JPH04282603A - Optical multiplexer/demultiplexer - Google Patents

Optical multiplexer/demultiplexer

Info

Publication number
JPH04282603A
JPH04282603A JP4658491A JP4658491A JPH04282603A JP H04282603 A JPH04282603 A JP H04282603A JP 4658491 A JP4658491 A JP 4658491A JP 4658491 A JP4658491 A JP 4658491A JP H04282603 A JPH04282603 A JP H04282603A
Authority
JP
Japan
Prior art keywords
diffraction grating
wavelength
light
diffraction
optical multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4658491A
Other languages
Japanese (ja)
Other versions
JP2600507B2 (en
Inventor
Masanori Iida
正憲 飯田
Hiroyuki Asakura
宏之 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4658491A priority Critical patent/JP2600507B2/en
Publication of JPH04282603A publication Critical patent/JPH04282603A/en
Application granted granted Critical
Publication of JP2600507B2 publication Critical patent/JP2600507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain the low-loss optical multiplexer/demultiplexer which execute optical multiplexing and demultiplexing in a wide wavelength region with simple constitution without using dielectric filters. CONSTITUTION:This optical multiplexer/demultiplexer consists of two kinds of diffraction gratings 14, 15 varying in spectral characteristics, a lens 13 and plural pieces of optical fibers 11, 12a to 12f and is constituted to disperse the wavelengths of light of wavelengths lambdaa to lambdaf from one piece of optical fiber 11 with the two diffraction gratings 14, 15 via the lens 13 and to couple the desired light to plural pieces of the other optical fibers 12a to 12f. The light of the wavelength regions to lambdad, lambdaf reflected without being wavelength-dispersed by the 1st diffraction grating 14 is wavelength-dispersed by the 2nd diffraction grating 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は波長多重光通信システム
の入出力端にに用いる光回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical circuit used at the input/output end of a wavelength division multiplexing optical communication system.

【0002】0002

【従来の技術】近年、光合分波器は波長多重光通信シス
テムのキーデバイスとして様々な形態が提案され検討さ
れている。波長間隔が狭く、多重数の多い高密度波長多
重光通信では回折格子を用いた光合分波器が有望視され
ている。しかしながら広い波長範囲に高効率な回折格子
は一般になく、2つ以上の分光特性の異なる回折格子と
各々の適用波長域に分離する誘電体フィルタを用いた光
合分波器が提案されている。
2. Description of the Related Art In recent years, various forms of optical multiplexers and demultiplexers have been proposed and studied as key devices for wavelength division multiplexing optical communication systems. Optical multiplexers/demultiplexers using diffraction gratings are seen as promising for high-density wavelength division multiplexing optical communications with narrow wavelength spacing and a large number of multiplexes. However, there are generally no highly efficient diffraction gratings over a wide wavelength range, and an optical multiplexer/demultiplexer using two or more diffraction gratings with different spectral characteristics and a dielectric filter that separates each applicable wavelength range has been proposed.

【0003】以下図面を参照しながら、上述した従来の
光合分波器の一例について説明する。
An example of the above-mentioned conventional optical multiplexer/demultiplexer will be described below with reference to the drawings.

【0004】図4は従来の光合波器の構成を示すもので
ある。図4において41は入力ファイバ、42a〜42
fは受光ファイバ、43はレンズ、44は第1の回折格
子、45は第2の回折格子、46は誘電体フィルタであ
る。
FIG. 4 shows the configuration of a conventional optical multiplexer. In FIG. 4, 41 is an input fiber, 42a to 42
f is a light receiving fiber, 43 is a lens, 44 is a first diffraction grating, 45 is a second diffraction grating, and 46 is a dielectric filter.

【0005】以上のように構成された光合分波器につい
て、以下その動作を説明する。説明に当たっては光分波
器についての動作について行い、光合波器については光
の進行方向を逆にすればよい。また波長は短波長側から
λa、λb、λc、λd、λe、λfとし、誘電体フィ
ルタ46は波長λa〜λcは透過し、波長λd〜λfは
反射する特性を有しているとする。
The operation of the optical multiplexer/demultiplexer configured as described above will be explained below. In the explanation, the operation of an optical demultiplexer will be explained, and for an optical multiplexer, the traveling direction of light may be reversed. It is also assumed that the wavelengths are λa, λb, λc, λd, λe, and λf from the short wavelength side, and that the dielectric filter 46 has a characteristic of transmitting wavelengths λa to λc and reflecting wavelengths λd to λf.

