JPS5871687A - Semiconductor laser stabilized in oscillation wavelength - Google Patents

Semiconductor laser stabilized in oscillation wavelength

Info

Publication number
JPS5871687A
JPS5871687A JP16992681A JP16992681A JPS5871687A JP S5871687 A JPS5871687 A JP S5871687A JP 16992681 A JP16992681 A JP 16992681A JP 16992681 A JP16992681 A JP 16992681A JP S5871687 A JPS5871687 A JP S5871687A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
laser
wavelength
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16992681A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yokomori
横森 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16992681A priority Critical patent/JPS5871687A/en
Publication of JPS5871687A publication Critical patent/JPS5871687A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror

Abstract

PURPOSE:To enable to oscillate in single wavelength a semiconductor laser by employing a multimode oscillator, selecting the light of the specific wavelength from the emitted lights via a diffraction grating and feeding it back to the laser. CONSTITUTION:The luminous flux emitted from one end surface 4 of a semiconductor laser 1 is reflected and diffracted at a holographic diffraction grating 21, the primarily diffracted light 8 becomes parallel beam, is reflected on a reflecting mirror 22, is again reflected on the holographic diffraction grating 21, is focused on the laser 1, and is fed back. When the laser 1 is oscillated in multimode, the light diffracted via the grating 21 is incident at the different angles according to the wavelengths to the mirror 22. Accordingly, the mirror 22 is regulated so that the light of the desired wavelength is incident to vertical direction. The elements such as the laser element, holographic diffracting grating, reflecting mirror are determined at the relative positions in one package, thereby obtaining the semiconductor laser which is small sized, and can be extremely readily handled provided with stable oscillation wavelength.

Description

【発明の詳細な説明】 こD発明は発振rIL長を安定化した半導体V−ザ装置
、特にホログラフィック回折格子を用いることにより、
光学的に安定化を行った小橡で嘔扱いυWIR琳な半導
体レーザ装置に関する@半導体レーザは小型Dコヒーレ
ント光源として徳々υ用途が見出されつつある0しかし
、一定り発振波長を安定して得ようとする場合、半導体
し−ザ累子として◆−モード発振素子を用いても、レー
ザ素子υ温it変化等によって発振波長が変化してしま
うという間−が生ずるにυため、従来、レーダ素子をペ
ルチェ効果素子上に設け、レーザ素子Dafを検出しな
がら七7)litが一定となるようにペルチェ効果素子
によって半導体レーザ素子を冷却し、これによって発振
波長の安定化を図っていた◎ しかし、温度制御KIυ精度には限界がありα1℃M!
度υ変勧は避けられず、これによりIA鴨1の波長変動
が生じてい九〇また。高精fの温暖制御を行うには、大
きなペルチェ効果素子と高IIA皺の感温素子を必要と
し、装置が装置で高価なものにならざるを得なかっ九〇 これに対して、半導体レーザ素子として多モード発振素
子を用い、出射光りうちから特定O波長υ党を回折格子
によって選択し、これt半導体レーザにフィードバック
することにより、拳−波長発振させることが可能であり
、こυ発振波長は温[変化等に対しても安定であること
が本されている・ こυ発明は、こυ原−を用い、小型で、安定化il!置
を1体に組込んだ発振波長υ安定化された半導体レーザ
装置を得ようとするもっである。
[Detailed Description of the Invention] This D invention uses a semiconductor V-za device in which the oscillation rIL length is stabilized, in particular a holographic diffraction grating.
Semiconductor laser devices that are optically stabilized and can be treated as υWIR @ Semiconductor lasers are finding good use as small D-coherent light sources. Conventionally, when trying to obtain a ◆-mode oscillation element as a semiconductor laser, the oscillation wavelength changes due to changes in the temperature of the laser element. The device was placed on a Peltier effect element, and while detecting the laser element Daf, the semiconductor laser element was cooled by the Peltier effect element so that 77) lit remained constant, thereby stabilizing the oscillation wavelength. , temperature control KIυ accuracy has a limit α1℃M!
The degree υ variation is unavoidable, and this causes a wavelength variation of IA duck 1. In order to perform high-precision temperature control, a large Peltier effect element and a high IIA temperature sensing element are required, making the device expensive.90In contrast, semiconductor laser elements By using a multi-mode oscillation element as a multi-mode oscillation element, selecting a specific wavelength υ from the output light using a diffraction grating, and feeding this back to the semiconductor laser, it is possible to oscillate at a single wavelength, and this oscillation wavelength is It is known that the invention is stable against changes in temperature, etc. The present invention uses this material to create a compact and stabilized illuminant. The purpose of this invention is to obtain a semiconductor laser device in which the oscillation wavelength υ is stabilized and the oscillation wavelength υ is integrated.

