JPS59170267A - High frequency sputtering device - Google Patents

High frequency sputtering device

Info

Publication number
JPS59170267A
JPS59170267A JP4155683A JP4155683A JPS59170267A JP S59170267 A JPS59170267 A JP S59170267A JP 4155683 A JP4155683 A JP 4155683A JP 4155683 A JP4155683 A JP 4155683A JP S59170267 A JPS59170267 A JP S59170267A
Authority
JP
Japan
Prior art keywords
electric field
target
mode
high frequency
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4155683A
Other languages
Japanese (ja)
Inventor
Takahiro Yamamoto
隆洋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4155683A priority Critical patent/JPS59170267A/en
Publication of JPS59170267A publication Critical patent/JPS59170267A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/357Microwaves, e.g. electron cyclotron resonance enhanced sputtering

Abstract

PURPOSE:To provide a titled device which increases the number of sputters and improves the utilizing efficiency of a target by using a high frequency radiation for excitation of a specific frequency or above in making an electric field mode into a high mode and providing a concentrical strong electric field and high plasma density. CONSTITUTION:The inside of a vacuum vessel 1 is evacuated to a vacuum by an evacuating system 2 and is substd. with the gas from a gaseous Ar bomb 6. The radiation of >=915MHz from a microwave generator 8 is applied from an antenna 15 on the inside of the vacuum vessel to make the electric field mode on the surface of a target 18 into the concentrical strong electric field of approximately a TE01 mode. A voltage is applied from a DC power source 19 on the target 18 to increase plasma density, thus sputtering on a base plate 29. The number of sputters is thus increased and the utilizing efficiency over the entire surface of the target 18 is improved. The water molecules in the vessel 1 are excited to improve the efficiency of a hydraulic pump.

Description

【発明の詳細な説明】 (技術分野) 本発明は、高周波スパッタ装置に関し、特に、ス・;ツ
タ時の希ガス励起源として915 M I(z以上の高
周波(マイクロ波)を用い゛ることを特徴とするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a high frequency sputtering apparatus, and in particular to the use of a high frequency (microwave) of 915 MI (z or more) as a rare gas excitation source during sputtering. It is characterized by:

(oY来技術) 従来のスパッタ装置では、希ガスを励起させるのに、D
Cグロー放電によるものと、13.56 M Hz帯の
高周波放電によるものが主流を占めていた。しかし、こ
れらの従来方式のものは、一般にスパッタ速度が遅いと
いう欠点を持っていた。
(oY next technology) In conventional sputtering equipment, D
The main sources were C glow discharge and high frequency discharge in the 13.56 MHz band. However, these conventional methods generally have the drawback of slow sputtering speed.

これに′対し、近年その利用度が高1っているマグネト
ロン形スパッタ装置では、使用周波数は変えずに磁力に
よシプラズマ密度を向」ニさせ、スパッタリングの高速
性を実現している。ビかし、そQ−ターゲットにおける
スパッタの分布がドーナツ形になることから、ターゲッ
ト利用効率が悪いという問題がちらだ。
In contrast, magnetron-type sputtering equipment, which has become increasingly popular in recent years, uses magnetic force to direct the plasma density without changing the operating frequency, achieving high-speed sputtering. However, since the sputter distribution on the Q-target is donut-shaped, there is often a problem of poor target utilization efficiency.

さらに最近では、希ガス励起用にマイクロ波(2,45
GHz )を用いたイオン源が開発され、反応性カスヲ
用いたイオンエツチング装置として有効に利用できる段
階になった。しかしながら、このマイクロ波帯でのスパ
ッタリング方テ(は、未だ採用されていない。
More recently, microwaves (2,45
An ion source using a radio frequency (GHz) has been developed, and it is now at the stage where it can be effectively used as an ion etching device using a reactive gas. However, this sputtering method in the microwave band has not yet been adopted.

(発明の目的) そこで本発明は、希ガス励起用にマイクロ波を用い、タ
ーゲツト面上でTEo、モードを基本とする電界モード
をとることにより、スパッタ速度が大きく、かつターゲ
ット利用効率が高い高周波スバツタ装置を41供するも
のである。以下、図面により実施例を詳卸1に説明する
(Purpose of the Invention) Therefore, the present invention uses microwaves for excitation of rare gas and adopts an electric field mode based on the TEo mode on the target surface, thereby achieving a high sputtering rate and high target utilization efficiency. It provides 41 sputtering devices. Hereinafter, embodiments will be explained in detail with reference to the drawings.

(実施例) 第1図は、本発明の一実施例の構成を示したものであり
、1は真空槽、2は排気系で、例えばバッフル;3、油
拡散ポツプ4、ロータリポンプ5等から構成されている
。6は希ガス、例えばArのボンベであり、真空槽I内
を排気系2により一旦高真空にしだ後、バルン7を介し
て真空槽1内にArを導入し、所要の真空度、例えば1
0−3〜10’Torr程度に保持する゛。8はマイク
O波発生装置であり、発振器9、サーキュレータ10.
アイソレータ11、アッテネータ12、パワーメータ1
3、ディバイダー14等から構成され、真空槽1内の一
部にマイクロ波放射アンテナ15を設けである。
(Embodiment) Fig. 1 shows the configuration of an embodiment of the present invention, in which 1 is a vacuum tank, 2 is an exhaust system, for example, a baffle; 3; an oil diffusion popper 4; a rotary pump 5; It is configured. Reference numeral 6 denotes a cylinder of rare gas, for example Ar. After the inside of the vacuum chamber I is once brought to a high vacuum by the exhaust system 2, Ar is introduced into the vacuum chamber 1 through the balloon 7, and the required degree of vacuum is reached, for example 1.
Maintain it at around 0-3 to 10' Torr. 8 is a microphone O-wave generator, which includes an oscillator 9, a circulator 10.
Isolator 11, attenuator 12, power meter 1
3, a divider 14, etc., and a microwave radiation antenna 15 is provided in a part of the vacuum chamber 1.

16はダミー用のアンテナで、アンテナ15から放射さ
れたマイクロ波エネルギーのうち、余剰エネルギーを吸
収し7て外部へ逃がす役目をする。あるいは、人力パワ
ーモニタとなる。放射アンテナ15、ダミーアンテナ1
6にはスパッタ物質の付着を防止する。だめにセラミッ
クのカバー17を設けている。IEljターゲット、1
9は直流電源、20はその上に薄膜を形成する基板、2
1は、ヘーゲノト18と基板20との間に配置され、電
界と電力が最大値に設定されるように調整する電界モー
ト調整器、それに電磁石23による磁力を与え、プラズ
マの安定を行なう。22はツヤツタ−である。
Reference numeral 16 denotes a dummy antenna, which serves to absorb surplus energy 7 of the microwave energy radiated from the antenna 15 and release it to the outside. Alternatively, it becomes a human power monitor. Radiation antenna 15, dummy antenna 1
Step 6 is to prevent adhesion of sputtered materials. Instead, a ceramic cover 17 is provided. IElj target, 1
9 is a DC power supply, 20 is a substrate on which a thin film is formed, 2
Reference numeral 1 denotes an electric field moat regulator which is disposed between the Hegenot 18 and the substrate 20 and adjusts the electric field and power to the maximum value, and a magnetic force from an electromagnet 23 is applied to the electric field moat regulator to stabilize the plasma. 22 is glossy.

以上の構成において、希カス励起用のマイクロ波として
、例えば91’5MHzあるいは2.45GHzを用い
、その電界モードをターゲット面上でTEo、モート又
はTE11モード等にとる。集2図は、このときの電磁
界分布を示したもので、ターゲット面上で同心円状の強
電界を発生させることができる。なお、24は電界、2
5は磁界を示している。この電界によりプラズマ密度が
上がり、そのイオンの衝撃によってターゲノ、j 18
がスパッタされ、基板20上に薄膜が形成される。
In the above configuration, for example, 91'5 MHz or 2.45 GHz is used as the microwave for excitation of rare particles, and the electric field mode is set to TEo, moat, TE11 mode, etc. on the target surface. Figure 2 shows the electromagnetic field distribution at this time, and it is possible to generate a concentric strong electric field on the target surface. In addition, 24 is an electric field, 2
5 indicates a magnetic field. This electric field increases the plasma density, and the bombardment of the ions causes target particles, j 18
is sputtered to form a thin film on the substrate 20.

第3図は、本発明方式Aと従来方式Bにおけるスパッタ
速度の比較を示したものである。これによると、スパッ
タ速度が著しく向上していることがわかる。
FIG. 3 shows a comparison of sputtering speeds between method A of the present invention and conventional method B. According to this, it can be seen that the sputtering speed is significantly improved.

(発明の効果) 希ガス励起用にマイクロ波を用いる本発明は、次のよう
な効果を有する。
(Effects of the Invention) The present invention, which uses microwaves for excitation of rare gas, has the following effects.

寸ず、ターゲツト面上での電界モードを略TEo1モー
ドにとることから同心円状の強電界を発生させることが
でき、このためプラズマ密度が向上し、従来のマグネト
ロン形スパッタ装置に近い高速スパッタを得ることがで
きる。同時に1スパッタ時に生じる二次電子もマグネト
ロン方式以上の効率で除去することができ、基板の温度
上昇をなくすることができる。1だ、ターゲツト面上に
形成される電界強度分布が、マグネトロン方式のような
ドーナツ形ではなく、同心円状であることから、ターゲ
ツト面全面がほぼ平均的にスパッタされるので、ターゲ
ットの利用効率が非常によくなる。さらに、励起用周波
数が高い利点として、真空槽内に存在する水分子を励起
することができ、従ってその分圧を下げることが可能と
なる。例えば排気系に油拡散ポンプを使用した従来のス
パッタ装置で、水分子の分圧が9 X 10−7Tor
r 、であるのに対し、マイクロ波を使用した場合は、
2.5X10’Torr、 ’iで下げることができる
。これは、従来の装置でクライオポンプを用いた排気系
と同程度に、油拡散ポンプを使用して実現できることに
なる。
Since the electric field mode on the target surface is approximately TEo1 mode, it is possible to generate a strong concentric electric field, which improves the plasma density and provides high-speed sputtering similar to that of conventional magnetron type sputtering equipment. be able to. At the same time, secondary electrons generated during one sputtering process can be removed with greater efficiency than the magnetron method, and a rise in temperature of the substrate can be eliminated. 1. The electric field intensity distribution formed on the target surface is not donut-shaped like in the magnetron method, but is concentric, so the entire surface of the target surface is sputtered almost evenly, which increases the target utilization efficiency. It gets much better. Furthermore, an advantage of the high excitation frequency is that water molecules present in the vacuum chamber can be excited, and therefore, the partial pressure thereof can be lowered. For example, in a conventional sputtering system that uses an oil diffusion pump in the exhaust system, the partial pressure of water molecules is 9 x 10-7 Torr.
r, whereas when using microwaves,
2.5X10'Torr, can be lowered with 'i'. This can be achieved using an oil diffusion pump to the same extent as an evacuation system using a cryopump in a conventional device.

一般に、蒸気圧の異なる成分からなるターゲットをスパ
ッタする際は、ターゲットと膜の組成ずれが問題になる
が、本発明によれば、蒸発分子の運動エネルギーを低下
させることなく、成膜速度を丁げることができることが
ら、組成ずれを小さく・抑えることができる。具体的に
は、組成ずれをターゲット対比で、各種元素に対し1%
以内にすることができる。
Generally, when sputtering targets consisting of components with different vapor pressures, a compositional mismatch between the target and the film is a problem, but according to the present invention, the film formation rate can be precisely controlled without reducing the kinetic energy of the evaporated molecules. As a result, compositional deviations can be minimized and suppressed. Specifically, the composition deviation is 1% for each element compared to the target.
It can be done within.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の構成図、第2図は、同タ
ーゲツト面上における電磁界分布(TF:、o。 モード)を示す図、第3図は、ず発明方式によるスパッ
タ速度を従来例のそれと比較して示した図である。 1 ・・・・・・・・・真空槽、 2・・・・・・・排
気系、6 ・ ・・ガノボンへ、 8・・・・・・・・
・マイクロ波発生装置、15−・・・・・・マイクロ波
放射アンテナ、16−・・・・・・ダミー用アンテナ、
 ]8・・・・・・・・・ターゲット、 20 ・・・
・・・基板、21・・・・・・・・電界モード調整ua
 %  23  ・・・・・外部電磁石。 第1図 3 第2図 第3図 消量電力 fWl
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a diagram showing the electromagnetic field distribution (TF:, o. mode) on the target surface, and FIG. 3 is a diagram showing the sputtering method according to the invention method. FIG. 3 is a diagram showing a comparison of speed with that of a conventional example. 1...Vacuum chamber, 2...Exhaust system, 6...To Ganobon, 8......
・Microwave generator, 15-...Microwave radiation antenna, 16-...Dummy antenna,
]8...Target, 20...
...Substrate, 21...Electric field mode adjustment ua
%23...External electromagnet. Figure 1 Figure 3 Figure 2 Figure 3 Consumption power fWl

Claims (1)

【特許請求の範囲】[Claims] 損気系及びガス導入手段を備えた真空槽内に、915M
l1z以上の高周波放射源と、機械的又は電気的に電界
モードを調整するモード調整器を設けてなり、希ガスの
励起用に前記高周波を使用するとともにターゲット面土
での電界モードを略TEo、モートとすることを特徴と
する高周波スパッタ装置。
915M in a vacuum chamber equipped with a gas loss system and gas introduction means.
It is equipped with a high frequency radiation source of l1z or higher and a mode adjuster that mechanically or electrically adjusts the electric field mode, and uses the high frequency to excite the rare gas and adjusts the electric field mode at the target surface to approximately TEo, A high frequency sputtering device characterized by a mote.
JP4155683A 1983-03-15 1983-03-15 High frequency sputtering device Pending JPS59170267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155683A JPS59170267A (en) 1983-03-15 1983-03-15 High frequency sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155683A JPS59170267A (en) 1983-03-15 1983-03-15 High frequency sputtering device

Publications (1)

Publication Number Publication Date
JPS59170267A true JPS59170267A (en) 1984-09-26

Family

ID=12611700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155683A Pending JPS59170267A (en) 1983-03-15 1983-03-15 High frequency sputtering device

Country Status (1)

Country Link
JP (1) JPS59170267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274309B1 (en) * 1994-07-26 2000-12-15 히가시 데쓰로 Sputtering method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274309B1 (en) * 1994-07-26 2000-12-15 히가시 데쓰로 Sputtering method and apparatus

Similar Documents

Publication Publication Date Title
US5178739A (en) Apparatus for depositing material into high aspect ratio holes
US6238527B1 (en) Thin film forming apparatus and method of forming thin film of compound by using the same
US7335282B2 (en) Sputtering using an unbalanced magnetron
US20060196766A1 (en) Plasma deposition apparatus and method
JPS6396267A (en) Thin film forming device
EP0343602A3 (en) Microwave plasma treating apparatus
JPH0816266B2 (en) Device for depositing material in high aspect ratio holes
JPH10251849A (en) Sputtering device
JPS63155728A (en) Plasma processor
JPS627852A (en) Formation of thin film
JPS6187869A (en) Sputter device
JPS59170267A (en) High frequency sputtering device
US3666533A (en) Deposition of polymeric coatings utilizing electrical excitation
JPH0136693B2 (en)
JPH11172430A (en) Thin film forming device and formation of compound thin film using the device
JP2761893B2 (en) Sputtering equipment
Matsuoka et al. Oxide film deposition by radio frequency sputtering with electron cyclotron resonance plasma stimulation
JP2761875B2 (en) Deposition film forming equipment by bias sputtering method
JPH0585633B2 (en)
JPH08315998A (en) Microwave plasma treatment device
JPH08260126A (en) Method for hardening surface of aluminum substrate under melting
JPH08236448A (en) Device and method for sputtering
JP3981240B2 (en) Apparatus and method for generating microwave plasma
JPS6376868A (en) Sputtering device
JPH0480357A (en) Sputtering system and its target electrode