JPS59170815A - Diffraction grating type optical demultiplexer - Google Patents

Diffraction grating type optical demultiplexer

Info

Publication number
JPS59170815A
JPS59170815A JP58044197A JP4419783A JPS59170815A JP S59170815 A JPS59170815 A JP S59170815A JP 58044197 A JP58044197 A JP 58044197A JP 4419783 A JP4419783 A JP 4419783A JP S59170815 A JPS59170815 A JP S59170815A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
lambda1
input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58044197A
Other languages
Japanese (ja)
Inventor
Akihiro Hori
明宏 堀
Katsuyuki Imoto
克之 井本
Toshiaki Kita
敏昭 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58044197A priority Critical patent/JPS59170815A/en
Publication of JPS59170815A publication Critical patent/JPS59170815A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29308Diffractive element having focusing properties, e.g. curved gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Abstract

PURPOSE:To perform stable demultiplexing by controlling diffraction focus positions to fibers for output on the basis of information on the amount of variation obtained by a detecting means. CONSTITUTION:Light beams with wavelengths lambda1, lambda2... inputted from a fiber 3 for input are diffracted by a concave diffraction grating 5, and primary diffracted light is made incident to the fibers 4, 4'... for output and demultiplexed. On the other hand, secondary diffracted light with the wavelength lambda1 diffracted by the concave diffraction grating 5 is focused on a photodetector array 6. When the input light lambda1 varies by lambda1 to lambda1+DELTAlambda, the focus on the array 6 shifts and the extent of this shifting is detected and converted by a signal processing part 7 into a signal to shift the input fiber 3 in position by an operating means 8 so that the shift of the output light on the array 6 is eliminated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、反射板に回折格子溝を形成した回折格子を用
い、一本の光ファ・1バから出射する複数の波長を有す
る光線をそ才yぞれ別々のファイバに分割して取り出す
光分波器に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention uses a diffraction grating in which diffraction grating grooves are formed on a reflection plate to reflect light beams having a plurality of wavelengths emitted from one optical fiber. This relates to an optical demultiplexer that separates each fiber into separate fibers and extracts the fibers.

〔従来技術〕[Prior art]

従来、回折格子を用いた光分波器は、第1図に示すよう
に、平面(ロ)折俗子1とレンズ2、入力用光ファイバ
3、出力用光ファイバ4,4′・・・・・・から構成さ
れている。入力用光ファイバ3から出射する複数の波長
を有する光線は、平行光に駕侠され、平面回折格子1で
分散を受け、各波長ごとに少しづつ反射角度が変わるこ
のためレンズ2で再び入射する平行光の各波長は、レン
ズ2に対I〜て少しづつ異なった角度で入射して集束さ
れるので、その焦点は各波長ごとに空間的に異なった結
像位置に出力用光ファイバ4,4′・・・・・・を配置
すると、それらの出力用光ファイバには、その位置に従
った波長を有する光線が入射し、全体として光分波器と
して動作する。
Conventionally, an optical demultiplexer using a diffraction grating, as shown in FIG. It is composed of... Light rays having a plurality of wavelengths emitted from the input optical fiber 3 are paralleled and subjected to dispersion by the plane diffraction grating 1, and because the reflection angle changes slightly for each wavelength, they enter the lens 2 again. Each wavelength of the parallel light enters the lens 2 at slightly different angles and is focused, so the focus is placed on the output optical fiber 4, at a spatially different imaging position for each wavelength. 4'... are arranged, a light beam having a wavelength according to the position is incident on these output optical fibers, and the whole operates as an optical demultiplexer.

しかし、この構成では、入射光の波長が、発振素子の特
性等により、ずれて17まりと、回折格子による回折角
度もずれてしまい、出力用光ファイバの位置に焦点を結
ばなくなってしまうという欠点を有する。
However, with this configuration, the wavelength of the incident light shifts by 17 degrees due to the characteristics of the oscillation element, etc., and the diffraction angle by the diffraction grating also shifts, making it impossible to focus on the output optical fiber. has.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体レーザ等の発光源の波長変動に
対しても、分波した各々の波が出力されるようにした分
波器を提供することにある。
An object of the present invention is to provide a demultiplexer that outputs each demultiplexed wave even when the wavelength of a light emitting source such as a semiconductor laser varies.