第1図ないし第3図は、こO発明り原理の説明図であo
、 @1図は発振波長り安定化を行わない場@rO多モ
ード発振半導体レーザの出射光強度を波長に対して示し
たもυであるにのような半導体レーザ素子IO1つ7)
熾面4がらυ出射光束5をコリメータレンズ11により
平行光東セし、リトロ配置された回折格子12に入射さ
せ、そ2)1次回折光を再びレンズIIKよって半導体
レーザlD@注層6に集光入射させる。半導体レーザl
が第1図に示すように、オー3λ−2.λ−1%λ。、
λ1、λ2、λ、で多モード弗畿しているもっとすれば
、出射光5は回折光子12で分光され、それぞれυ波長
に対応して第3図のように半導体レーf12)ili面
4上にコリメータレンズ11によって結嫌される◎そこ
マ、こυ結1点υうらの任意のもυ、例えばλ。DtI
L疑υ結律点が半導体レーザ1υ活注層6上に結像する
ように回折格子12の傾きを1ilIiJ!Iすれは、
半導体レーザ1には波長λ。υ出射光成分がフィードバ
ックされ、波長λ。でD挙−モード発振をするようにな
り、こgD暎−モード発振は温lIf化轡に対してもよ
い安定性をみせる0もし、別の波長λ、で檗−モード発
振をさせたい楊合に蝶、回折格子122)傾きを変え、
波長λ、2)!i!!像点が半導体レーザlの活性層6
に入射するようにすればよい。
Figures 1 to 3 are explanatory diagrams of the principle of this invention.
, @1 Figure shows the emitted light intensity of the @rO multimode oscillation semiconductor laser versus wavelength when the oscillation wavelength is not stabilized.
The emitted light beam 5 from the amorphous surface 4 is collimated by the collimator lens 11 and made incident on the retro-arranged diffraction grating 12, and 2) the first-order diffracted light is again focused by the lens IIK onto the semiconductor laser ID@injection layer 6. Let light enter. semiconductor laser l
As shown in FIG. 1, O3λ-2. λ−1%λ. ,
In other words, the emitted light 5 is split into multiple modes by diffracted photons 12 at λ1, λ2, and λ, and is split into rays on the semiconductor laser f12) ili surface 4 as shown in FIG. The collimator lens 11 displaces the ◎ ◎ there, and the υ point υ and the arbitrary υ on the back, for example λ. DtI
The inclination of the diffraction grating 12 is set to 1ilIiJ so that the L pseudo υ junction point is imaged onto the active injection layer 6 of the semiconductor laser 1υ! I am
The semiconductor laser 1 has a wavelength λ. The emitted light component υ is fed back and the wavelength λ. The D-mode oscillation starts to occur at λ, and the D-mode oscillation shows good stability even when changing to a temperature of λ. butterfly, diffraction grating 122) change the tilt,
Wavelength λ, 2)! i! ! The image point is the active layer 6 of the semiconductor laser l.
All you have to do is make it incident on .

ところで、半導体レーザlけ、特定波長tフィードバッ
クさせる端面4と反対11υ端面2からも尭振光3が放
射されるυで、こυ端面2からD放射光を利用し、フィ
ードバック光学系を半纏体レーザ素子と1体に組込んだ
半導体レーザ装置とすることにより、小皺で発振[1υ
安定L7た取扱い鳥いレーザ装置とすることが出来るに Dような発振波長υ安定化りためKは、明るいフィード
バック光学系が必要とされ、コリメータレンズや回折格
子を用いる光学系では重機化と低価格化には限界が生ず
る◎このような目的にはホログラフィック回折格子が有
利に利用出来る。
By the way, in the case of a semiconductor laser, the oscillating light 3 is also emitted from the 11υ end face 2 opposite to the end face 4 to which a specific wavelength t is fed back. By incorporating a semiconductor laser device into one body with a laser element, oscillation [1υ
In order to stabilize the oscillation wavelength υ, which can be used as a stable laser device, a bright feedback optical system is required, and an optical system using a collimator lens or diffraction grating requires heavy equipment and low cost. There is a limit to price reduction.◎Holographic diffraction gratings can be advantageously used for such purposes.