【0006】入力ファイバ41から出射した波長λa〜
λfの波長多重された光はレンズ43を介して誘電体フ
ィルタ46により波長λa〜λfの光は透過し第1の回
折格子44に入射する。入射した光は第1の回折格子4
4により波長分散を受け誘電体フィルタ46及びレンズ
43を介してそれぞれ受光ファイバ42a〜42cに結
合する。一方、誘電体フィルタ46で反射される波長λ
d〜λfの光は第2の回折格子45に入射して波長分散
を受け誘電体フィルタ46で再び反射してレンズ43を
介し、受光ファイバ42d〜42fに結合する。このよ
うにして波長多重された光が分波されることになる。
The wavelength λa~ emitted from the input fiber 41
The wavelength-multiplexed light of λf passes through the lens 43 and the light of wavelengths λa to λf is transmitted through the dielectric filter 46 and enters the first diffraction grating 44 . The incident light passes through the first diffraction grating 4
4, and are coupled to the light receiving fibers 42a to 42c via a dielectric filter 46 and a lens 43, respectively. On the other hand, the wavelength λ reflected by the dielectric filter 46
The light of d to λf enters the second diffraction grating 45, undergoes wavelength dispersion, is reflected again by the dielectric filter 46, and is coupled to the light receiving fibers 42d to 42f via the lens 43. The wavelength-multiplexed light is thus demultiplexed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、レンズ43と第1の回折格子44の間に
誘電体フィルタ46が挿入された複雑な構成となってお
り、多重された光はどの波長も誘電体フィルタ46を2
回透過あるいは反射されるので誘電体フィルタ46の透
過損失あるいは反射損失が2乗倍となって影響し、光合
分波器全体としての挿入損失が低下してしまうという問
題点を有している。
[Problems to be Solved by the Invention] However, the above configuration has a complicated configuration in which a dielectric filter 46 is inserted between the lens 43 and the first diffraction grating 44, and the multiplexed light is For any wavelength, two dielectric filters 46 are used.
Since the light is transmitted or reflected twice, the transmission loss or reflection loss of the dielectric filter 46 is multiplied by a factor of 2, resulting in a reduction in the insertion loss of the optical multiplexer/demultiplexer as a whole.

【0008】本発明は上記問題点に鑑み、誘電体フィル
タを挿入することなく広範囲な波長域で使用することが
できる光合分波器を提供するものである。
In view of the above problems, the present invention provides an optical multiplexer/demultiplexer that can be used in a wide wavelength range without inserting a dielectric filter.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の光合分波器は、2種類の分光特性の異なる
回折格子、レンズ及び複数本の光ファイバからなり、そ
のうち1本の光ファイバからの光をレンズを介して2つ
の回折格子で波長分散させ、その他の複数本の光ファイ
バに所望の光を結合させる構成をとり、第1の回折格子
で波長分散を受けずに反射される光を第2の回折格子で
波長分散させるものである。また第2の回折格子として
第1の回折格子と同じものを用い格子上面に誘電体層を
設けた回折素子を用いることもできる。
[Means for Solving the Problems] In order to solve the above problems, the optical multiplexer/demultiplexer of the present invention consists of two types of diffraction gratings with different spectral characteristics, lenses, and a plurality of optical fibers, one of which The light from the optical fiber is wavelength-dispersed by two diffraction gratings via a lens, and the desired light is coupled to the other multiple optical fibers, and then reflected by the first diffraction grating without undergoing wavelength dispersion. The wavelength of the light is wavelength-dispersed by the second diffraction grating. Further, it is also possible to use a diffraction element in which the second diffraction grating is the same as the first diffraction grating and a dielectric layer is provided on the upper surface of the grating.

