヤ空
気圧変化による周波数変化に比し温度変化にJ、る周波
数変化が無視し得るならば、第2表面弾性波素子7を省
略づることができ、又第1メ七り27及び減紳器31b
省略づることができる。
41. However, the present invention is not limited to the first embodiment. For example, in the first embodiment, the first. Second surface press 11
A pair of wave elements 5.7 is provided, but if a surface acoustic wave element is used that has a small resonance frequency change due to temperature, the temperature coefficient will always be small due to changes in tire air pressure. If the frequency change caused by the temperature change can be ignored compared to the frequency change, the second surface acoustic wave element 7 can be omitted, and the first mechanism 27 and the reduction device 31b can be omitted.
It can be abbreviated.

以上この発明の構成によれば、タイヤ空気圧の変化を表
面弾性波素子の共振周波数の変化としてどらえることが
でき、この共振周波数の変化をタイヤ空気圧として表示
することができる。このl〔め素子を、検出リーベき圧
力値の数だ(プ備える必要がなく、構造簡単で安価なも
のでありながら、タイヤ空気圧を逐次表示することがで
きる。従つC1走行中であっても常時連続的にタイヤ空
気圧が表示できるので、タイヤ空気圧の低下によるタイ
ヤの異常摩耗Ab被破壊警告を運転者に与えることがで
き、安全性の向上やタイA7の寿命を延ばすことが可能
となる。
According to the configuration of the present invention, changes in tire air pressure can be tracked as changes in the resonance frequency of the surface acoustic wave element, and changes in this resonance frequency can be displayed as tire air pressure. There is no need to prepare this element for the number of detected pressure values, and although the structure is simple and inexpensive, it can display the tire air pressure sequentially. Since the tire pressure can be displayed continuously at all times, it is possible to give the driver a warning of abnormal tire wear and damage due to a drop in tire pressure, improving safety and extending the life of the Tie A7. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のタイA7空気圧表示装侃を示づブロック
図、第2図〜第6図はこの発明の第1実加例に係り、第
2図はタイA7空気圧表示装置のブロック図、第3図は
表面弾性波素子を示す斜視図、第4図は表面弾性波素子
の温度特性図、第55図は同圧力特性図、第6図(a 
)〜第6図(11)は動作波形図、第7図はこの発明の
第2実施例に係るタイへ7空気圧表示装置のブロック図
である。 1・・・タイ(7 5・・・第1表面弾性波素子 7・・:第2表面弾性波素子 9・・・信号伝達手段  15・・・(吊引発据手段1
7・・・検知手段    19・・・演算手段21・・
・表示手段
FIG. 1 is a block diagram showing a conventional tie A7 air pressure display device, FIGS. 2 to 6 relate to a first practical example of the present invention, and FIG. 2 is a block diagram of a tie A7 air pressure display device. Figure 3 is a perspective view of the surface acoustic wave element, Figure 4 is a temperature characteristic diagram of the surface acoustic wave element, Figure 55 is a pressure characteristic diagram of the same, and Figure 6 (a).
) to FIG. 6(11) are operational waveform diagrams, and FIG. 7 is a block diagram of a tie 7 air pressure display device according to a second embodiment of the present invention. 1... Tie (7 5... First surface acoustic wave element 7...: Second surface acoustic wave element 9... Signal transmission means 15... (Hanging and installation means 1
7...Detection means 19...Calculation means 21...
・Display means

Claims (1)

【特許請求の範囲】[Claims] 少なくともタイヤ空気圧に応動して共振周波数が変化す
るように備えられた表面弾性波素子と、この表面弾性波
素子が少なくともタイヤ空気圧変化によって変化する共
振周波数の範囲にわたって順次連続的に周波数が変化す
る掃引発振手段と、この掃引発振手段の発振信号を前記
表面弾性波素子に非接触で伝達りる信号伝達手段と、前
記発(辰信号が順次連続的に変化しているとき前記表面
弾性波素子の共振する周波数を検知りる検知手段と、こ
の検知手段が検知した共振周波数からタイヤ空気圧を演
WrJる演紳手段ど、この演の手段による演算結果を表
示する表示手段どを有することを特徴とり−るタイヤ空
気圧表示装置。
A surface acoustic wave element provided with a resonant frequency that changes in response to at least tire air pressure, and a sweep in which the surface acoustic wave element sequentially and continuously changes frequency over a range of resonant frequencies that change in response to at least changes in tire air pressure. oscillation means; signal transmission means for transmitting the oscillation signal of the sweep oscillation means to the surface acoustic wave element in a non-contact manner; It is characterized by having a detection means for detecting a resonant frequency, a display means for calculating the tire air pressure from the resonance frequency detected by the detection means, and a display means for displaying the result of calculation by the calculation means. - Tire pressure display device.
JP57125746A 1982-07-21 1982-07-21 Display device for air pressure in tire Pending JPS5917127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125746A JPS5917127A (en) 1982-07-21 1982-07-21 Display device for air pressure in tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125746A JPS5917127A (en) 1982-07-21 1982-07-21 Display device for air pressure in tire