第4図は七〇光学系配置を示す@半導体レーザ1′り1
つ0IlIII面4から出射した光束は、ホログラフィ
ック回折格子21で反射回折され、1次回折光8は平行
光となり、反射鏡22で反射され、再びホログラフィッ
ク回折格子21によって反射され、半導体レーザl上に
結謙しフィードバックされる。半導体レーザ1が第1図
りような多モード発振ケしているとすれば、ホログラフ
ィック回折格子21で回折された光は波長によって異な
る角度で反射鏡22に入射するので、反射鏡22を所望
O波長り光が垂直に入射するように調整する0すなわち
5発振波長λ−1λ−2、λ−1、λ。、λ1、λ2、
λ、■うち、例えば波長λ。
Figure 4 shows the 70 optical system arrangement @semiconductor laser 1'ri1
The light flux emitted from the 0IlIII surface 4 is reflected and diffracted by the holographic diffraction grating 21, and the first-order diffraction light 8 becomes parallel light, reflected by the reflecting mirror 22, and reflected again by the holographic diffraction grating 21, and then reflected onto the semiconductor laser l. Feedback is provided in a concise manner. If the semiconductor laser 1 oscillates in multiple modes as shown in the first figure, the light diffracted by the holographic diffraction grating 21 will be incident on the reflecting mirror 22 at different angles depending on the wavelength. 0 or 5 oscillation wavelengths, λ-1, λ-2, λ-1, λ, adjusted so that the wavelength light is perpendicularly incident. , λ1, λ2,
λ, ■For example, the wavelength λ.

D光Of次回折光が反射鏡22に喬直に入射するように
反射鏡22を−整すれば、波長λ。D出射光0+が反射
@22ホログラフィック回折格子21を経て半導体レー
ザ1υ活注層6の趨向上に集束しフィードバックされる
。一方、他υ波長わ光は反射鏡に異なる角度で入射する
ため。
If the reflecting mirror 22 is adjusted so that the D-light Of order diffracted light enters the reflecting mirror 22 directly, the wavelength λ. The D emitted light 0+ passes through the reflection@22 holographic diffraction grating 21, focuses on the upward trend of the semiconductor laser 1υ active injection layer 6, and is fed back. On the other hand, light of other υ wavelengths enters the reflecting mirror at different angles.

反射して出射した位置とはずれた位置に戻ってくるため
、活性層6上には集束しなくなる。
Since the light is reflected and returns to a position different from the position from which it was emitted, it is no longer focused on the active layer 6.

この実施的では光の集束作用をホログラフィック回折格
子に行なわせるためコリメータレンズを用いる必要をな
くしている0ここで用いられるホログラフィック回折格
子の製作方法を第5図に示す。レーザ等のコヒーレント
光源51からの射出光はコリメータレンズ52によって
平行光となり、ビームスプリッタ54によって分割され
る〇一方の光束は集束レンズ53により一旦集束された
後1発散光となってホログラム記録材料50に入射する
0もう動力p光東は反射鏡55で反射され、平行光pま
ま入射し、先υ発散党と干渉し、こυ干渉縞がホログラ
ム記録材料に記−される。この記録材料は銀塩乾板、重
クロム酸ゼラチン、ホトレジスト等、公知のホログラム
記録材料が用いられる。ホログラム作成に用いる光は、
半導体レーザIE)発振&員、ガえば上記実施例ではλ
。と異なってもよいが、′&るべくλ。と−散するDが
望ましく、鶴5−における光束の集束点0とホログラム
記録材料50θ位置けそれぞれ、第4図の半導体レーザ
ID端面からD光束り出射位置とホログラフィック回折
格子217)位置に一致させである。
In this embodiment, the holographic diffraction grating performs the light focusing action, thereby eliminating the need for a collimator lens.A method for manufacturing the holographic diffraction grating used herein is shown in FIG. Emitted light from a coherent light source 51 such as a laser is turned into parallel light by a collimator lens 52 and split by a beam splitter 54. One light beam is once focused by a converging lens 53 and then becomes a single diverging light to be sent to a hologram recording material. The zero power p light incident on the light source 50 is reflected by the reflecting mirror 55, and enters as a parallel light p, which interferes with the previous υ divergent light, and this υ interference pattern is recorded on the hologram recording material. As this recording material, a known hologram recording material such as a silver salt dry plate, dichromate gelatin, or photoresist is used. The light used to create holograms is
Semiconductor laser IE) oscillation & λ in the above example
. It may be different from ′&λ. It is desirable for D to be dispersed, and the focal point 0 of the light beam in the crane 5- and the hologram recording material 50θ position coincide with the D light beam output position from the semiconductor laser ID end face and the holographic diffraction grating 217) position, respectively, in FIG. It's a shame.

