JPS59170734A - Multicolor resolving system - Google Patents

Multicolor resolving system

Info

Publication number
JPS59170734A
JPS59170734A JP58043544A JP4354483A JPS59170734A JP S59170734 A JPS59170734 A JP S59170734A JP 58043544 A JP58043544 A JP 58043544A JP 4354483 A JP4354483 A JP 4354483A JP S59170734 A JPS59170734 A JP S59170734A
Authority
JP
Japan
Prior art keywords
wavelength
band
channel
spectral
interference filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58043544A
Other languages
Japanese (ja)
Inventor
Hiroaki Kodera
小寺 宏「あき」
「よし」田 邦夫
Kunio Yoshida
Motohiko Naka
中 基孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58043544A priority Critical patent/JPS59170734A/en
Publication of JPS59170734A publication Critical patent/JPS59170734A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To distribute efficiently bands by combining plural sheets of spectroscopic filter groups of multilayered films and alotting the widths of the wavelength bands occupied by the spectral outputs of respective colors according to wavelengths. CONSTITUTION:Photoelectric converters 901-906 receive respectively the output light from spectrally divided channel 1 - channel 6. An incident ray 910 to, for example, the converter 903 of the channel 3 transmits through dichroic mirrors C, B, and is reflected by a dichroic mirror A and thereafter the ray is taken out through an interference filter 913 for shaping band. The spectral output determined by the product of the reflection or transmission characteristic of the dichroic mirrors existing on each optical path and the transmission characteristic of the interference filter for shaping the band in the terminal part appears similarly in the other channels as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、色分解スキャナやマルチスペクトラムスキャ
ナ(MSS)などに用いられる多色分解系に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multicolor separation system used in color separation scanners, multispectral scanners (MSS), and the like.

従来例の構成とその問題点 従来の色分解系としては、カラー写真電送装置や印刷製
版用のカラースキャナなどに用いられる3色分解系が一
般的である。
Structure of Conventional Example and Its Problems Conventional color separation systems are generally three-color separation systems used in color photographic electrotransmission devices, color scanners for printing plates, and the like.

3色以上のさらに多色の分解を行う色分解系には、たと
えば航空機や人工衛星に搭載されて資源探査や海洋調査
に用いられているリモートセンンング用のマルチスペク
トラム分解系がある。しかし、リモートセンンング用の
マルチスペクトラム分解系は、光学系がプリズムや回折
格子を用いた複雑かつ高価なものであったり、あるいは
名波長帯毎に多数の色分解カメラを並置する大損りな構
造であったり、一般向けの装置ではない。
Color separation systems that perform multicolor separation of three or more colors include, for example, multispectral separation systems for remote sensing, which are mounted on aircraft and artificial satellites and used for resource exploration and oceanographic research. However, multispectral separation systems for remote sensing are complex and expensive optical systems that use prisms and diffraction gratings, or have a disadvantageous structure in which a large number of color separation cameras are arranged in parallel for each wavelength band. However, it is not a device for the general public.

一方特開昭53−107383号公報には、小型で効率
の良いマルチスペクトラム分解系の構成法が記載されて
いる。これによれば、たとえば第1図のごとく5枚のダ
イクロイックミラーを組合わせて可視の波長帯を6チヤ
ネルのマルチバンドに分光できる。第1図において、ダ
イクロイックミラー1001〜1005は、特殊な分光
波長特性をもつ非金属多層膜フィルターであり、これら
の組合せ法についての工夫が述べられている。入射光線
1018はこれら5枚のダイクロイックミラーによって
6本の光線に分光されるが、さらに干渉フィルター10
06〜1011を経て最終的に光線1019〜1024
となって、各チャネルの光電変換層1012〜1017
に受光される。このときの最終的な出力光の波長選択特
性は、それぞれの光路上に置かれたダイクロイックミラ
ーおよび干渉フィルターの合成特性から得られる。干渉
フィルター1006〜1011は、ダイクロイックミラ
ーの不完全な遮断特性を補い、かつ帯域分離特性を是正
するための帯域整形を目的として付加されている。
On the other hand, Japanese Unexamined Patent Publication No. 107383/1983 describes a method for constructing a compact and efficient multispectral decomposition system. According to this, for example, as shown in FIG. 1, by combining five dichroic mirrors, the visible wavelength band can be separated into six channels of multi-bands. In FIG. 1, dichroic mirrors 1001 to 1005 are nonmetallic multilayer filters with special spectral wavelength characteristics, and a method of combining these is described. The incident light beam 1018 is split into six light beams by these five dichroic mirrors, and is further separated by an interference filter 10.
After passing through rays 06 to 1011, finally rays 1019 to 1024
Thus, the photoelectric conversion layers 1012 to 1017 of each channel
The light is received by the The wavelength selection characteristics of the final output light at this time are obtained from the composite characteristics of the dichroic mirror and interference filter placed on each optical path. The interference filters 1006 to 1011 are added for the purpose of compensating for the incomplete blocking characteristics of the dichroic mirror and for band shaping to correct the band separation characteristics.