Publications (1)

Publication Number Publication Date
JPS5917127A true JPS5917127A (en) 1984-01-28

Family

ID=14917773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125746A Pending JPS5917127A (en) 1982-07-21 1982-07-21 Display device for air pressure in tire

Country Status (1)

Country Link
JP (1) JPS5917127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274528A (en) * 1985-09-24 1987-04-06 Inoue Japax Res Inc Electric discharge machine
WO1988007941A1 (en) * 1987-04-16 1988-10-20 Consolidated Technology Pty. Ltd. Tyre deflation warning device
WO2001066367A1 (en) * 2000-03-06 2001-09-13 Siemens Aktiengesellschaft Product comprising a sensor and a surface wave element, and method and system for determining, from the sensor, a measured quantity that corresponds to a reactive resistance
WO2005052534A1 (en) * 2003-11-27 2005-06-09 Kyocera Corporation Pressure sensor device
WO2005052533A1 (en) * 2003-11-27 2005-06-09 Kyocera Corporation Pressure sensor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274528A (en) * 1985-09-24 1987-04-06 Inoue Japax Res Inc Electric discharge machine
WO1988007941A1 (en) * 1987-04-16 1988-10-20 Consolidated Technology Pty. Ltd. Tyre deflation warning device
WO2001066367A1 (en) * 2000-03-06 2001-09-13 Siemens Aktiengesellschaft Product comprising a sensor and a surface wave element, and method and system for determining, from the sensor, a measured quantity that corresponds to a reactive resistance
US6813947B2 (en) 2000-03-06 2004-11-09 Siemens Aktiengesellschaft Product having a sensor and a surface acoustic wave element, as well as a method and arrangement for determining a measurement variable, which corresponds to a reactance, by a sensor
WO2005052534A1 (en) * 2003-11-27 2005-06-09 Kyocera Corporation Pressure sensor device
WO2005052533A1 (en) * 2003-11-27 2005-06-09 Kyocera Corporation Pressure sensor device
US7353710B2 (en) 2003-11-27 2008-04-08 Kyocera Corporation Pressure sensor device with surface acoustic wave elements
US7392706B2 (en) 2003-11-27 2008-07-01 Kyocera Corporation Pressure sensor device

Similar Documents

Publication Publication Date Title
US4246567A (en) Device for detecting and indicating low pressure and high heat in pneumatic tires
EP0574925B1 (en) Ultrasonic wave reception apparatus and obstacle detection apparatus
US4467235A (en) Surface acoustic wave interferometer
JP3993824B2 (en) Low current consumption tire pressure monitoring system
JPH06148003A (en) Ultrasonic temperature measuring equipment
JP2007210547A (en) Tire information detection device
CN101348059B (en) Automotive tire pressure monitoring method based on tyre impedance and apparatus thereof
CA1256976A (en) Self-diagnostic ultrasonic intrusion detection system
JPS5917127A (en) Display device for air pressure in tire
JP2008175678A (en) Dynamic quantity sensor system
US20070028700A1 (en) Acoustic wave torque sensor
US7254942B2 (en) Temperature-monitored hydrodynamic machine
CN201264489Y (en) Automotive tire pressure monitoring method based on tyre impedance
WO2005032858A1 (en) Device for collecting state information of tire and relay device for the same
JP2007057287A (en) Surface acoustic wave device
US20100154546A1 (en) Apparatus for determining and/or monitoring a process variable of a medium
JP2005121498A (en) Surface acoustic sensing system
JPH0781337A (en) Tire strain alarm device
JPH01282418A (en) Piezo-electric type physical quantity detector
JP2010286371A (en) Physical quantity detector, abnormality diagnosis system of the same, and abnormality diagnosis method of the same
US3050720A (en) System for sensing a change in an ambient condition
JP2003335115A (en) Tire air pressure detecting device and detected data transmitting method of tire air pressure detecting device
WO2001073389A1 (en) Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance
JP2017096841A (en) Parasitic wireless sensor, measuring system using the same, and detection method of measuring system
JP2008089600A (en) Saw sensor element using slit elastic wave, and its method