【0010】0010

【作用】本発明は上記した構成によって、誘電体フィル
タを用いず簡単な構成でしかも広い波長範囲で使用でき
、低損失なものとなる。また第2の回折格子に第1の回
折格子上面に誘電体を密着させることにより2種類の回
折格子を用いる必要がなくなる。この構成は例えば0.
8μmと1.3μmの2つの波長帯でそれぞれ波長多重
されている光を同時に伝送している場合に有効である。
[Operation] The present invention has a simple structure without using a dielectric filter, can be used in a wide wavelength range, and has low loss. Further, by bringing a dielectric material into close contact with the upper surface of the first diffraction grating in the second diffraction grating, it is no longer necessary to use two types of diffraction gratings. For example, this configuration is 0.
This is effective when transmitting simultaneously wavelength-multiplexed light in two wavelength bands, 8 μm and 1.3 μm.

【0011】[0011]

【実施例】以下本発明の一実施例の光合分波器について
、図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical multiplexer/demultiplexer according to an embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の第1の実施例における光合
分波器の構成図を示すものである。図1において11は
入力ファイバ、12a〜12fは受光ファイバ、13は
レンズ、14は第1の回折格子、15は第2の回折格子
である。ここでは光分波器での動作について説明し、そ
の際の波長は短波側からλa,λb,λc,λd,λe
,λfとする。図3にそれぞれの波長の光の関係を示し
た概念図をしめす。図3において32a〜32fはそれ
ぞれ波長λa〜λfの光であり、38は第1の回折格子
で波長分散を受ける波長域を示し、39は波長分散を受
けず全反射する波長域を示している。
FIG. 1 shows a configuration diagram of an optical multiplexer/demultiplexer in a first embodiment of the present invention. In FIG. 1, 11 is an input fiber, 12a to 12f are light receiving fibers, 13 is a lens, 14 is a first diffraction grating, and 15 is a second diffraction grating. Here, we will explain the operation of an optical demultiplexer, and the wavelengths at that time are λa, λb, λc, λd, λe from the short wavelength side.
, λf. FIG. 3 shows a conceptual diagram showing the relationship between light of each wavelength. In FIG. 3, 32a to 32f are lights with wavelengths λa to λf, respectively, 38 indicates a wavelength range that undergoes chromatic dispersion in the first diffraction grating, and 39 indicates a wavelength range that does not undergo chromatic dispersion and is totally reflected. .

【0013】以上のように構成された光合分波器につい
て、以下図1及び図3を用いてその動作を説明する。
The operation of the optical multiplexer/demultiplexer constructed as described above will be explained below with reference to FIGS. 1 and 3.

【0014】入力ファイバ11から波長λa〜λfで波
長多重された光はレンズ13を介して第1の回折格子1
4に入射する。第1の回折格子14は波長域38の光に
ついて波長分散能力があるので、波長λa〜λcの光は
波長分散を受けレンズ13を介して受光ファイバ12a
〜12cにそれぞれ結合する。一方、波長域39にある
波長λd〜λfの光は第1の回折格子14では波長分散
されず全反射する。全反射光は第2の回折格子15に入
射し、波長分散を受け、第1の回折格子14で再び全反
射され、レンズ13を介して受光ファイバ12d〜12
fにそれぞれ結合する。第1の回折格子14で波長分散
を受ける波長をλ1、全反射される波長をλ2、第1の
回折格子14の格子間隔をdとして、 λ2−λ1/2>d を満たしていればよい。例えば第1の回折格子14とし
て格子溝本数が1200本/mmの回折格子を用い、波
長域38が0.8μm帯、第2の回折格子15として格
子溝本数が770本/mmの回折格子を用い、波長域3
9が1.3μm帯であるような波長多重を行えばλ2−
λ1/2>d を満たすことになる。
The wavelength-multiplexed light from the input fiber 11 with wavelengths λa to λf passes through the lens 13 to the first diffraction grating 1.
4. Since the first diffraction grating 14 has a wavelength dispersion ability for light in the wavelength range 38, light with wavelengths λa to λc undergoes chromatic dispersion and passes through the lens 13 to the receiving fiber 12a.
~12c, respectively. On the other hand, light having wavelengths λd to λf in the wavelength range 39 is not wavelength-dispersed by the first diffraction grating 14 and is totally reflected. The totally reflected light enters the second diffraction grating 15, undergoes wavelength dispersion, is totally reflected again by the first diffraction grating 14, and passes through the lens 13 to the receiving fibers 12d to 12.
f respectively. Assuming that the wavelength that undergoes wavelength dispersion in the first diffraction grating 14 is λ1, the wavelength that is totally reflected is λ2, and the grating interval of the first diffraction grating 14 is d, it is sufficient to satisfy λ2−λ1/2>d. For example, a diffraction grating with a grating groove number of 1200/mm is used as the first diffraction grating 14, a diffraction grating with a wavelength range 38 in the 0.8 μm band, and a diffraction grating with a grating groove number of 770/mm as the second diffraction grating 15. wavelength range 3
If wavelength multiplexing is performed such that 9 is in the 1.3 μm band, λ2-
This satisfies λ1/2>d.