〔発明の概要〕[Summary of the invention]

この目的を構成するための本発明は回折格子と波長ずれ
を検出する検出器、この検出量をフィードバックして、
回折格子又は入力又は出力ファイバを動かす動作手段に
より構成され、この構成により、人力波長の変動を検出
し、出力ファイバの位置に分波光の焦点を合わせる事ヲ
特徴としている。
To achieve this purpose, the present invention includes a diffraction grating, a detector for detecting the wavelength shift, and a detector that feeds back the detected amount.
It is composed of operating means that moves a diffraction grating or an input or output fiber, and is characterized by detecting manual wavelength fluctuations and focusing the demultiplexed light at the position of the output fiber.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。第2
図に2いて、5は凹面回折格子、3は入力用ファイバ、
4〜4′・・・・・・は出力用ファイバであり、6は光
検出器アレイ、7はアレイ6から得られた1ぎ号処理す
る処理部、8はファイバを動かす動作手段である。人力
用ファイバ3から入力された波長λl、λ2.λ3・・
・・・・の光は凹面回折格子5により回折され、1次の
回折光は出力用ファイバ4〜4′・・・・・・にそれぞ
れ入射し分波する。
An embodiment of the present invention will be described below with reference to FIG. Second
In the figure 2, 5 is a concave diffraction grating, 3 is an input fiber,
4 to 4' are output fibers, 6 is a photodetector array, 7 is a processing section for processing the 1-digit signal obtained from array 6, and 8 is an operating means for moving the fibers. Wavelengths λl, λ2 . λ3...
... is diffracted by the concave diffraction grating 5, and the first-order diffracted light enters each of the output fibers 4 to 4' and is demultiplexed.

一方凹面回折格子5により回折された波長λ102次回
折光は光検出器アレイ6に焦点を結ぶ。
On the other hand, the 102nd order diffracted light having a wavelength of λ, which is diffracted by the concave diffraction grating 5, is focused on the photodetector array 6.

入力光λ1がΔλ変動しλ1+Δλになるとアレイ6上
の焦点もシフトする。このシフト量を検出し、信号処理
部7によシ、信号変換した後、入力用ファイバ3の位置
をそのアレイ6上での出力光のずれが元に戻るように動
作手段8で動かす。なお、上記実施例ではλ1の2次回
折光を検出したが、本発明はこれに限ることなく、λ2
.λ3゜・・・・・・の2次回折光のいずれを検出する
ようにしてもよい。この構成により、入力ファイバの入
力波長がλlからずれてλl+Δλになった場合におい
ても、適切に出力用光ファイバ4に焦点を粕ぶ事が可能
となる。一般的に波長多重伝送に用いられる半導体レー
ザは、アレイ状又は、近接して設置される事が多く、周
囲の環境条件も似ている。
When the input light λ1 changes by Δλ and becomes λ1+Δλ, the focal point on the array 6 also shifts. After this shift amount is detected and converted into a signal by the signal processing section 7, the position of the input fiber 3 is moved by the operating means 8 so that the deviation of the output light on the array 6 is returned to the original position. In addition, although the second-order diffracted light of λ1 was detected in the above embodiment, the present invention is not limited to this, and the second-order diffracted light of λ2
.. Any of the second-order diffracted lights of λ3°... may be detected. With this configuration, even if the input wavelength of the input fiber deviates from λl and becomes λl+Δλ, it is possible to appropriately focus the output optical fiber 4. Semiconductor lasers generally used for wavelength multiplexed transmission are often installed in an array or close together, and the surrounding environmental conditions are similar.