すなわち、第1図の例では、第2図のような干渉フィル
タ一群を用いて、最終的に第3図のチャネル分光特性が
得られることが記載されている。
That is, in the example of FIG. 1, it is described that by using a group of interference filters as shown in FIG. 2, the channel spectral characteristics shown in FIG. 3 can be finally obtained.

しかしながら、以上の方法においては、各チャネルの中
心波長と帯域幅は、適当な試行錯誤により選択されたフ
ィルターの組合わせの結果として得られたもので、必ら
ずしも最適な波長分割とはなっていない。第2図に見ら
れるごとく、干渉フィルターに要求される帯域整形特性
は、中心波長の間隔が等間隔ではなく、短波長から長波
長へかけて間隔が増すと共に帯域幅もそれに相応して広
がる傾向を示している。これは、一般的に、前記ダイク
ロインクミラー等の共振特性を考えれば当然の結果であ
って、多層膜構造の干渉フィルターでは、実波長λを中
心波長λ。で規格化した位相、たとえばλ/λ。に対し
て一定の共振特性が規定されろ。したがって、ある型の
多層膜フィルターについて実波長λで特性を描けば、そ
の主反射帯および主透過帯あるいは副反射帯および副透
過帯などは、一般的に長波長帯はど広がりが大きくかつ
遮断特性も傾斜が緩やかとなる。このような特性は、さ
きのダイクロイックミラーについても、また整形用の干
渉フィルターについてもほぼ同様である。特開昭53−
107383 号公報においては、以上述べたような短
波長帯と長波長帯での帯域の広がりの相違は十分考慮さ
れておらず、波長分割法に合理性を欠き、帯域の活用に
無駄を生じている。特開昭53−107383号公報の
第7図には、8チヤネルの場合について、波長分割が合
理的でないことを示すさらに顕著な事例が記載されてい
る。
However, in the above method, the center wavelength and bandwidth of each channel are obtained as a result of a combination of filters selected through appropriate trial and error, and are not necessarily the optimal wavelength division. is not. As can be seen in Figure 2, the band shaping characteristics required for an interference filter are that the center wavelengths are not equally spaced, but as the spacing increases from short wavelengths to long wavelengths, the bandwidth tends to widen accordingly. It shows. This is generally a natural result considering the resonance characteristics of the dichroic ink mirror and the like, and in an interference filter with a multilayer film structure, the actual wavelength λ is the center wavelength λ. The phase normalized by, for example, λ/λ. A certain resonance characteristic is defined for . Therefore, if we describe the characteristics of a certain type of multilayer filter at the actual wavelength λ, its main reflection band, main transmission band, sub-reflection band, sub-transmission band, etc. will generally have a large spread in the long wavelength band and will be blocked. The characteristics also have a gentle slope. These characteristics are almost the same for the aforementioned dichroic mirror and for the shaping interference filter. Japanese Unexamined Patent Publication No. 1973-
In Publication No. 107383, the above-mentioned difference in band spread between the short wavelength band and the long wavelength band is not sufficiently taken into account, and the wavelength division method lacks rationality, resulting in wasteful use of the band. There is. FIG. 7 of Japanese Unexamined Patent Publication No. 53-107383 describes an even more remarkable example showing that wavelength division is not rational in the case of eight channels.

発明の目的 本発明+2、以−にの点に鑑み、特開昭63−1073
83  号あるいは類似の多色分解系に適用してより合
理的な波長分割を行うもので、無駄のない帯域配分を行
なうようにすることを目的とする。
Purpose of the Invention The present invention +2.
This method is applied to No. 83 or a similar multicolor separation system to perform more rational wavelength division, and the purpose is to perform band allocation without waste.