【0015】以上のように本実施例によれば、第1の回
折格子で波長分散を受けず全反射される波長域の光を第
2の回折格子で波長分散させることにより、フィルタを
挿入することなく構成が簡単で低損失、広帯域化するこ
とができる。
As described above, according to this embodiment, the filter is inserted by dispersing the wavelength of light in the wavelength range that is totally reflected without undergoing wavelength dispersion in the first diffraction grating in the second diffraction grating. The configuration is simple, low loss, and wideband can be achieved without any interference.

【0016】次に本発明の第2の実施例の光合分波器に
ついて、図面を参照しながら説明する。
Next, an optical multiplexer/demultiplexer according to a second embodiment of the present invention will be explained with reference to the drawings.

【0017】図2は本発明の第2の実施例における光合
分波器の構成図を示すものである。図2において21は
入力ファイバ、22a〜22fは受光ファイバ、23は
レンズ、24a・24bは回折格子、26は誘電体、2
7は回折格子24b上に誘電体26を設けた回折素子で
ある。図3にそれぞれの波長の光の関係を示した概念図
をしめす。図3において32a〜32fはそれぞれ波長
λa〜λfの光であり、38はこの場合回折格子24a
で波長分散を受ける波長域を示し、39は波長分散を受
けず全反射する波長域を示している。
FIG. 2 shows a configuration diagram of an optical multiplexer/demultiplexer in a second embodiment of the present invention. In FIG. 2, 21 is an input fiber, 22a to 22f are receiving fibers, 23 is a lens, 24a and 24b are diffraction gratings, 26 is a dielectric material, 2
7 is a diffraction element in which a dielectric material 26 is provided on a diffraction grating 24b. FIG. 3 shows a conceptual diagram showing the relationship between light of each wavelength. In FIG. 3, 32a to 32f are lights with wavelengths λa to λf, respectively, and 38 is a diffraction grating 24a in this case.
39 indicates a wavelength range that undergoes chromatic dispersion, and 39 indicates a wavelength range that does not undergo chromatic dispersion and undergoes total reflection.

【0018】以上のように構成された光合分波器につい
て、以下図2及び図3を用いてその動作を説明する。
The operation of the optical multiplexer/demultiplexer constructed as described above will be explained below with reference to FIGS. 2 and 3.