従って各々の波長ドリフトの傾向も類似している本が多
い。第2図に示した例はλl−波のみを参照にしてフィ
ードバックを行っているが、他の波長も同様に変化する
華が多いので実用上、他の波長に対しても充分な効果を
発揮する。更にN密な制御を必要とする場合には、各々
の波長に対し、前記センサを設け、各々の波長に対応す
る出力用ファイバにフィードバックをかければ良い。又
、第2図の例では入力用ファイノクヲ動かせてフィード
バックを行ったが、凹面回折格子を回転させても同様の
効果を得る事ができる。第3図は、本発明の他の実施例
でるる。凹面回折格子5により回折された光はビームス
プリッタ9により1部反射され、光検出器アレーに入射
する。第2図の例と同様に波長のドリフトをアレイ6に
より検出し、人力用ファイバ3にフィード・くツクをか
けるものである。第4図は本発明のきらに他の実施例で
ある。5,5′は凹面回折格子である。入力用ファイバ
3より、凹面回折格子5,5′に入射した光は、各々回
折し、光検出器アレー6及び、出力用ファイバ4.4/
、、h//・・・・・・に入射する。回折格子5′によ
り回折された波長λ1の光はアレイ6に入射する。前記
例と同様に、入力光λlのドリフトをフィードバックし
て、出力ファイ/くアレイを制御するものである。以上
凹面回折格子を用いた*** ?lJ VCついて説明
したが、平面回折格子とコリメータを用いた場合も同様
に扱う争ができるのは明らかである。又、上記例はいず
れも分波器の例であるが、合波器として用いる巷合にも
同様にして、を波光の変動を検出する事で実現できる。
Therefore, many books have similar wavelength drift trends. In the example shown in Figure 2, feedback is performed with reference to only the λl-wave, but other wavelengths often change in the same way, so for practical purposes, the effect is sufficient for other wavelengths as well. do. If even more precise control is required, the sensor may be provided for each wavelength and feedback may be applied to the output fiber corresponding to each wavelength. Further, in the example shown in FIG. 2, feedback was performed by moving the input fine nozzle, but the same effect can be obtained by rotating the concave diffraction grating. FIG. 3 shows another embodiment of the invention. A portion of the light diffracted by the concave diffraction grating 5 is reflected by the beam splitter 9 and enters the photodetector array. Similarly to the example shown in FIG. 2, the wavelength drift is detected by the array 6 and a feed hook is applied to the fiber 3 for human power. FIG. 4 shows another embodiment of the present invention. 5 and 5' are concave diffraction gratings. The light incident on the concave diffraction gratings 5, 5' from the input fiber 3 is diffracted and transmitted to the photodetector array 6 and the output fiber 4.4/5'.
,, h//...... The light of wavelength λ1 diffracted by the diffraction grating 5' enters the array 6. As in the previous example, the output fiber array is controlled by feeding back the drift of the input light λl. *** Using a concave diffraction grating above? IJ VC has been explained, but it is clear that a similar argument can be made when using a plane diffraction grating and a collimator. Further, although the above examples are all examples of a demultiplexer, it can be similarly realized in a case where it is used as a multiplexer by detecting fluctuations in light waves.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分波器に入力される光の波長ドリフト
に注目し、波長がずれる事により、出力用ファイバの位
置からずれてし甘い挿入損失が大きくなるのを防止でき
、安定な分波が可能となる。
According to the present invention, by focusing on the wavelength drift of the light input to the demultiplexer, it is possible to prevent the wavelength from shifting from the position of the output fiber and increasing the insertion loss. waves are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の平面回折格子を用いる光分波器の構造例
、第2図は本発明による光分波器の構造例、第3図は本
発明による光分波器の別の構造例、第4図は本発明によ
る光分波器の史に別の構造例である。 1・・・平面回折格子、2・・・レンズ、3・・・入力
用ファイバ、4・・・出力用ファイバ、5・・・凹面回
折格子、6・・・光検出器アレー、7・・・信号処理部
、8・・・作動部、9・・・ビームスプリッタ。 芽 I 口 ! 第 3 図 第 2 図 う ))   4.    しn
FIG. 1 is a structural example of an optical demultiplexer using a conventional plane diffraction grating, FIG. 2 is a structural example of an optical demultiplexer according to the present invention, and FIG. 3 is another structural example of an optical demultiplexer according to the present invention. , FIG. 4 shows another structural example of the optical demultiplexer according to the present invention. DESCRIPTION OF SYMBOLS 1... Planar diffraction grating, 2... Lens, 3... Input fiber, 4... Output fiber, 5... Concave diffraction grating, 6... Photodetector array, 7... - Signal processing section, 8... Actuation section, 9... Beam splitter. Bud I mouth! Figure 3 Figure 2)) 4. Shin

Claims (1)

【特許請求の範囲】[Claims] 回折格子と該回折格子に光を入射し又は回折格子からの
元金受容するごとく回折格子の前方空間に配列される複
数の入出力用光ファイバと、前記回折光を収束させる手
段と、前記入射ファイバから入射さnた光波長の変化を
検出する演出手段を有し、該検出手段により得られた変
化量の情報に基づき前記出力用ファイバに対する回折焦
点位置ケ制呻することf:特許とする回折格子型光分波
器。
a diffraction grating; a plurality of input/output optical fibers arranged in a space in front of the diffraction grating to input light into the diffraction grating or to receive a source from the diffraction grating; means for converging the diffraction light; and a means for converging the diffraction light; The present invention has a production means for detecting a change in the wavelength of light incident from a fiber, and controls the position of a diffraction focal point with respect to the output fiber based on information on the amount of change obtained by the detection means. f: Patented. Diffraction grating type optical demultiplexer.
JP58044197A 1983-03-18 1983-03-18 Diffraction grating type optical demultiplexer Pending JPS59170815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044197A JPS59170815A (en) 1983-03-18 1983-03-18 Diffraction grating type optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044197A JPS59170815A (en) 1983-03-18 1983-03-18 Diffraction grating type optical demultiplexer

Publications (1)

Publication Number Publication Date
JPS59170815A true JPS59170815A (en) 1984-09-27