発明の構成 本発明は、入射光がその光路上に置かれた複数枚の多層
膜干渉フィルターによって複数の波長帯に分光され、各
波長帯の中心波長とその帯域幅が波長に依存した配分比
となるように各フィルターを組合わせたものである。
Structure of the Invention The present invention is characterized in that incident light is split into a plurality of wavelength bands by a plurality of multilayer interference filters placed on the optical path, and the center wavelength and the bandwidth of each wavelength band are divided into wavelength-dependent distribution ratios. It is a combination of each filter so that

実施例の説明 以下に本発明の一実施例を詳細に説明する。第4図は、
本発明の多色分解系における基本的な波長帯の分割法を
示す説明図であり、各チャネル共透過率が揃った理想的
な特性を描いている。ハは1番目のチャネルの中心波長
、Δλlはその半値幅を示し、波長域λ。、。〜λma
x の間を各Δ2□が空隙なく隣接し、かつ急峻な遮断
特性をもつよう分割されている。本発明においては、こ
のような理想的な波長分割の一力法として、△λ□−1
均等削りではなく中心波長λ、に依存し7て帯域幅を′
別当てることを基本的な考え力とする。その根拠は、遮
断特性が急峻でかつ損失の少い分光フィルターと(7て
は、非金属の多層膜フィルターが最良であり、これを用
いる場合、その帯域特性は△λ□/λ、が一定比率とな
るように定寸るからである。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described in detail below. Figure 4 shows
FIG. 3 is an explanatory diagram showing a basic wavelength band division method in the multicolor separation system of the present invention, and depicts ideal characteristics in which the co-transmittance of each channel is uniform. C indicates the center wavelength of the first channel, Δλl indicates its half-width, and wavelength range λ. ,. ~λma
x is divided so that each Δ2□ is adjacent to the other without a gap and has a steep blocking characteristic. In the present invention, as such an ideal wavelength division single force method, △λ□-1
Rather than uniform cutting, the bandwidth depends on the center wavelength λ.
The basic ability to think is to think differently. The basis for this is that a spectral filter with a steep cutoff characteristic and low loss (7) is best, and a nonmetallic multilayer filter is the best.When using this, the band characteristic is constant △λ□/λ. This is because the dimensions are determined to match the ratio.

△λ□/λ、の比率は、多層膜の構造によって決定され
る。
The ratio of Δλ□/λ is determined by the structure of the multilayer film.

第5図は帯域整形用の多層膜干渉フィルターの一例であ
シ、λ4=546nmに対しΔλ、=38nmで、帯域
比率△λi/λ、−1:o、o7(7%)はλ1が変わ
ってもほぼ一定に保たれる。もちろん、波長に依らず△
□λ□の絶対値が一定となるようなフィルターも実現不
可能ではないが、λi毎にそれぞれ異なる構成の多層膜
を設計製作する必要があり、とくに例示のような急峻で
帯域幅の広いタイプでそのような特性を得ることは容易
ではない。
Figure 5 is an example of a multilayer interference filter for band shaping. λ4 = 546 nm, Δλ = 38 nm, and the band ratio △λi/λ, -1: o, o7 (7%) is the same as λ1. remains almost constant. Of course, regardless of the wavelength △
It is not impossible to realize a filter in which the absolute value of □λ□ is constant, but it would be necessary to design and manufacture a multilayer film with a different configuration for each λi, especially for a steep and wide-bandwidth type as shown in the example. It is not easy to obtain such characteristics.

さらに第6図は、急峻な遮断特性をもつ多層膜のグイク
ロイックミラーの特性例であり、八T BICはそれぞ
れ主反射帯の中心波長λ。が6oO26E50.600
nmで設計されている。この例でも明白なように、主反
射帯の半値幅Δλ。のλ。に対する比率はΔλ。/λ。
Furthermore, FIG. 6 shows an example of the characteristics of a multilayer gicchroic mirror with steep cutoff characteristics, where 8TBIC is the center wavelength λ of the main reflection band. is 6oO26E50.600
Designed in nm. As is clear in this example, the half-value width Δλ of the main reflection band. λ. The ratio to Δλ. /λ.

−z 0.115でλ。に依らずほぼ一定である。第6
図のB、Cにはそれぞれ短波長側に副反射帯が現われて
いるが、これらの分光特性は、横軸の波長λをλ。で規
格化してλ/2゜で■、き換えれば同一グラフに重なる
ものであり、実波長での表示は単に波長に比例的に軸の
目盛を変えたものと見なすことができるQそこで、これ
らのダイクロインクミラーおよび整形用の干渉フィルタ
ーを組合わせて多色分解系を構成する場合にも、各チャ
ネルへの分割は△λ□/λ□ を一定比率とするように
行うことがより自然で合理的と考えられる。
−z λ at 0.115. It remains almost constant regardless of the 6th
In B and C of the figure, sub-reflection bands appear on the short wavelength side, respectively, and these spectral characteristics are based on the wavelength λ on the horizontal axis. Normalized by λ/2°■, in other words, they overlap on the same graph, and the display at the actual wavelength can be regarded as simply changing the scale of the axis in proportion to the wavelengthQ.Therefore, these Even when configuring a multicolor separation system by combining a dichroic ink mirror and a shaping interference filter, it is more natural to divide each channel so that △λ□/λ□ is a constant ratio. considered reasonable.

以上の基本的な考え力に基づき、本発明の具体的な帯域
分割法を次に説明する。
Based on the above basic idea, a specific band division method of the present invention will be explained next.

第4図の理想図において △λ□/λ、=X(定数)     ・・・・・・・・
・(1)とすれば、次式が成立する。
In the ideal diagram of Figure 4, △λ□/λ, =X (constant)...
- If (1) is set, the following formula holds true.

Σ △λ1−λmax−λmin      ・・・・
・・・・(2)1=1 これらの式からλ、および△λ、を消去するとKに関し
て、 9図において、901〜906ばそれぞれ分光されたチ
ャネル1〜チヤネル6の出力光を受光する光電変換器で
ある。たとえば、チャネル3の光電変換器903には、
入射光線910がダイクロイックミラー〇、Bを透過し
Aで反射されたのち、帯域整形用干渉フィルター913
を経て取り出される。他のチャネルについても同様に、
各光路上に存在するダイクロイックミラーの反射捷たけ
透過特性と終端部の帯域整形用干渉フィルターの透過特
性の積で定められる分光出力が現われる。第9図におけ
る各分光出力の振幅は、通過するミラーの枚数とその特
性の積によりチャネル毎に差異はあるが、総合特性とし
ては、中心波長の誤差上5nmg度でほぼ第7図の帯域
分割を実現できる。
Σ △λ1−λmax−λmin ・・・・
...(2) 1=1 If we eliminate λ and △λ from these equations, then in Figure 9, 901 to 906 are the photoelectrons that receive the separated output lights of channels 1 to 6, respectively. It is a converter. For example, in the photoelectric converter 903 of channel 3,
After the incident light beam 910 passes through dichroic mirrors 〇 and B and is reflected by A, it passes through a band shaping interference filter 913.
It is taken out after passing through. Similarly for other channels,
A spectral output is determined by the product of the reflection/transmission characteristics of the dichroic mirrors present on each optical path and the transmission characteristics of the band-shaping interference filter at the end. Although the amplitude of each spectral output in Figure 9 differs for each channel due to the product of the number of mirrors passing through and their characteristics, the overall characteristics are approximately the same as the band division in Figure 7 with a 5 nm degree error due to the error in the center wavelength. can be realized.

本実施例は、第1図の従来例とは異なった構成となって
いるが、第1図と同様に可視域を6チヤネルに分光する
ものである。ダイクロイックミラーの配列については、
これ以外にも可能な組合せが考えられるか、本実施例が
第1図の従来例と異なる点は、各ダイクロイックミラー
および帯域整形用干渉フィルターの波長選定法にあり、
第7図に例示のごとく第3図に比べてより合理的かつ効
率の良い帯域分割を実現することができる。
Although this embodiment has a configuration different from that of the conventional example shown in FIG. 1, the visible range is divided into six channels as in FIG. 1. Regarding the dichroic mirror arrangement,
There may be other possible combinations.The difference between this embodiment and the conventional example shown in FIG. 1 lies in the wavelength selection method of each dichroic mirror and band shaping interference filter.
As illustrated in FIG. 7, more rational and efficient band division can be achieved than in FIG. 3.