l16図は第4図に示す光学系配置を半導体レーザパッ
ケージとして一体化した実施例を示し、半導体レーザl
けマウント60上に固設され、ホログラクイック回折格
子21は同じマウント60上に所定O角度で固定される
。こυマウント60がパッケージ61内に固定された後
1反射鏡22はホログラクイック回折格子210−次回
新党をうける位置に、半導体レーザlが所定om*で拳
−モードで発振するように両度調整され、パッケージ6
1に固定される。図中62は所定波長に安定化された光
束を半導体レーザ装置から出射するためD窓である。な
お、半導体レーザD光出力をモニターしたい揚台には、
反射鏡22を背面に受光器を具える半透過鏡とすればよ
い。
Figure l16 shows an example in which the optical system arrangement shown in Figure 4 is integrated as a semiconductor laser package.
The holographic quick diffraction grating 21 is fixed on the same mount 60 at a predetermined O angle. After the mount 60 is fixed in the package 61, the reflector 22 is adjusted to the position where the holographic quick diffraction grating 210 will be received next time, so that the semiconductor laser oscillates in the fist mode at a predetermined om*. package 6
Fixed to 1. In the figure, 62 is a D window for emitting a light beam stabilized at a predetermined wavelength from the semiconductor laser device. In addition, for the lifting platform where you want to monitor the semiconductor laser D light output,
The reflecting mirror 22 may be a semi-transmissive mirror having a light receiver on its back surface.

この発明は上記りような構成からなり、以下りような顕
著な効果を有する0 ■ 多モード発振半導体レーザ素子を用い、通常射出光
を取り出す射出面と反対り面を便って発振光をフィード
バックし、安定化を行うので、フィードバック光学系は
通常の使用には何らの影響もなく、温度変化等に対して
安定したレーザ光を利用出来る。
This invention has the above-mentioned configuration and has the following remarkable effects.0 ■ Using a multi-mode oscillation semiconductor laser element, the oscillation light is fed back by using the surface opposite to the emission surface from which the emitted light is normally taken out. However, since stabilization is performed, the feedback optical system has no effect on normal use, and can utilize a laser beam that is stable against temperature changes and the like.

■ フィードバック光学系としてホログラフィック回折
格子を用いることにより、コリメータレンズを不要にし
、光学系0@成を極めて簡≠に、小型に構成出来る。
(2) By using a holographic diffraction grating as a feedback optical system, a collimator lens is not required, and the optical system can be constructed extremely easily and compactly.

■ 生部体し−ザ素子、ホログラフィック回折格子、反
射鏡等り各素子を、1’)Dパッケージ中に関係位置を
定めて固定する仁とくより、小型で、取扱いり極めて容
易な1発振波長υ安定した半導体レーザwatt得るこ
とが出来る。
■ Living body - A single oscillation system that is smaller and extremely easy to handle than by fixing each element such as the element, holographic diffraction grating, and reflecting mirror in the relative position in the D package. It is possible to obtain a semiconductor laser watt whose wavelength υ is stable.

■ ホログラフィック回折格子からの1次回折光を受け
る反射鏡の傾を変えるだけで、一定範囲内で発振波長を
自由に選択することが出来る0
■ The oscillation wavelength can be freely selected within a certain range by simply changing the inclination of the reflecting mirror that receives the first-order diffracted light from the holographic diffraction grating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多モード発振中導体レーザの発振スペクトル図
、第2図、第3図はこD発明のFIAll説明図、C4
図はこυ発明の1実施例O光学系配置図、$15図はホ
ログラフィック回折格子作成りための光学系配置図、第
6図はこの発明θ生部体レーザ装置2)1例を示す断面
図であるC1:#−導体レーザ素子 2.4:レーザ出
射端面 6:活性層 12:回折装m  21:ホログ
ラフィック回折格子 22:反射鏡50;ホログラフィ
記録材料 54:ビームスプリッタ 60;マウント 
61:ノくツケージ62:窓 特軒出−人 法式会社 リコー
Figure 1 is an oscillation spectrum diagram of a conductor laser during multi-mode oscillation, Figures 2 and 3 are explanatory diagrams of FIAll of this D invention, C4
The figure is a layout diagram of an optical system according to an embodiment of the υ invention, Figure 15 is a layout diagram of an optical system for creating a holographic diffraction grating, and Figure 6 shows an example of the θ living body laser device 2) of this invention. Cross-sectional view C1: #-conductor laser element 2.4: Laser emission end face 6: Active layer 12: Diffraction device m 21: Holographic diffraction grating 22: Reflector 50; Holographic recording material 54: Beam splitter 60; Mount
61: Nokutsu Cage 62: Mado Tokukende-jin Legal Company Ricoh

