JPS59169214A - Production of thin film piezoelectric oscillator - Google Patents

Production of thin film piezoelectric oscillator

Info

Publication number
JPS59169214A
JPS59169214A JP4348383A JP4348383A JPS59169214A JP S59169214 A JPS59169214 A JP S59169214A JP 4348383 A JP4348383 A JP 4348383A JP 4348383 A JP4348383 A JP 4348383A JP S59169214 A JPS59169214 A JP S59169214A
Authority
JP
Japan
Prior art keywords
thin film
silicon
single crystal
substrate
crystal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4348383A
Other languages
Japanese (ja)
Inventor
Yoichi Miyasaka
洋一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4348383A priority Critical patent/JPS59169214A/en
Publication of JPS59169214A publication Critical patent/JPS59169214A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Abstract

PURPOSE:To obtain a thin film piezoelectric oscillator by epitaxially growing an oxide single-crystal thin film and a silicon single-crystal thin film on a silicon substrate together with an SiO2 layer, deleting by etching a part of the substrate to form a silicon diaphragm and forming an electrode, etc. on the diaphragm. CONSTITUTION:An oxide single-crystal thin film 32 is epitaxially grown on a silicon substrate 31, and an SiO2 layer 33 is formed with heat oxidation on the interface between the film 32 and the substrate 31. Then a silicon single-crystal thin film 34 is epitaxially grown on the film 32, and an etching protection film 35 is formed on the film 32. The film 35 on the rear side is deleted at the area where a diaphragm is formed to perform etching of the substrate 31. Then the films 35, 33 and 32 are removed with a proper etching solution to obtain a silicon diaphragm with its fringe part supported by the substrate 31. Furthermore a foundation electrode 36, a piezoelectric thin film 37 and an upper electrode 38 are formed successively on the diaphragm. Thus a thin film piezoelectric oscillator is obtained.

Description

【発明の詳細な説明】 本発明は圧電薄膜を用いたVHF、 UHF 用高周波
圧電振動子に関し、特にシリコン薄膜と圧電薄膜とから
なる複合構造の振動部位を有する薄膜圧電振動子に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high frequency piezoelectric vibrator for VHF and UHF using a piezoelectric thin film, and more particularly to a thin film piezoelectric vibrator having a vibrating part of a composite structure consisting of a silicon thin film and a piezoelectric thin film.

一般に数十MH7以上の周波数で使用される圧電振動子
は振動モードとして板面が厚さに比べて十分広い圧電性
薄板の厚み振動を使用するが、厚み振動の共振周波数は
圧電性薄板の厚さに反比例し50MHz以上では厚さが
40ミクロン以下となるため加工が極めて困難となり、
バルク圧電結晶或いは圧電セラミックを用いて50MH
2以上の厚み振動圧電振動子を量産することは困難であ
る。
Generally, piezoelectric vibrators used at frequencies of several tens of MH7 or more use thickness vibration of a piezoelectric thin plate whose plate surface is sufficiently wide compared to the thickness as a vibration mode, but the resonant frequency of thickness vibration is the thickness of the piezoelectric thin plate. At frequencies above 50MHz, the thickness becomes less than 40 microns, which makes processing extremely difficult.
50MH using bulk piezoelectric crystal or piezoelectric ceramic
It is difficult to mass produce vibrating piezoelectric vibrators with a thickness of two or more.

振動部分の厚さを薄くして50MH2以上の厚み振動圧
電振動子を得る方法としては第1図、第2図の構造の薄
膜圧電振動子が公知である。この薄膜圧電振動子は基板
11の上に薄膜部材13を形成した後、エツチングによ
って基板11に空孔12を形成し、さらに薄膜部材13
の上に順に下地電極14、圧電薄膜15、上部電極16
を形成することによって製造するもので、一般に非圧電
性の薄膜部材13と圧電薄膜15とからなる複合ダイア
フラムが周縁部を主板11によって支持された構造とな
っている。
As a method for obtaining a vibrating piezoelectric vibrator having a thickness of 50 MH2 or more by reducing the thickness of the vibrating portion, a thin film piezoelectric vibrator having the structure shown in FIGS. 1 and 2 is known. This thin film piezoelectric vibrator is manufactured by forming a thin film member 13 on a substrate 11, forming holes 12 in the substrate 11 by etching, and then forming the thin film member 13 on the substrate 11 by etching.
A base electrode 14, a piezoelectric thin film 15, and an upper electrode 16 are arranged on top in this order.
Generally, a composite diaphragm consisting of a non-piezoelectric thin film member 13 and a piezoelectric thin film 15 is supported at its peripheral portion by a main plate 11.