Family

ID=12684843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044197A Pending JPS59170815A (en) 1983-03-18 1983-03-18 Diffraction grating type optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS59170815A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731573A1 (en) * 1995-03-07 1996-09-13 Instruments Sa Optical multiplexer-demultiplexer e.g. for telephone signals
FR2738432A1 (en) * 1995-09-01 1997-03-07 Hamel Andre OPTICAL COMPONENT SUITABLE FOR MONITORING A WAVELENGTH MULTILENGTH LINKAGE AND INSERT-EXTRACTION MULTIPLEXER USING THE SAME, APPLICATION TO OPTICAL NETWORKS
WO1998013718A1 (en) * 1996-09-27 1998-04-02 Siemens Aktiengesellschaft Optical coupling device to couple light between two fibre optic end surfaces
WO2003025630A2 (en) 2001-09-20 2003-03-27 Capella Photonics, Inc. Free-space optical systems for wavelength switching and spectral monitoring applications
JP2010171375A (en) * 2008-10-16 2010-08-05 Gigaphoton Inc Laser device and extreme ultraviolet light source device
JP2019120580A (en) * 2018-01-04 2019-07-22 株式会社リコー Spectrometer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731573A1 (en) * 1995-03-07 1996-09-13 Instruments Sa Optical multiplexer-demultiplexer e.g. for telephone signals
US5808765A (en) * 1995-03-07 1998-09-15 Instruments, S.A. Multiplexer-demultiplexer for optical wavelengths
FR2738432A1 (en) * 1995-09-01 1997-03-07 Hamel Andre OPTICAL COMPONENT SUITABLE FOR MONITORING A WAVELENGTH MULTILENGTH LINKAGE AND INSERT-EXTRACTION MULTIPLEXER USING THE SAME, APPLICATION TO OPTICAL NETWORKS
EP0762161A1 (en) * 1995-09-01 1997-03-12 France Telecom Optical component for monitoring a multi wavelength connection and add drop multiplexer using this component, application to optical networks
US5748815A (en) * 1995-09-01 1998-05-05 France Telecom Optical component adapted to monitor a multiwavelength link and add-drop multiplexer using this component, application to optical networks
WO1998013718A1 (en) * 1996-09-27 1998-04-02 Siemens Aktiengesellschaft Optical coupling device to couple light between two fibre optic end surfaces
WO2003025630A2 (en) 2001-09-20 2003-03-27 Capella Photonics, Inc. Free-space optical systems for wavelength switching and spectral monitoring applications
EP1428052A2 (en) * 2001-09-20 2004-06-16 Capella Photonics Inc. Free-space optical systems for wavelength switching and spectral monitoring applications
EP1428052A4 (en) * 2001-09-20 2004-12-08 Capella Photonics Inc Free-space optical systems for wavelength switching and spectral monitoring applications
JP2010171375A (en) * 2008-10-16 2010-08-05 Gigaphoton Inc Laser device and extreme ultraviolet light source device
US8804778B2 (en) 2008-10-16 2014-08-12 Gigaphoton Inc. Laser apparatus and extreme ultraviolet light source apparatus
JP2019120580A (en) * 2018-01-04 2019-07-22 株式会社リコー Spectrometer

Similar Documents

Publication Publication Date Title
CN103999303B (en) Integrated sub-wave length grating system
TWI658256B (en) Confocal measuring device
CN111194419A (en) Additional imaging module for off-axis recording of polarization encoded waves
KR19990044932A (en) High Capacity Wavelength Division Multiplexer
JP2003114402A (en) Optical multiplexer/demultiplexer and its adjusting method
JPS59170815A (en) Diffraction grating type optical demultiplexer
JPS625677A (en) Frequency-stabilized semiconductor laser element
JP5599175B2 (en) Dispersive element, spectroscopic device, and wavelength selective switch
JP2004355024A (en) Apparatus including virtually imaged phase array (vipa) in combination with wavelength splitter to demultiplex wavelength division multiplexed (wdm) light
US20050238284A1 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
JPS62123411A (en) Grating optical coupler
JPS63244003A (en) Multiplexer/demultiplexer
CA2248501C (en) External resonator light source
JP2010134027A (en) Wavelength selection switch
JPH08222793A (en) Automatic focal point laser light source
RU2464608C1 (en) Optical system for holographic video camera
JPS61223810A (en) Optical wavelength multiplexer/demultiplexer
JP2005172850A (en) Optical cross connecting apparatus and its adjustment method
JP2000304613A (en) Spectroscope
JP2000075165A (en) Virtually imaged phased array having lens disposed in order to obtain broad beam width
JPS61145510A (en) Optical demultiplexer
US6983089B2 (en) Method of fabricating optical signal processor
JP3737041B2 (en) Optical branching element
JPS5871687A (en) Semiconductor laser stabilized in oscillation wavelength
JPH03225304A (en) Optical demultiplexing/multiplexing device