【0019】入力ファイバ21から波長λa〜λfで波
長多重された光はレンズ23を介して回折格子24aに
入射する。回折格子24aは波長域38の光について波
長分散能力があるので、波長λa〜λcの光は波長分散
を受けレンズを介して受光ファイバ12a〜12cにそ
れぞれ結合する。一方、波長域39にある波長λd〜λ
fの光はの回折格子24aでは波長分散されず全反射す
る。全反射光は回折格子24b上に誘電体26が設けら
れた回折素子27に入射し、波長分散を受け、回折格子
24aで再び全反射され、レンズ23を介して受光ファ
イバ12d〜12fにそれぞれ結合する。誘電体の屈折
率をnとすれば波長域38での波長λ1、波長域39で
の波長λ2で 1−1/2n>d/λ2 を満たしていれば、回折素子27で波長λd〜λfの光
は波長分散を受ける。例えば回折格子24a・24bと
して格子溝本数が1200本/mmの回折格子を用い、
誘電体の屈折率をガラスを用いるとして約1.5、波長
域38が0.8μm帯で、波長域39が1.3μm帯で
あるような波長多重を行えば λ2−λ1/2>d を満たすことになる。
Light that has been wavelength-multiplexed into wavelengths λa to λf from the input fiber 21 enters the diffraction grating 24a via the lens 23. Since the diffraction grating 24a has wavelength dispersion ability for light in the wavelength range 38, the light in wavelengths λa to λc undergoes wavelength dispersion and is coupled to the light receiving fibers 12a to 12c via lenses, respectively. On the other hand, the wavelength λd~λ in the wavelength range 39
The light of f is not wavelength-dispersed and is totally reflected by the diffraction grating 24a. The totally reflected light enters the diffraction element 27 in which a dielectric material 26 is provided on the diffraction grating 24b, undergoes wavelength dispersion, is totally reflected again by the diffraction grating 24a, and is coupled to the light receiving fibers 12d to 12f via the lens 23, respectively. do. If the refractive index of the dielectric is n, then if the wavelength λ1 in the wavelength range 38 and the wavelength λ2 in the wavelength range 39 satisfy 1-1/2n>d/λ2, then the diffraction element 27 can measure the wavelengths λd to λf. Light undergoes wavelength dispersion. For example, using a diffraction grating with a grating groove count of 1200/mm as the diffraction gratings 24a and 24b,
Assuming that the dielectric has a refractive index of about 1.5 using glass, if wavelength multiplexing is performed such that the wavelength range 38 is a 0.8 μm band and the wavelength range 39 is a 1.3 μm band, λ2−λ1/2>d is obtained. It will be fulfilled.

【0020】以上のように本実施例によれば、回折格子
で波長分散を受けず全反射される波長域の光を、同じ種
類の回折格子の上面に誘電体層を設けた回折素子で波長
分散させることにより、フィルタを挿入することなく構
成が簡単で、かつ同種の回折格子を用いて、低損失、広
帯域化することができる。望ましくは誘電体の上面に反
射防止膜を設けることによりさらに低損失化を図れる。
As described above, according to this embodiment, the light in the wavelength range that is totally reflected without being subjected to wavelength dispersion by the diffraction grating is converted into wavelengths by the diffraction element provided with the dielectric layer on the top surface of the same type of diffraction grating. By dispersing, the configuration is simple without inserting a filter, and low loss and wide band can be achieved using the same type of diffraction grating. Preferably, an antireflection film is provided on the upper surface of the dielectric to further reduce the loss.

【0021】なお、第1及び第2の実施例においては単
に回折格子としたが、回折格子として特に高効率で偏光
依存性の少ないフーリエ回折格子を用いればなお低損失
化が図れる。
In the first and second embodiments, a simple diffraction grating is used, but if a Fourier diffraction grating with particularly high efficiency and less polarization dependence is used as the diffraction grating, the loss can be further reduced.

【0022】[0022]

【発明の効果】以上のように本発明は第1の回折格子で
波長分散されない波長域の光を第2の回折格子で波長分
散させることにより、誘電体フィルタを挿入することな
く低損失で、広帯域な光合分波ができる。とくに0.8
μm帯と1.3μm帯での多重数の多い波長多重光通信
に有用である。
As described above, the present invention allows wavelength dispersion of light in a wavelength range that is not wavelength-dispersed by the first diffraction grating to be wavelength-dispersed by the second diffraction grating, thereby achieving low loss without inserting a dielectric filter. Broadband optical multiplexing and demultiplexing is possible. Especially 0.8
It is useful for wavelength division multiplexing optical communication with a large number of multiplexes in the μm band and 1.3 μm band.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例における光合分波器の構
成図である。
FIG. 1 is a configuration diagram of an optical multiplexer/demultiplexer in a first embodiment of the present invention.

【図2】本発明の第2の実施例における光合分波器の構
成図である。
FIG. 2 is a configuration diagram of an optical multiplexer/demultiplexer in a second embodiment of the present invention.

【図3】本発明の一実施例における波長λa〜λfの関
係を表す概念図である。
FIG. 3 is a conceptual diagram showing the relationship between wavelengths λa to λf in an embodiment of the present invention.

【図4】従来の実施例における光合分波器の構成図であ
る。
FIG. 4 is a configuration diagram of an optical multiplexer/demultiplexer in a conventional embodiment.