第1図、第2図の構造の薄膜圧電振動子において基板1
1としては一般に表面が(100)面であるようなシリ
コンが用いられ、エチレンジアミン、ピロカテコール、
水からなるエツチング液(以下EDP液という)或いは
水酸化カリウム(KOH)水溶液による異方性エツチン
グを利用して精密に空孔12を作成することができる。
In the thin film piezoelectric vibrator having the structure shown in FIGS. 1 and 2, the substrate 1
Silicon having a (100) surface is generally used as 1, and silicones such as ethylenediamine, pyrocatechol,
The holes 12 can be precisely created using anisotropic etching using an etching solution made of water (hereinafter referred to as EDP solution) or an aqueous potassium hydroxide (KOH) solution.

薄膜部材13としては上記のEDP液或いはKOH水溶
液に対してできるだけエツチング速度の小さい材料が必
要であり、従来このような材料として種々の酸化物、窒
化物なども提案されているが、機械的強度、音響的クォ
リティ・ファクタが大きいことが要求されるところから
シリコン薄膜が最も理想的な材料として使用されてきた
。シリコンのEDP液或いはKOH水溶液に対するエツ
チング速度は不純物であるホウ素の濃度に依存し、7 
X 10”cIrL−3以上の濃度にドープしたシリコ
ンのEDP液或いはKOH水溶液に対するエツチング速
度は極めて小さいことが知られており、したがって従来
は所望の厚さのダイアフラムを作成するためにシリコン
基板上にエピタキシャル成長、拡散、イオン注入などに
よって形成したホウ素を高濃度にドープしたシリコン薄
膜が薄膜部材として使用されてきた。
The thin film member 13 needs to be made of a material that has an etching rate as low as possible with respect to the above-mentioned EDP liquid or KOH aqueous solution, and various oxides and nitrides have been proposed as such materials, but the mechanical strength , silicon thin film has been used as the most ideal material since it requires a large acoustic quality factor. The etching rate of silicon with EDP solution or KOH aqueous solution depends on the concentration of boron, which is an impurity.
It is known that the etching rate of silicon doped to a concentration of X 10" cIrL-3 or higher with EDP liquid or KOH aqueous solution is extremely low. Therefore, in the past, in order to create a diaphragm with a desired thickness, etching was performed on a silicon substrate. Silicon thin films doped with a high concentration of boron formed by epitaxial growth, diffusion, ion implantation, etc. have been used as thin film members.

しかし、従来の薄膜圧電振動子では上記のようにホウ素
を高濃度にドープしたシリコン薄膜を使用しているため
以下に述べるような重大な欠点を有していた。
However, since the conventional thin film piezoelectric vibrator uses a silicon thin film doped with boron at a high concentration as described above, it has serious drawbacks as described below.

第1に、薄膜圧電振動子ではワイヤ・ホンディングなど
による配線を行なうために第1図、第2図に示すごとく
上部電極の引き出し″醒極17が必要であるが、ホウ素
を高濃度にドープしたシリコン薄膜は導電率が非常に犬
きく、シたがって引き出し電極とシリコン薄膜との間の
容量がイ辰動子に並列に加わる結果、振動子の容量比が
見かけ上太きくなってしまい、このため従来の薄膜圧電
振動子ではこれを用いた発振器の制御範囲或いはフィル
タの比帯域幅を十分に広(取ることが不可能であった0 第2に、薄膜圧電振動子はシリコン基板上に形成できる
から、同一シリコン基板上に増幅器などの半導体素子を
形成して装置の小形化を図ることが望まれているが、従
来のごとくホウ素を高濃度にドープしたシリコン薄膜上
では増幅器などの半導体素子を形成することは困難であ
った。
First, thin-film piezoelectric vibrators require a lead-out electrode 17 for the upper electrode, as shown in Figures 1 and 2, in order to perform wiring by wire bonding, etc. The conductivity of the silicon thin film is extremely low, and as a result, the capacitance between the extraction electrode and the silicon thin film is added in parallel to the oscillator, resulting in an apparent increase in the capacitance ratio of the oscillator. For this reason, with conventional thin film piezoelectric vibrators, it was impossible to sufficiently widen the control range of the oscillator or the fractional bandwidth of the filter using them.Secondly, thin film piezoelectric vibrators are Therefore, it is desired to miniaturize devices by forming semiconductor elements such as amplifiers on the same silicon substrate. Forming the device was difficult.