発明の効果 以上述べたように、本発明によれば、使用する波長領域
λ□、。〜’max  とその分割数Nを与えれば、各
分光チャネルの中心波長λ、と帯域幅△λ、を一意的に
決定でき、かつ各チャネルの帯域比率△λ /λ が一
定となるので、多層膜フィルターの設計製作が容易とな
る。−!だ得られる分光特性も帯域使用上の無駄がなく
、効率的なマルチスペクトラム分解系を構成できるなど
、実用的な効果が犬である。
Effects of the Invention As described above, according to the present invention, the wavelength range λ□ is used. ~'max and its division number N, the center wavelength λ and bandwidth Δλ of each spectral channel can be uniquely determined, and the bandwidth ratio Δλ /λ of each channel is constant, so multilayer Design and manufacture of membrane filters becomes easier. -! However, the resulting spectral characteristics have practical effects such as no waste in terms of band usage and the ability to construct an efficient multispectral decomposition system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多色分解系の一構成例を示す概略図、第
2図は第1図の帯域整形用フィルターの特性図、第3図
は第1図のチャネル分光特性図、第4図は本発明の帯域
分割法の説明図、第5図は帯域整形用干渉フィルターの
特性の説明図、第6(Aλ旬でC) 一正[7富′クロイツクミラーの波長特性例、第7図は
本発明を適用した帯域分割事例を示す図、第8図は第7
図を満たす帯域整形用干渉フィルターの=−例を示す特
性図、第9図は本発明を適用しまた具ラーの特性図であ
る。 901〜906・・・・光電変換器、A、B 、C。 D、E・・・・ダイクロイックミラー、911〜916
・・・干渉フィルタ〜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図          第4 第2図          第 第3図 5 図 第 416〃θ    Zθ+D(HJ    (vvパ幻
λ 7図 第8図 込 η次 第9図 箇10図
Fig. 1 is a schematic diagram showing an example of the configuration of a conventional multicolor separation system, Fig. 2 is a characteristic diagram of the band shaping filter shown in Fig. 1, Fig. 3 is a channel spectral characteristic diagram of Fig. 1, Figure 5 is an explanatory diagram of the band division method of the present invention, Figure 5 is an explanatory diagram of the characteristics of a band shaping interference filter, Figure 6 (C at Aλ), Kazumasa [7 Tomi' Example of wavelength characteristics of Kreuzk mirror, Figure FIG. 7 is a diagram showing an example of band division to which the present invention is applied, and FIG.
FIG. 9 is a characteristic diagram showing an example of a band shaping interference filter that satisfies the figure, and FIG. 9 is a characteristic diagram of a filter to which the present invention is applied. 901-906...Photoelectric converters, A, B, C. D, E... Dichroic mirror, 911-916
...Interference filter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 4 Fig. 2 Fig. 3 Fig. 5 Fig. 416〃θ Zθ+D(HJ

Claims (1)

【特許請求の範囲】 (1)複数枚の多層膜分光フィルタ一群を組合わせて構
成され、各色の分光出力の占める波長帯域幅を波長に依
存して割当てたことを特徴とする多色分解系。 (2)各色の分光出力の占める波長帯域幅は、その半値
幅が相互に隣接する色の間で空隙なく連なるごとく定め
られていることを特徴とする特許請求の範囲第1記載の
多色分解系。 (3)各色の分光出力の占める波長帯域幅は、その中心
波長に対して一定比率となるよう定められていることを
特徴とする特許請求の範囲第1記載の多色分解系。 (4)各色の分光出力の占める波長帯域幅は、波長に比
例して定められることを特徴とする特許請求の範囲第1
記載の多色分解系。 (6)多層膜分光フィルタ一群は複数枚のダイクロイッ
クミラーと複数枚の帯域整形用干渉ンイルターを含むこ
とを特徴とする特許請求の範囲第1項記載の多色分解系
[Scope of Claims] (1) A multicolor separation system constructed by combining a group of a plurality of multilayer film spectral filters, and characterized in that the wavelength bandwidth occupied by the spectral output of each color is allocated depending on the wavelength. . (2) Multicolor separation according to claim 1, characterized in that the wavelength bandwidth occupied by the spectral output of each color is determined such that the half width thereof is continuous between adjacent colors without any gaps. system. (3) The multicolor separation system according to claim 1, wherein the wavelength bandwidth occupied by the spectral output of each color is determined to be a constant ratio with respect to its center wavelength. (4) The first claim characterized in that the wavelength bandwidth occupied by the spectral output of each color is determined in proportion to the wavelength.
The described multicolor separation system. (6) The multicolor separation system according to claim 1, wherein the group of multilayer film spectral filters includes a plurality of dichroic mirrors and a plurality of band shaping interference filters.
JP58043544A 1983-03-16 1983-03-16 Multicolor resolving system Pending JPS59170734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58043544A JPS59170734A (en) 1983-03-16 1983-03-16 Multicolor resolving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58043544A JPS59170734A (en) 1983-03-16 1983-03-16 Multicolor resolving system