【符号の説明】[Explanation of symbols]

11,21,41  入力ファイバ 12a〜12f,22a〜22f,42a〜42f  
受光ファイバ 13,23,43  レンズ 14,44  第1の回折格子 15,45  第2の回折格子 24a,24b  回折格子 26  誘電体層 46  誘電体フィルタ
11, 21, 41 input fibers 12a to 12f, 22a to 22f, 42a to 42f
Light receiving fiber 13, 23, 43 Lens 14, 44 First diffraction grating 15, 45 Second diffraction grating 24a, 24b Diffraction grating 26 Dielectric layer 46 Dielectric filter

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  2種類の分光特性の異なる回折格子と
レンズと複数本の光ファイバとを具備し、前記複数の光
ファイバのうち1本の光ファイバから前記レンズを介し
た光が前記2種類の回折格子で波長分散を受け、前記レ
ンズを介して前記その他の複数本の光ファイバに結合す
る構成をとり、前記2つの回折格子のうち第1の回折格
子に入射した光は回折次数が存在する波長域のみが波長
分散を受け、その他の光は反射光となって、第2の回折
格子に入射し、波長分散を受け、前記第1の回折格子で
再び反射されることを特徴とする光合分波器。
1. A diffraction grating having two types of different spectral characteristics, a lens, and a plurality of optical fibers, the light passing from one optical fiber of the plurality of optical fibers through the lens being of the two types. A configuration is adopted in which the light is subjected to wavelength dispersion by the diffraction grating and is coupled to the other plurality of optical fibers via the lens, and the light incident on the first diffraction grating of the two diffraction gratings has a diffraction order. Only the wavelength range in which the wavelength range corresponds to the first diffraction grating undergoes wavelength dispersion, and the other light becomes reflected light, enters the second diffraction grating, undergoes wavelength dispersion, and is reflected again by the first diffraction grating. Optical multiplexer/demultiplexer.
【請求項2】  第1の回折格子の格子間隔をd、第1
の回折格子で波長分散を受ける波長をλ1、第2の回折
格子で波長分散を受ける波長をλ2として、λ2−λ1
/2>d を満たす請求項1記載の光合分波器。
2. The grating spacing of the first diffraction grating is d, and the first
Let the wavelength that undergoes wavelength dispersion in the first diffraction grating be λ1, and the wavelength that undergoes wavelength dispersion in the second diffraction grating as λ2, then λ2 - λ1
The optical multiplexer/demultiplexer according to claim 1, which satisfies /2>d.
【請求項3】  第1の回折格子及び第2の回折格子に
フーリエ回折格子を用いることを特徴とする請求項1記
載の光合分波器。
3. The optical multiplexer/demultiplexer according to claim 1, wherein Fourier diffraction gratings are used for the first diffraction grating and the second diffraction grating.
【請求項4】  第1の回折格子が入射する光に対して
2次以上の回折次数を持たないことを特徴とする請求項
1記載の光合分波器。
4. The optical multiplexer/demultiplexer according to claim 1, wherein the first diffraction grating does not have a second or higher diffraction order for the incident light.
【請求項5】  第2の回折格子として、第1の回折格
子と同種のものを用い、かつ前記第1の回折格子の格子
上面に誘電体層を設けた回折素子を用いることを特徴と
する請求項1記載の光合分波器。
5. The second diffraction grating is of the same type as the first diffraction grating, and a diffraction element is used in which a dielectric layer is provided on the upper surface of the first diffraction grating. The optical multiplexer/demultiplexer according to claim 1.
【請求項6】  誘電体層の屈折率をn、第1の回折格
子で反射される光の波長をλ2として、 1−1/2n>d/λ2 を満たすことを特徴とする請求項5記載の光合分波器。
6. The refractive index of the dielectric layer is n, and the wavelength of the light reflected by the first diffraction grating is λ2, satisfying 1-1/2n>d/λ2. optical multiplexer/demultiplexer.
【請求項7】  誘電体の上面に反射防止膜を設けるこ
とを特徴とする請求項5記載の光合分波器。
7. The optical multiplexer/demultiplexer according to claim 5, wherein an antireflection film is provided on the upper surface of the dielectric.
【請求項8】  第1の回折格子が入射する光に対して
2次以上の回折次数を持たないことを特徴とする請求項
5記載の光合分波器。
8. The optical multiplexer/demultiplexer according to claim 5, wherein the first diffraction grating does not have a second or higher diffraction order for the incident light.
【請求項9】  第1の回折格子にフーリエ回折格子を
用いることを特徴とする請求項5記載の光合分波器。
9. The optical multiplexer/demultiplexer according to claim 5, wherein a Fourier diffraction grating is used as the first diffraction grating.
JP4658491A 1991-03-12 1991-03-12 Optical multiplexer / demultiplexer Expired - Fee Related JP2600507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4658491A JP2600507B2 (en) 1991-03-12 1991-03-12 Optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4658491A JP2600507B2 (en) 1991-03-12 1991-03-12 Optical multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JPH04282603A true JPH04282603A (en) 1992-10-07
JP2600507B2 JP2600507B2 (en) 1997-04-16