本発明の目的は、上記のような欠点を除いた薄膜圧電振
動子の製造方法を提供することであり、一本発明はシリ
コン基板上に酸化物単結晶薄膜をエピタキシャル成長さ
せた後、熱酸化によって酸化物単結晶薄膜とシリコンと
の界面にSin、層を形成し、さらに酸化物単結晶薄膜
の上にシリコン単結晶薄膜をエピタキシャル成長させた
後、シリコン基板の裏側からエツチングを行ない、5L
02層をエツチング停止層として使用することによりシ
リコン基板の一部を除去し、シリコン単結晶薄膜のダイ
アフラムを形成し、このシリコン・ダイアフラムの上に
下地電極、圧電薄膜、上部電極を順に形成する製造方法
である。
An object of the present invention is to provide a method for manufacturing a thin film piezoelectric vibrator that eliminates the above-mentioned drawbacks.One purpose of the present invention is to epitaxially grow an oxide single-crystal thin film on a silicon substrate, and then grow it by thermal oxidation. After forming a Si layer at the interface between the oxide single crystal thin film and silicon, and epitaxially growing a silicon single crystal thin film on the oxide single crystal thin film, etching is performed from the back side of the silicon substrate to form a 5L layer.
A manufacturing process in which a part of the silicon substrate is removed by using the 02 layer as an etching stop layer, a diaphragm of a silicon single crystal thin film is formed, and a base electrode, a piezoelectric thin film, and an upper electrode are sequentially formed on this silicon diaphragm. It's a method.

本発明の製造方法によれば酸化物単結晶薄膜の上にエピ
タキシャル成長させるシリコン単結晶薄膜の不純物濃度
は任意に選択することができ、したがって従来の薄膜圧
電振動子の欠点を除いた薄膜圧電振動子を製造すること
ができる。
According to the manufacturing method of the present invention, the impurity concentration of the silicon single-crystal thin film epitaxially grown on the oxide single-crystal thin film can be arbitrarily selected, and therefore a thin-film piezoelectric vibrator that eliminates the drawbacks of conventional thin-film piezoelectric vibrators can be manufactured.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

第3図〜第6図に本発明による薄膜圧電振動子の製造工
程を示し、本発明の製造方法を説明する。
3 to 6 show the manufacturing process of the thin film piezoelectric vibrator according to the present invention, and the manufacturing method of the present invention will be explained.

まず表面が(100)面であるようなシリコン基板の上
に酸化物単結晶薄膜をエピタキシャル成長させた後、熱
酸化によって酸化物単結晶薄膜とシリコン基板との界面
にSiO!層を形成する。シリコン基板表面に存在する
薄膜は酸化物であるからシリコンの表面領域は容易に熱
酸化が可能であり、酸化物単結晶薄膜との界面にSin
2層が形成できる。次に酸化物単結晶薄膜の上にシリコ
ン単結晶薄膜をエピタキシャル成長させて第3図のよう
な構造が得られる。第3図において31はシリコン基板
、32は酸化物単結晶薄膜、33はSin、層、34は
シリコン単結晶薄膜である。
First, a single crystal oxide thin film is epitaxially grown on a silicon substrate whose surface is a (100) plane, and then SiO! form a layer. Since the thin film existing on the surface of the silicon substrate is an oxide, the silicon surface region can be easily thermally oxidized, and the silicon layer is formed at the interface with the oxide single crystal thin film.
Two layers can be formed. Next, a silicon single crystal thin film is epitaxially grown on the oxide single crystal thin film to obtain a structure as shown in FIG. In FIG. 3, 31 is a silicon substrate, 32 is an oxide single crystal thin film, 33 is a Sin layer, and 34 is a silicon single crystal thin film.

次に第4図のように基板の両面に窒化シリコン(Sil
N4) などのエツチング保護膜35を形成し、ダイヤ
フラムを形成する部分の裏面のエツチング保護膜を除去
してEDP液中でシリコン基板のエツチングを行なう。
Next, as shown in Figure 4, silicon nitride (Sil) is applied to both sides of the substrate.
An etching protection film 35 such as N4) is formed, the etching protection film on the back surface of the portion where the diaphragm is to be formed is removed, and the silicon substrate is etched in an EDP solution.

EDP液による8i0.のエツチング速度は極めて小さ
く、例えば118℃のEDP液中でのエツチング速度は
シリコンの(100)面が50μm/hであるのに対し
、8i0.は0.015 ttm/hにすぎない。した
がって第4図の構造の基板をBDP 液中でエツチング
すれば、エツチングは基板の裏側から進行して8i0.
層に到達した時点で自動的に停止する。
8i0. with EDP liquid. For example, the etching rate in an EDP solution at 118°C is 50 μm/h for the (100) plane of silicon, whereas the etching rate for 8i0. is only 0.015 ttm/h. Therefore, if the substrate having the structure shown in FIG. 4 is etched in a BDP solution, the etching will proceed from the back side of the substrate, and the etching will proceed from the back side of the substrate.
It will automatically stop when it reaches the layer.

本製造方法においては、上記の説明から明らかなように
Sin2層33がエツチング停止層となるから、酸化物
単結晶薄膜32はシリコン上にエピタキシャル成長が可
能な種々の酸化物材料を用いることができる。代表的な
材料はスピネル、サファイヤ或いはマグネシアである。
In this manufacturing method, since the Sin2 layer 33 serves as an etching stop layer as is clear from the above description, various oxide materials that can be epitaxially grown on silicon can be used for the oxide single crystal thin film 32. Typical materials are spinel, sapphire or magnesia.

ここでスピネルとしてはMg0−Al2O,、Mg0−
Ga、08.MgO・(AI 、Ga)、0. 。
Here, the spinel is Mg0-Al2O, Mg0-
Ga, 08. MgO.(AI, Ga), 0. .

Zn Oe A120Bなどがある。There are Zn Oe A120B, etc.

上記の工程の後、保護膜35 、S 102 )@ 3
3及び酸化物単結晶薄膜32を適当なエツチング液で除
することによって、第5図に示すような周縁部をシリコ
ン基板に支持されたシリコン・ダイヤフラムカ九得られ
る。なお、これらの!35 、33及び32は必ずしも
すべて除去する必要はなく、必要に応じて除去すれば良
い。さらに、順に下地電極36、圧電薄膜37、上部電
極38を形成して第6図に示すような薄膜圧電振動子が
得られる。
After the above steps, the protective film 35, S102)@3
By removing the oxide single crystal thin film 3 and the oxide single crystal thin film 32 with a suitable etching solution, a silicon diaphragm 9 supported on a silicon substrate with a peripheral portion as shown in FIG. 5 is obtained. In addition, these! 35, 33, and 32 do not necessarily all need to be removed, and may be removed as necessary. Furthermore, a base electrode 36, a piezoelectric thin film 37, and an upper electrode 38 are formed in this order to obtain a thin film piezoelectric vibrator as shown in FIG.

上述のような本発明の製造方法で製造する薄膜圧電振動
子は、第6図の34に示すシリコン薄膜の不純物濃度が
任意に選択できるから、従来の薄膜圧電振動子の欠点を
除くことができる。すなわち、容量比の十分小さい振動
子を得ることが可能である。また同一シリコン基板上に
増幅器などの半導体素子を形成することが可能である。
In the thin film piezoelectric vibrator manufactured by the manufacturing method of the present invention as described above, the impurity concentration of the silicon thin film shown at 34 in FIG. 6 can be arbitrarily selected, so that the drawbacks of the conventional thin film piezoelectric vibrator can be eliminated. . That is, it is possible to obtain a vibrator with a sufficiently small capacitance ratio. Furthermore, it is possible to form semiconductor elements such as amplifiers on the same silicon substrate.

この4付、Si単結晶膜が絶縁体層上に形成されている
ため半導体素子を絶縁体分離したいわゆる、5OI(S
ilicon on In5ulator)構造にする
ことができ、素子の高集積化、高速化が可能である。と
(番こ熱酸化8i0.層は優れた電気絶縁体であり、誘
電率も小さく素子動作の高速化には優れた素材である。
Since the Si single crystal film is formed on the insulator layer, the so-called 5OI (S
It is possible to have a structure such as ilicon on inverter), and it is possible to increase the integration and speed of the device. The thermal oxide 8i0. layer is an excellent electrical insulator and has a low dielectric constant, making it an excellent material for increasing the speed of device operation.

この点に関しても本発明の意義は大きG10(実施例1
) 表面が(100)面であるようなシリコン基板の表面に
厚さ0.2μmのマグネシア(MgO)を気相成長法で
エピタキシャル成長させた後、熱酸化法を用いてMgO
とシリコンの界面に0.5μmのSin。
The significance of the present invention in this respect is also large in G10 (Example 1)
) Magnesia (MgO) with a thickness of 0.2 μm was epitaxially grown on the surface of a silicon substrate with a (100) plane using a vapor phase growth method, and then MgO was grown using a thermal oxidation method.
0.5 μm of Sin at the interface between silicon and silicon.

層を形成した。次にMgOの上に厚さ3μmのシリコン
単結晶薄膜をエピタキシャル成長させた。続いてCVD
法を用いてシリコン基板の両面に0.2μmの8i、N
、薄膜を形成し、裏面のSi、N、膜番こウィンドウを
形成した後、エチレンジアミン、ピロカテコール及び水
からなるエツチング液(EDP液)中でエツチングを行
なった。エツチング終了後、リン酸でSi、N4膜を除
去し、さらにフッ酸でダイヤフラムの裏側の8i0.と
MgOを除去した。得られたシリコン・ダイヤフラムの
厚さを測定したところ3μmであり、エピタキシャル成
長させたシリコン単結晶薄膜からなるダイヤフラムが形
成されていることが確認された。
formed a layer. Next, a silicon single crystal thin film with a thickness of 3 μm was epitaxially grown on the MgO. followed by CVD
0.2 μm of 8i, N was deposited on both sides of the silicon substrate using the method
After forming a thin film and forming a Si, N, and film window on the back side, etching was performed in an etching solution (EDP solution) consisting of ethylenediamine, pyrocatechol, and water. After etching, remove the Si and N4 films with phosphoric acid, and then remove the 8i0 film from the back side of the diaphragm with hydrofluoric acid. and MgO were removed. The thickness of the obtained silicon diaphragm was measured to be 3 μm, and it was confirmed that a diaphragm made of an epitaxially grown silicon single crystal thin film was formed.

次に、シリコン単結晶薄膜上に蒸着法でAu/Ti電極
を形成し、続いてスパッタリング法で厚さ4μmの酸化
亜鉛(ZnO)圧電薄膜を形成した。最後にZnO薄膜
上に蒸着法でAl電極を形成して第6図の構造の薄膜圧
電振動子を製造した。
Next, an Au/Ti electrode was formed on the silicon single crystal thin film by vapor deposition, and then a 4 μm thick zinc oxide (ZnO) piezoelectric thin film was formed by sputtering. Finally, an Al electrode was formed on the ZnO thin film by vapor deposition to produce a thin film piezoelectric vibrator having the structure shown in FIG.

同時に、従来の方法を用いて、ダイヤフラムを形成する
シリコン薄膜がホウ素をIQ” /crn”の濃度にド
ープしたシリコン薄膜であるような薄膜圧電振動子を製
造した。
At the same time, using a conventional method, a thin film piezoelectric vibrator was manufactured in which the silicon thin film forming the diaphragm was a silicon thin film doped with boron to a concentration of IQ''/crn''.

2種類の振動子の特性を測定した結果、従来方法による
振動子の容量比は80、本発明の方法によって製造した
振動子の容量比は25であり、本発明を適用することに
よって容量比が従来方法に比べて約%に改善できること
が実証された。
As a result of measuring the characteristics of two types of vibrators, the capacitance ratio of the vibrator manufactured by the conventional method was 80, and the capacity ratio of the vibrator manufactured by the method of the present invention was 25. By applying the present invention, the capacitance ratio was It has been demonstrated that this can be improved by approximately % compared to the conventional method.

(実施例2) 酸化物薄膜としてマグネシア・スピネル(MgO−A 
I、0. )単結晶薄膜をシリコン基板上にエピタキシ
ャル成長させ、実施例1とまった(同様に薄膜圧電振動
子を製造した。この振動子についても容量比は25であ
った。
(Example 2) Magnesia spinel (MgO-A
I, 0. ) A single crystal thin film was epitaxially grown on a silicon substrate, and Example 1 was completed (A thin film piezoelectric vibrator was similarly manufactured. The capacitance ratio of this vibrator was also 25.

(実施例3) 酸化物薄膜としてサファイヤ(Al、Os)単結晶薄膜
をシリコン基板上にエピタキシャル成長させ、実施例1
とまったく同様に薄膜圧電振動子を製造した。この振動
子についても容量比は25であった。
(Example 3) A sapphire (Al, Os) single crystal thin film was epitaxially grown on a silicon substrate as an oxide thin film, and Example 1
A thin film piezoelectric vibrator was manufactured in exactly the same manner. The capacitance ratio of this vibrator was also 25.

以上の実施例から明らかなように、本発明を適用するこ
とによって従来方法の欠点を除いて容量比の十分小さい
薄膜圧電振動子を製造することが可能となり、この薄膜
圧電振動子を用いれば制御範囲の広い発振器及び比帯域
の広いフィルタが実現できる。
As is clear from the above embodiments, by applying the present invention, it is possible to eliminate the drawbacks of the conventional method and to manufacture a thin film piezoelectric vibrator with a sufficiently small capacitance ratio. An oscillator with a wide range and a filter with a wide fractional band can be realized.

さらに本発明の製造方法においてはダイヤフラムを構成
するシリコン単結晶薄膜の不純物濃度について何らの制
約もなく、シたがって薄膜圧電振動子を形成すると同一
のシリコン基板上に増幅器などの半導体素子を容易に形
成できることが明らかであり、この場合素子をSOI構
造にして高速化、高集積化を計るときに本発明になる5
io2層は有利に働く。
Furthermore, in the manufacturing method of the present invention, there are no restrictions on the impurity concentration of the silicon single crystal thin film constituting the diaphragm, and therefore, once a thin film piezoelectric vibrator is formed, semiconductor devices such as amplifiers can be easily fabricated on the same silicon substrate. It is clear that it can be formed, and in this case, the present invention becomes possible when the device is made into an SOI structure to achieve high speed and high integration.
The io2 layer works to your advantage.

以上のように本発明の製造方法は、従来方法の欠点を除
いて特性の良好な薄膜圧電振動子の製造を可能にし、ま
た発振器などの装置の小形化を可能にするものである。
As described above, the manufacturing method of the present invention makes it possible to manufacture a thin film piezoelectric vibrator with good characteristics without the drawbacks of the conventional method, and also makes it possible to downsize devices such as oscillators.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は薄膜圧電振動子の構造を示す図であり
、第1図は平面図、第2図は断面図である。図において
11はシリコン基板、12は空孔、13はシリコン薄膜
、14は下地電極、15は圧電薄膜、16は上部電極、
17は引き出し電極である。 第3図〜第6図は本発明による薄膜圧電振動子の製造工
程を示す図。31はシリコン基板、32は酸化物単結晶
薄膜、33は8i02層、34はシリコン単結晶薄膜、
35はエツチング保護膜、36は下地電極、第1図 5 第 2 図 第 3 図 第5図 第6図
FIGS. 1 and 2 are diagrams showing the structure of a thin film piezoelectric vibrator, with FIG. 1 being a plan view and FIG. 2 being a sectional view. In the figure, 11 is a silicon substrate, 12 is a hole, 13 is a silicon thin film, 14 is a base electrode, 15 is a piezoelectric thin film, 16 is an upper electrode,
17 is an extraction electrode. FIGS. 3 to 6 are diagrams showing the manufacturing process of a thin film piezoelectric vibrator according to the present invention. 31 is a silicon substrate, 32 is an oxide single crystal thin film, 33 is an 8i02 layer, 34 is a silicon single crystal thin film,
35 is an etching protective film, 36 is a base electrode, FIG. 1, 5, 2, 3, 5, and 6.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板の上に酸化物単結晶薄膜をエピタキ
シャル成長させる工程と、熱酸化によって該酸化物単結
晶薄膜とシリコン基板との界面にS iO。 層を形成する工程と、該酸化物単結晶薄膜の上にシリコ
ン単結晶薄膜をエピタキシャル成長させる工程と、シリ
コン基板の一部をエツチングによって除去する工程と、
該シリコン基板が除去された部分に対応する前記シリコ
ン単結晶薄膜上に下地電極、圧電薄膜、上部電極を順に
形成する工程とを有することを特徴とする薄膜圧電振動
子の製造方法。
(1) A step of epitaxially growing an oxide single crystal thin film on a silicon substrate, and depositing SiO at the interface between the oxide single crystal thin film and the silicon substrate by thermal oxidation. a step of epitaxially growing a silicon single crystal thin film on the oxide single crystal thin film; and a step of removing a portion of the silicon substrate by etching.
A method for manufacturing a thin film piezoelectric vibrator, comprising the step of sequentially forming a base electrode, a piezoelectric thin film, and an upper electrode on the silicon single crystal thin film corresponding to the portion where the silicon substrate has been removed.
(2)シリコン基板の上にエピタキシャル成長させる酸
化物単結晶薄膜はスピネル、サファイヤ、或いはマグネ
シアのうちの1以上からなる単結晶薄膜である特許請求
の範囲第1項記載の薄膜圧電振動子の製造方法。
(2) The method for manufacturing a thin film piezoelectric vibrator according to claim 1, wherein the oxide single crystal thin film epitaxially grown on the silicon substrate is a single crystal thin film made of one or more of spinel, sapphire, or magnesia. .
JP4348383A 1983-03-16 1983-03-16 Production of thin film piezoelectric oscillator Pending JPS59169214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4348383A JPS59169214A (en) 1983-03-16 1983-03-16 Production of thin film piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4348383A JPS59169214A (en) 1983-03-16 1983-03-16 Production of thin film piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JPS59169214A true JPS59169214A (en) 1984-09-25

Family

ID=12664966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4348383A Pending JPS59169214A (en) 1983-03-16 1983-03-16 Production of thin film piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS59169214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552347A (en) * 1992-01-16 1996-09-03 Oki Electric Industry Co., Ltd. Fabrication process for a semiconductor pressure sensor for sensing pressure applied thereto

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552347A (en) * 1992-01-16 1996-09-03 Oki Electric Industry Co., Ltd. Fabrication process for a semiconductor pressure sensor for sensing pressure applied thereto

Similar Documents

Publication Publication Date Title
JP3703773B2 (en) Manufacturing method of crystal unit
US5446330A (en) Surface acoustic wave device having a lamination structure
US9106199B2 (en) Acoustic wave device including a surface wave filter and a bulk wave filter, and method for making same
JP4395892B2 (en) Piezoelectric thin film device and manufacturing method thereof
EP4087131A1 (en) Bulk acoustic wave resonator having electrical isolation layer and manufacturing method therefor, filter, and electronic device
CN111082771A (en) Bulk acoustic wave resonator, preparation method thereof and filter
JP2019510391A (en) Hybrid structure for surface acoustic wave devices
WO2022134861A1 (en) Frequency-tunable film bulk acoustic resonator and preparation method therefor
CN112350679A (en) Bulk acoustic wave resonator based on silicon piezoelectric film structure and preparation method thereof
JP2002372974A (en) Thin-film acoustic resonator and method of manufacturing the same
CN111654258A (en) Method for manufacturing film bulk acoustic resonator, film bulk acoustic resonator and filter
JP2003163566A (en) Thin film piezoelectric resonator and its manufacturing method
JPH0964675A (en) Piezoelectric resonator on sealed cavity and its preparation
JPH0365046B2 (en)
JPS6382116A (en) Piezoelectric thin film resonator and its manufacture
JPS62266906A (en) Piezoelectric thin film resonator
JPS59169214A (en) Production of thin film piezoelectric oscillator
JPS59169215A (en) Production of thin film piezoelectric oscillator
JPS6281807A (en) Piezoelectric thin film resonator
CN207926539U (en) A kind of solid patch type thin film bulk acoustic wave resonator using piezoelectric monocrystal foil
JPS58137318A (en) Thin-film piezoelectric oscillator
JPS6165507A (en) Manufacture of thin film piezoelectric vibrator
JPH0544848B2 (en)
JPS6175614A (en) Manufacture of thin film piezoelectric vibrator
JPH0548642B2 (en)