Publications (1)

Publication Number Publication Date
JPS59170734A true JPS59170734A (en) 1984-09-27

Family

ID=12666682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58043544A Pending JPS59170734A (en) 1983-03-16 1983-03-16 Multicolor resolving system

Country Status (1)

Country Link
JP (1) JPS59170734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221227A (en) * 1988-07-08 1990-01-24 Fuji Electric Co Ltd Color discrimination apparatus
WO2003016842A1 (en) * 2001-08-13 2003-02-27 Hamamatsu Photonics K.K. Spectrometer and spectrally separating method
US7466419B2 (en) 2003-02-28 2008-12-16 Hamamatsu Photonics K.K. Spectral instrument

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107383A (en) * 1977-02-28 1978-09-19 Matsushita Electric Ind Co Ltd Multicolor separation optical system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107383A (en) * 1977-02-28 1978-09-19 Matsushita Electric Ind Co Ltd Multicolor separation optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221227A (en) * 1988-07-08 1990-01-24 Fuji Electric Co Ltd Color discrimination apparatus
WO2003016842A1 (en) * 2001-08-13 2003-02-27 Hamamatsu Photonics K.K. Spectrometer and spectrally separating method
US7038778B2 (en) * 2001-08-13 2006-05-02 Hamamatsu Photonics K.K. Spectrometer and spectrally separating method
US7466419B2 (en) 2003-02-28 2008-12-16 Hamamatsu Photonics K.K. Spectral instrument

Similar Documents

Publication Publication Date Title
US5737104A (en) Wavelength division multiplexer and demultiplexer
US4441181A (en) Optical wavelength-division multiplex system
JPH06303657A (en) Optical switching device for wavelength multiplexed light communication
JP2002518696A (en) Method and apparatus for dropping an optical channel in an optical propagation system
US6831775B2 (en) Method and apparatus for wavelength conversion
JPS6119962B2 (en)
TW515163B (en) Narrow band wavelength division multiplexer and method of multiplexing optical signals
Slavík et al. Large-band periodic filters for DWDM using multiple-superimposed fiber Bragg gratings
JPS59170734A (en) Multicolor resolving system
US6614569B2 (en) System and method for narrow channel spaced dense wavelength division multiplexing/demultiplexing
US6483618B2 (en) Narrow band wavelength division demultiplexer and method of demultiplexing optical signals
JPH04372922A (en) Photo-decomposition optical system
US7075705B1 (en) Method for wavelength-selective mixing and/or distribution of polychromatic light
EP1318417A2 (en) Optical filters
US6400861B1 (en) Optical demultiplexer architecture
KR100687756B1 (en) Acousto-optic filter and optical cdma system using the same
CN101131451A (en) Non-black wavelength grouping wave-filtration device and method thereof
CN210051923U (en) Optical filter and optical add-drop multiplexer
JP2723586B2 (en) Optical wavelength separation circuit and optical wavelength multiplexing circuit
US20040018019A1 (en) Interleaver-based multiplexer and demultiplexer
AU726362B2 (en) System and method of telecommunication with wavelength division multiplexing comprising a demultiplexer
US20020154856A1 (en) Optical multiplexer, demultiplexer and methods
JPH04282603A (en) Optical multiplexer/demultiplexer
JPS61285412A (en) Optical multiplexer and demultiplexer
JPS5967503A (en) Spectroscopic dispersion element