Claims (1)

【特許請求の範囲】[Claims] 多モード発振半導体レーザ素子2)1端而からレーザ光
を取り出すと共に、他端面からθ出射光を分光装置によ
って分光し、所望つ波長成分Oみが該出射11!面に戻
るようにしたことt%黴とする発振波長を安定化した半
導体レーザ装置
Multi-mode oscillation semiconductor laser device 2) A laser beam is extracted from one end face, and the θ emitted light from the other end face is separated by a spectrometer, and the desired wavelength component O is extracted from the emitted light 11! Semiconductor laser device with stabilized oscillation wavelength that returns to the plane
JP16992681A 1981-10-23 1981-10-23 Semiconductor laser stabilized in oscillation wavelength Pending JPS5871687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16992681A JPS5871687A (en) 1981-10-23 1981-10-23 Semiconductor laser stabilized in oscillation wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16992681A JPS5871687A (en) 1981-10-23 1981-10-23 Semiconductor laser stabilized in oscillation wavelength

Publications (1)

Publication Number Publication Date
JPS5871687A true JPS5871687A (en) 1983-04-28

Family

ID=15895502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16992681A Pending JPS5871687A (en) 1981-10-23 1981-10-23 Semiconductor laser stabilized in oscillation wavelength

Country Status (1)

Country Link
JP (1) JPS5871687A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1005117A1 (en) * 1998-11-25 2000-05-31 Ando Electric Co., Ltd. External cavity type tunable semiconductor laser source
WO2003055018A1 (en) * 2001-12-12 2003-07-03 Universität Potsdam Method and device for producing laser radiation based on semiconductors
US7936803B2 (en) 2005-03-25 2011-05-03 Sumitomo Osaka Cement Co., Ltd. External cavity semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1005117A1 (en) * 1998-11-25 2000-05-31 Ando Electric Co., Ltd. External cavity type tunable semiconductor laser source
WO2003055018A1 (en) * 2001-12-12 2003-07-03 Universität Potsdam Method and device for producing laser radiation based on semiconductors
US7936803B2 (en) 2005-03-25 2011-05-03 Sumitomo Osaka Cement Co., Ltd. External cavity semiconductor laser

Similar Documents

Publication Publication Date Title
JP2657487B2 (en) Apparatus and method for controlling wavelength of laser
US5793784A (en) Apparatus and method for spectral narrowing of high power diode laser arrays
EP0304462A1 (en) Apparatus for optical wavelength division multiplexing.
KR101743810B1 (en) Light irradiation apparatus and drawing apparatus
EP3540371B1 (en) Laser projection module, depth camera and electronic device
JPH05210006A (en) Method and apparatus for generating multiple light beam of multiple wave- length interferometer
US6999482B2 (en) Wavelength tunable laser with diffractive optical element
JPH11132848A (en) Multi-path spectrometer
JPS625677A (en) Frequency-stabilized semiconductor laser element
JPH11330596A (en) Continuously wavelength-tunable monomode laser source
JP2004101512A (en) Location measuring apparatus
US10840670B2 (en) Laser oscillator
US9945656B2 (en) Multi-function spectroscopic device
JP4426026B2 (en) Multi-light source unit and optical system using the same
JPS5871687A (en) Semiconductor laser stabilized in oscillation wavelength
ATE256950T1 (en) MULTIPLE BEAM MULTIPLE WAVELENGTH INNER DRUM RECORDING DEVICE
US6934086B2 (en) Optical component and compact wavelength locking arrangement including such a component
JPS59170815A (en) Diffraction grating type optical demultiplexer
JP2737181B2 (en) Excimer laser generator
JP2007121232A (en) Wavelength monitor
JP2657532B2 (en) Narrow-band oscillation excimer laser device
US20230048701A1 (en) Light irradiation apparatus
JP2000501887A (en) Tunable and tunable semiconductor laser light source and method for optically stable near continuous tuning of a semiconductor laser
JP4816855B2 (en) Light source device
JPH03116992A (en) Semiconductor laser device