Family

ID=12751354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4658491A Expired - Fee Related JP2600507B2 (en) 1991-03-12 1991-03-12 Optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP2600507B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618736A (en) * 1992-03-31 1994-01-28 Alcatel Nv Wavelength division multiplexer for integrated optical system
US5457573A (en) * 1993-03-10 1995-10-10 Matsushita Electric Industrial Co., Ltd. Diffraction element and an optical multiplexing/demultiplexing device incorporating the same
JP2000028847A (en) * 1998-06-04 2000-01-28 Instruments Sa Multiplexer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618736A (en) * 1992-03-31 1994-01-28 Alcatel Nv Wavelength division multiplexer for integrated optical system
US5457573A (en) * 1993-03-10 1995-10-10 Matsushita Electric Industrial Co., Ltd. Diffraction element and an optical multiplexing/demultiplexing device incorporating the same
JP2000028847A (en) * 1998-06-04 2000-01-28 Instruments Sa Multiplexer
JP4711474B2 (en) * 1998-06-04 2011-06-29 イエニスタ オプティック エス アー Multiplexer

Also Published As

Publication number Publication date
JP2600507B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US6339474B2 (en) Interferometric optical device including an optical resonator
US5712717A (en) High isolation, optical add-drop multiplexer
US6125220A (en) Interferometric optical device including a resonant optical cavity
US4441181A (en) Optical wavelength-division multiplex system
US6084695A (en) Optical fiber wavelength multiplexer and demutiplexer
US6055349A (en) Optical waveguide device and manufacturing method therefor
EP0963072A2 (en) Wavelength-division-multiplexing progammable add/drop using interleave-chirped waveguide grating router
US5754718A (en) Hybrid optical filtering circuit
GB2316759A (en) Optical multiplexer/demultiplexer having diffraction gratings in tandem
US20050213887A1 (en) Two-stage optical bi-directional transceiver
US6160931A (en) Wavelength-multiplexing optical transmission system provided with wavelength selectors
US7043123B2 (en) Integrateable band filter using waveguide grating routers
US6201907B1 (en) Optical drop circuit having group delay compensation
US6602000B1 (en) Reconfigurable add/drop for optical fiber communication systems
JPH10502183A (en) Apparatus for spatially separating and / or aggregating optical wavelength channels
CA2245389A1 (en) Multiplexer/demultiplexer for wdm optical signals
US20040013356A1 (en) Tunable filter applied in optical networks
US20030202742A1 (en) Wavelength multiplexing/demultiplexing unit, wavelength multiplexing/demultiplexing apparatus and wavelength multiplexing/demultiplexing method
US20020176660A1 (en) Optical wavelength multiplexer/demultiplexer and use method thereof
Roeloffzen et al. Tunable passband flattened 1-from-16 binary-tree structured add-after-drop multiplexer using SiON waveguide technology
JPH04282603A (en) Optical multiplexer/demultiplexer
US7075705B1 (en) Method for wavelength-selective mixing and/or distribution of polychromatic light
US6546167B1 (en) Tunable grating optical device
JP2557966B2 (en) Optical multiplexer / demultiplexer
EP0984311A2 (en) Optical multiplexor/demultiplexor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees