JPS61285412A - Optical multiplexer and demultiplexer - Google Patents

Optical multiplexer and demultiplexer

Info

Publication number
JPS61285412A
JPS61285412A JP60126240A JP12624085A JPS61285412A JP S61285412 A JPS61285412 A JP S61285412A JP 60126240 A JP60126240 A JP 60126240A JP 12624085 A JP12624085 A JP 12624085A JP S61285412 A JPS61285412 A JP S61285412A
Authority
JP
Japan
Prior art keywords
face
light
wavelength
dielectric multilayer
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60126240A
Other languages
Japanese (ja)
Other versions
JPS6245526B2 (en
Inventor
Hideki Isono
秀樹 磯野
Takashi Yokota
横田 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60126240A priority Critical patent/JPS61285412A/en
Publication of JPS61285412A publication Critical patent/JPS61285412A/en
Publication of JPS6245526B2 publication Critical patent/JPS6245526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer

Abstract

PURPOSE:To easily manufacture an optical multiplexer and demultiplexer by using one face of a glass block as a total reflection surface and the other face as an exit face inclined with the incient face parallel with the reflection surface and forming multi-layered dielectric films by simultaneous vapor deposition on part/whole of the incident face and the exit face. CONSTITUTION:One face of the glass block 1 is used as the total reflection face 2 and the other face is used as the exit face 4 inclined with the incident face 3 parallel with the face. The multi-layered dielectric films 5a, 5b are formed on part or the whole of the incident face 3 and the exit face 4 by the simultaneous vapor deposition. The thickness of the dielectric film is smaller on the incident face 3 when the film is deposited by evaporation in the direction perpendicular to the exit face 4 and there fore the multi-layered films 5a, 5b have different wavelength characteristics. The light of wavelengths lambda1, lambda2 (where lambda1<lambda2) is reflected by the face 2 when said light is made incident on the incident face 3 on which the film 5a is not formed. The reflected light is made incident on the film 5a formed on the face 3 and only the light of the wavelength lambda1 is transmitted therethrogh. The light of the other wavelength is reflected therefrom. The reflected light is reflected by the total reflection face 2 and enters the film 5b through which the light of the wavelength lambda2 is transmitted.

Description

【発明の詳細な説明】 〔概要〕 角度の異なるガラスブロックの面に同時蒸着によって誘
電体多層膜を形成したものであり、角度が異なる面に形
成される誘電体膜厚が異なるから、角度の異なる面に形
成された誘電体多層膜の波長特性が異なるものとなる。
[Detailed Description of the Invention] [Summary] Dielectric multilayer films are formed by simultaneous vapor deposition on the faces of glass blocks with different angles, and since the dielectric film thicknesses formed on the faces with different angles are different, Dielectric multilayer films formed on different surfaces have different wavelength characteristics.

従って、波長の異なる光の分波或いは合波を行うことが
できる。
Therefore, it is possible to perform demultiplexing or multiplexing of light having different wavelengths.

〔産業上の利用分野〕[Industrial application field]

本発明は、光波長多重通信等に於ける波長の異なる光の
分波或いは合波を行う光分波合波器に関するものである
The present invention relates to an optical demultiplexer/multiplexer that performs demultiplexing or multiplexing of lights of different wavelengths in optical wavelength division multiplexing communications and the like.

光通信方式に於いては、周波数多重通信方式と同様に、
波長の異なる光を多重化して伝送する光波長多重通信方
式が知られており、その為には、簡単な構成で波長の異
なる光を分波し、又は合波する必要がある。又所望の波
長の光信号のみを取り出す為に、狭帯域の帯域通過フィ
ルタを簡単に構成できることが要望されている。
In optical communication systems, like frequency division multiplex communication systems,
2. Description of the Related Art Optical wavelength multiplexing communication systems are known in which light having different wavelengths is multiplexed and transmitted, and for this purpose, it is necessary to separate or combine light having different wavelengths with a simple configuration. Furthermore, it is desired that a narrowband bandpass filter can be easily constructed in order to extract only an optical signal of a desired wavelength.

〔従来の技術〕[Conventional technology]

従来の光分波合波器は、例えば、第6図に示すように、
立方体のガラスブロック11の一方の面の一部に、波長
λ2を透過する誘電体多層膜13を蒸着等により形成し
、他方の面の一部に、波長7重を透過する誘電体多層膜
12を蒸着等により形成した構成を存するものである。
A conventional optical demultiplexer/multiplexer, for example, as shown in FIG.
A dielectric multilayer film 13 that transmits wavelength λ2 is formed on a part of one surface of the cubic glass block 11 by vapor deposition or the like, and a dielectric multilayer film 12 that transmits seven wavelengths is formed on a part of the other surface. It has a structure in which it is formed by vapor deposition or the like.

ガラスブロック11の一方の面から波長λ1.λ2の光
を入射させると、波長λ1の光のみが他方の面に形成し
た誘電体多層膜12を透過し、他の波長の光は反射され
る。この反射光は、一方の面に形成した誘電体多層膜1
3に入射され、波長λ2の光のみが透過するから、誘電
体多層膜12により波長λ1の光を分離し、誘電体多層
膜13により波長λ2の光を分離することができる。
Wavelength λ1. from one side of glass block 11. When light of wavelength λ2 is incident, only light of wavelength λ1 is transmitted through the dielectric multilayer film 12 formed on the other surface, and light of other wavelengths is reflected. This reflected light is transmitted through the dielectric multilayer film 1 formed on one surface.
3 and only the light with the wavelength λ2 is transmitted, so the dielectric multilayer film 12 can separate the light with the wavelength λ1, and the dielectric multilayer film 13 can separate the light with the wavelength λ2.

反対に、波長λ2の光を誘電体多層膜13に入射させ、
波長λ1の光を誘電体多層膜12に入射させると、波長
λ2の光は誘電体多層膜13を透過した後、誘電体多層
膜12により反射され、又波長λ1の光は誘電体多層膜
12を透過するから、波長λ■、λ2の光は合成されて
出力されることになる。
On the contrary, the light with the wavelength λ2 is made incident on the dielectric multilayer film 13,
When light with wavelength λ1 is incident on dielectric multilayer film 12, light with wavelength λ2 passes through dielectric multilayer film 13 and is reflected by dielectric multilayer film 12, and light with wavelength λ1 enters dielectric multilayer film 12. , the lights of wavelengths λ■ and λ2 are combined and output.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光分波合波器は、所望の透過波長の誘電体多層膜
12.13をガラスブロック11に直接形成するか或い
はガラス板にそれぞれ形成した後に、貼合わせるもので
あるから、その製作工程が複雑となる欠点があった。又
狭帯域の帯域通過フィルタを構成することは容易でなか
った。
In conventional optical demultiplexing/combining devices, the dielectric multilayer films 12 and 13 having the desired transmission wavelength are formed directly on the glass block 11 or are formed on glass plates and then bonded together. The disadvantage was that it was complicated. Furthermore, it has not been easy to construct a narrow band pass filter.

本発明は、簡単な工程で製作できるようにすることを目
的とするものである。
An object of the present invention is to enable manufacturing through simple steps.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光分波合波器は、第1図を参照して説明すると
、平坦面を全反射面2とし、この全反射面2に対向する
面を、全反射面2と平行な入射面3と傾斜した出射面4
としたガラスブロックlと、このガラスブロック1の入
射面3の一部或いは全部と出射面4とに同時蒸着によっ
て誘電体多層膜5a、5bを形成したものである。
The optical demultiplexer/multiplexer of the present invention will be described with reference to FIG. 3 and inclined exit surface 4
Dielectric multilayer films 5a and 5b are formed on a glass block 1, a part or all of the entrance surface 3, and the exit surface 4 of the glass block 1 by simultaneous vapor deposition.

〔作用〕[Effect]

ガラスブロックlの入射面3と出射面4とに同時蒸着に
よって形成した誘電体多層膜5a、5bは、蒸着方向が
出射面4に垂直方向であるとすると、出射面4に形成さ
れる誘電体膜の膜厚が、入射面3に形成される誘電体膜
の膜厚より厚くなる。
The dielectric multilayer films 5a and 5b formed by simultaneous vapor deposition on the entrance surface 3 and the exit surface 4 of the glass block l are dielectric multilayer films formed on the exit surface 4, assuming that the vapor deposition direction is perpendicular to the exit surface 4. The thickness of the film becomes thicker than the thickness of the dielectric film formed on the incident surface 3.

従って、全反射面2で反射された波長λ1.λ2の光の
うち、波長λ1 (λヨくλ2)のみが誘電体多層膜5
aを透過し、他の波長の光は反射される。この反射光が
全反射面2で反射され、出射面4に形成した誘電体多層
膜5bに入射されると、波長λ2の光のみが透過する。
Therefore, the wavelength λ1. reflected by the total reflection surface 2. Of the light of λ2, only the wavelength λ1 (λ + λ2) is transmitted through the dielectric multilayer film 5.
a is transmitted, and light of other wavelengths is reflected. When this reflected light is reflected by the total reflection surface 2 and incident on the dielectric multilayer film 5b formed on the output surface 4, only the light having the wavelength λ2 is transmitted.

従って、波長の異なる光を分波或いは合波することがき
る。又入射面3と出射面4との角度関係を選定すること
により、入射面3と出射面4とに形成される誘電体多層
膜5a、5bの波長特性が一部重なるから、狭帯域通過
フィルタを構成することができる。
Therefore, it is possible to separate or combine lights of different wavelengths. Furthermore, by selecting the angular relationship between the entrance surface 3 and the exit surface 4, the wavelength characteristics of the dielectric multilayer films 5a and 5b formed on the entrance surface 3 and the exit surface 4 partially overlap. can be configured.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の説明図であり、ガラスブロ
ック1の一方の面を全反射面2とし、他方の面を全反射
面2に対して平行な入射面3と傾斜した出射面4とし、
同時蒸着によって入射面3の一部或いは全部と出射面4
とに、誘電体多層膜5a、5bを形成したものである。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, in which one surface of a glass block 1 is a total reflection surface 2, and the other surface is an incident surface 3 parallel to the total reflection surface 2 and an inclined output surface. As side 4,
Part or all of the entrance surface 3 and the exit surface 4 are formed by simultaneous vapor deposition.
Additionally, dielectric multilayer films 5a and 5b are formed.

出射面4に対して垂直方向に蒸着を行うと、入射面3に
対しては、出射面4と入射面3との角度関係に対応して
、蒸着される誘電体膜の膜厚が薄くなる。従って、同時
蒸着を行った誘電体多層膜5a、5bの波長特性は異な
るものとなる。
When vapor deposition is performed in a direction perpendicular to the exit surface 4, the thickness of the dielectric film deposited on the entrance surface 3 becomes thinner in accordance with the angular relationship between the exit surface 4 and the entrance surface 3. . Therefore, the wavelength characteristics of the dielectric multilayer films 5a and 5b that have been simultaneously deposited are different.

従って、誘電体多層膜5aが形成されていない入射面3
から、波長λ3.λ2 (λ1くλ2)の光を入射させ
ると、全反射面2で反射されて入射面3に形成された誘
電体多層膜5aに入射され、波長λ盟の光のみが透過さ
れて、他の波長の光は反射される。この反射光は全反射
面2で反射されて、出射面4に形成された誘電体多層膜
5bに入射され、波長λ2の光が透過される。従って、
波長λ1.λ2の光を分離することができ、光分波器と
なる。
Therefore, the entrance surface 3 on which the dielectric multilayer film 5a is not formed
, the wavelength λ3. When light with a wavelength of λ2 (λ1 × λ2) is incident, it is reflected by the total reflection surface 2 and enters the dielectric multilayer film 5a formed on the incident surface 3, and only the light with a wavelength of λ is transmitted. Wavelengths of light are reflected. This reflected light is reflected by the total reflection surface 2, enters the dielectric multilayer film 5b formed on the output surface 4, and the light of wavelength λ2 is transmitted. Therefore,
Wavelength λ1. It can separate the light of λ2 and becomes an optical demultiplexer.

反対に、波長λ2の光を出射面4に形成された誘電体多
層膜5bに入射させ、波長λ電の光を入射面3に形成さ
れた誘電体多層膜5aに入射させると、波長λ2の光は
誘電体多層膜5bを透過し、全反射面2で反射されて入
射面3に形成された誘電体多層膜5aに入射されるが、
この誘電体多層膜5aで反射される。又波長7重の光は
この誘電体多層膜5aを透過する。従って、波長λhλ
2の光は全反射面2で反・射され、入射面3から合波さ
れて出射され、光合波器となる。
On the other hand, when light with a wavelength λ2 is made incident on the dielectric multilayer film 5b formed on the output surface 4, and light with a wavelength λelectric is made incident on the dielectric multilayer film 5a formed on the entrance surface 3, the light with the wavelength λ2 is made incident on the dielectric multilayer film 5b formed on the emission surface 4. The light passes through the dielectric multilayer film 5b, is reflected by the total reflection surface 2, and enters the dielectric multilayer film 5a formed on the incident surface 3.
The light is reflected by this dielectric multilayer film 5a. Also, light with seven wavelengths passes through this dielectric multilayer film 5a. Therefore, the wavelength λhλ
The two lights are reflected and reflected by the total reflection surface 2, and are combined and emitted from the incidence surface 3, forming an optical multiplexer.

第2図は波長特性説明図であり、曲線aは誘電体多層膜
5aの波長特性、曲線すは誘電体多層膜5bの波長特性
を示し、同時蒸着によって形成した誘電体多層膜5a、
5bにより波長λ3.λ2の光の分波又は合波を行うこ
とができる。
FIG. 2 is an explanatory diagram of wavelength characteristics, where curve a shows the wavelength characteristics of the dielectric multilayer film 5a, curve 2 shows the wavelength characteristics of the dielectric multilayer film 5b, and the dielectric multilayer film 5a formed by simultaneous vapor deposition,
5b, the wavelength λ3. It is possible to perform demultiplexing or multiplexing of light of λ2.

第3図は同時蒸着の説明図であり、第1図に示す構成の
誘電体多層膜5a、5bを形成する場合は、出射面4に
垂直方向に蒸着を行わせるものである。誘電体多層膜は
、一般に、T i O2と5t02とを交互に積層して
形成されるものであり、出射面4に形成されるT i 
02の厚さをtI+ t*+’3+・・・、又5ioz
の厚さを’I+’!+’!+・・・とすると、出射面4
と入射面3との角度θに従って入射面3に形成されるT
 i O2とS i O2の厚さは−L+CO3θ、!
+CO!l θ、tgcos θ、5zcosθ、t3
cos θ、s、cos θ、・・・となる。なお、6
は、入射面3の一部に誘電体多層膜5aが形成されない
ようにする為のマスクを示すものである。
FIG. 3 is an explanatory diagram of simultaneous vapor deposition, and when forming the dielectric multilayer films 5a and 5b having the structure shown in FIG. 1, vapor deposition is performed in a direction perpendicular to the emission surface 4. The dielectric multilayer film is generally formed by alternately stacking T i O2 and 5t02, and the T i O2 formed on the emission surface 4
The thickness of 02 is tI+ t*+'3+..., and 5ioz
The thickness is 'I+'! +'! +..., the output surface 4
T formed on the entrance surface 3 according to the angle θ between and the entrance surface 3
The thickness of i O2 and S i O2 is -L+CO3θ,!
+CO! l θ, tgcos θ, 5zcos θ, t3
cos θ, s, cos θ, . . . In addition, 6
1 shows a mask for preventing the dielectric multilayer film 5a from being formed on a part of the incident surface 3. FIG.

前述のように、入射面3と出射面4とに同時蒸着を行う
ことによって、第2図に示す波長特性の誘電体多層膜5
a、5bを形成することができる、又点線で示すように
、入射面3に垂直方向に蒸着するようにガラスブロック
1を蒸着装置内に配置して誘電体多層膜を形成すると、
前述の場合と反対に、入射面3に形成される誘電体膜の
膜厚に対して、出射面4に形成される誘電体膜の膜厚は
、CO3θに比例したものとなる。
As mentioned above, by performing simultaneous vapor deposition on the entrance surface 3 and the exit surface 4, the dielectric multilayer film 5 having the wavelength characteristics shown in FIG.
a, 5b can be formed, and if the glass block 1 is placed in a vapor deposition apparatus so as to be vapor-deposited in a direction perpendicular to the incident surface 3, as shown by the dotted line, a dielectric multilayer film can be formed.
Contrary to the above case, the thickness of the dielectric film formed on the exit surface 4 is proportional to CO3θ with respect to the thickness of the dielectric film formed on the entrance surface 3.

第4図は本発明の他の実施例の説明図であり、ガラスブ
ロック1、全反射面2、入射面3及び出射面4について
は、前述の実施例と同様である。
FIG. 4 is an explanatory diagram of another embodiment of the present invention, and the glass block 1, total reflection surface 2, entrance surface 3, and exit surface 4 are the same as those in the above-mentioned embodiment.

この実施例は、入射面3と出射面4との全面に同時蒸着
を行って誘電体多層膜5c、5dを形成したものであり
、又その場合に、入射面5に垂直方向に蒸着したもので
ある。従って、入射面3に形成された誘電体多層膜5c
は、出射面4に形成された誘電体多層膜5dより厚くな
る。そして、誘電体多層膜5cに光を入射させると、誘
電体多層膜5Cの波長特性に従った波長の光が透過し、
全反射面2で反射され、誘電体多層M5dに入射される
。この誘電体多層膜5dの波長特性に従った波長の光が
透過するので、誘電体多層膜5Cの波長特性と、誘電体
多層膜5dの波長特性とを合成した波長特性となる。
In this embodiment, dielectric multilayer films 5c and 5d are formed by simultaneous vapor deposition on the entire surfaces of the entrance surface 3 and the exit surface 4, and in this case, the dielectric multilayer films 5c and 5d are deposited in a direction perpendicular to the entrance surface 5. It is. Therefore, the dielectric multilayer film 5c formed on the incident surface 3
is thicker than the dielectric multilayer film 5d formed on the emission surface 4. Then, when light is made incident on the dielectric multilayer film 5c, light with a wavelength according to the wavelength characteristics of the dielectric multilayer film 5C is transmitted,
The light is reflected by the total reflection surface 2 and is incident on the dielectric multilayer M5d. Since light with a wavelength according to the wavelength characteristics of the dielectric multilayer film 5d is transmitted, the wavelength characteristics are a combination of the wavelength characteristics of the dielectric multilayer film 5C and the wavelength characteristics of the dielectric multilayer film 5d.

入射面3に形成された誘電体多層膜5Cによる通過帯域
の通過中心波長をλ3、出射面4に形成された誘電体多
層膜5dに、よる通過帯域の通過中心波長をλ4とし2
.第5図に示すように、誘電体多層膜5Cの波長特性曲
線Cと、誘電体多層膜5dの波長特性曲線dとが一部重
なるように選定する(入射面3と出射面4との角度θを
選定する)と、合成された波長特性は、中心波長λ0の
狭い通過帯域Wのものとなる。従って、狭帯域通過フィ
ルタを構成することができる。
The center wavelength of the pass band formed on the dielectric multilayer film 5C formed on the incident surface 3 is λ3, and the center wavelength of the pass band formed on the dielectric multilayer film 5d formed on the output surface 4 is λ4.
.. As shown in FIG. 5, the wavelength characteristic curve C of the dielectric multilayer film 5C and the wavelength characteristic curve d of the dielectric multilayer film 5d are selected so that they partially overlap (the angle between the incident surface 3 and the exit surface 4). θ), the synthesized wavelength characteristic has a narrow passband W with a center wavelength λ0. Therefore, a narrow bandpass filter can be constructed.

なお、ガラスブロック1の入射面3と出射面4とは、第
1図及び第4図に於いて、光が入射される場合に於ける
名称であって、出射面4から光を入射し、入射面3から
光を出射させる場合も含むものである。
Incidentally, the entrance surface 3 and the exit surface 4 of the glass block 1 are the names used when light enters in FIGS. 1 and 4, and the light enters from the exit surface 4, This also includes the case where light is emitted from the entrance surface 3.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、ガラスブロック1の一
方の面を全反射面2とし、他方の面を反射面2に対して
平行な入射面3と傾斜した出射面4とし、入射面3の一
部或いは全部と出射面4とに同時蒸着によって誘電体多
層膜5a、5bを形成したものであり、角度の異なる入
射面3と出射面4とに同時蒸着を行うことにより、異な
る波長特性の誘電体多層膜を同時に形成することが可能
となり、光分波器又は光合波器を容易に製作することが
可能となる。又所望の波長の光のみを取り出す為の狭帯
域通過フィルタも容易に製作することが可能となる利点
がある。
As explained above, in the present invention, one surface of the glass block 1 is a total reflection surface 2, the other surface is an entrance surface 3 parallel to the reflection surface 2, and an inclined exit surface 4. The dielectric multilayer films 5a and 5b are formed by simultaneous vapor deposition on a part or all of the incident surface 3 and the emission surface 4, and by performing simultaneous vapor deposition on the incident surface 3 and the emission surface 4 at different angles, different wavelength characteristics can be obtained. It becomes possible to simultaneously form dielectric multilayer films, and it becomes possible to easily manufacture an optical demultiplexer or an optical multiplexer. Another advantage is that a narrow band pass filter for extracting only light of a desired wavelength can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は波長特性
説明図、第3図は同時蒸着の説明図、第4図は本発明の
他の実施例の説明図、第5図は波長特性説明図、第6図
は従来例の説明図である。 1はガラスブロック、2は全反射面、3は入射面、4は
出射面、5a、5b、5c、5dは誘電体多層膜である
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of wavelength characteristics, Fig. 3 is an explanatory diagram of simultaneous vapor deposition, Fig. 4 is an explanatory diagram of another embodiment of the present invention, and Fig. 5 is an explanatory diagram of another embodiment of the present invention. The figure is an explanatory diagram of wavelength characteristics, and FIG. 6 is an explanatory diagram of a conventional example. 1 is a glass block, 2 is a total reflection surface, 3 is an incident surface, 4 is an exit surface, and 5a, 5b, 5c, and 5d are dielectric multilayer films.

Claims (1)

【特許請求の範囲】 一方の面を全反射面(2)とし、他方の面を前記反射面
(2)に対して平行な入射面(3)と傾斜した出射面(
4)としたガラスブロック(1)と、 前記入射面(3)の一部或いは全部と前記出射面(4)
とに同時蒸着によって形成した波長特性の異なる誘電体
多層膜(5a)、(5b)とからなることを特徴とする
光分波合波器。
[Claims] One surface is a total reflection surface (2), and the other surface is an entrance surface (3) parallel to the reflection surface (2) and an inclined exit surface (
4); a part or all of the incident surface (3); and the exit surface (4).
An optical demultiplexing/combining device comprising dielectric multilayer films (5a) and (5b) having different wavelength characteristics formed by simultaneous vapor deposition.
JP60126240A 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer Granted JPS61285412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60126240A JPS61285412A (en) 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60126240A JPS61285412A (en) 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer

Publications (2)

Publication Number Publication Date
JPS61285412A true JPS61285412A (en) 1986-12-16
JPS6245526B2 JPS6245526B2 (en) 1987-09-28

Family

ID=14930259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60126240A Granted JPS61285412A (en) 1985-06-12 1985-06-12 Optical multiplexer and demultiplexer

Country Status (1)

Country Link
JP (1) JPS61285412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000458A1 (en) * 1995-06-15 1997-01-03 Optical Corporation Of America Optical multiplexing device and method
US6819871B1 (en) * 2001-03-16 2004-11-16 4 Wave, Inc. Multi-channel optical filter and multiplexer formed from stacks of thin-film layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000458A1 (en) * 1995-06-15 1997-01-03 Optical Corporation Of America Optical multiplexing device and method
WO1997000459A3 (en) * 1995-06-15 1997-01-23 Optical Corp Of America Optical multiplexing device
US6819871B1 (en) * 2001-03-16 2004-11-16 4 Wave, Inc. Multi-channel optical filter and multiplexer formed from stacks of thin-film layers

Also Published As

Publication number Publication date
JPS6245526B2 (en) 1987-09-28

Similar Documents

Publication Publication Date Title
US6008920A (en) Multiple channel multiplexer/demultiplexer devices
JPH03203715A (en) Multi-wavelength beam splitter device
KR950029792A (en) Optical device for separating or synthesizing light of multiple wavelengths
JPH1164674A (en) Optical transmitting and receiving module
JPH0894832A (en) Optical band-pass filter
JPS61285412A (en) Optical multiplexer and demultiplexer
JP2001281493A (en) Wavelength demultiplexing and multiplexing module
US6928210B2 (en) Apparatus for demultiplexing optical signals at a large number of wavelengths
EP1395049A1 (en) Illumination unit for a projection system
JPH04372922A (en) Photo-decomposition optical system
JPS6330604B2 (en)
JPS59200210A (en) Optical demultiplexer
JP2007058102A (en) Optical multiplexer/demultiplexer and optical multiplexing unit
JPS61289305A (en) Variable wavelength filter
JPS61285413A (en) Optical multiplexer and demultiplexer
JPS5814112A (en) Optical demultiplexer
JP2723586B2 (en) Optical wavelength separation circuit and optical wavelength multiplexing circuit
JPS62200320A (en) Diffraction grating type optical demultiplexer
JPS6023809A (en) Optical multiplexer-demultiplexer
JPS6132008A (en) Optical multiplexer/demultiplexer
JPS58149019A (en) Optical multiplexer and demultiplexer
JPS58149018A (en) Optical multiplexer and demultiplexer
JP2000147303A (en) Optical demultiplexer/multiplexer
JPS59192224A (en) Optical wavelength branching filter
JPH0469882B2 (en)