JPH0548642B2 - - Google Patents

Info

Publication number
JPH0548642B2
JPH0548642B2 JP6629484A JP6629484A JPH0548642B2 JP H0548642 B2 JPH0548642 B2 JP H0548642B2 JP 6629484 A JP6629484 A JP 6629484A JP 6629484 A JP6629484 A JP 6629484A JP H0548642 B2 JPH0548642 B2 JP H0548642B2
Authority
JP
Japan
Prior art keywords
thin film
single crystal
piezoelectric
silicon
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6629484A
Other languages
Japanese (ja)
Other versions
JPS60210018A (en
Inventor
Yoichi Myasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6629484A priority Critical patent/JPS60210018A/en
Publication of JPS60210018A publication Critical patent/JPS60210018A/en
Publication of JPH0548642B2 publication Critical patent/JPH0548642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧電性薄膜を用いたVHF、UHF用高
周波圧電振動子に関し、特にシリコン薄膜と圧電
性薄膜とを主振動部材とする複合構造の振動部位
を有する薄膜圧電振動子に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a high-frequency piezoelectric vibrator for VHF and UHF using a piezoelectric thin film, and in particular to a composite structure in which a silicon thin film and a piezoelectric thin film are used as main vibration members. The present invention relates to a thin film piezoelectric vibrator having a vibrating part.

(従来技術とその問題点) 近年、50MHz以上の高周波領域においてバルク
波厚み振動の基本振動或いは低次の高調波振動が
利用できる圧電振動子が提案された。たとえば、
ケー・エム・ラーキン、ジエイ・エス・ワオン
(K.M.Lakin、J.S.Wang)により、アプライド・
フイジクス・レターズ(Applied Physics
Letters)1981年2月1日号(Vol.38、No.3)125
ページから127ページに、「Acoustic Bulk Wave
Composite Resonators」と題して発表された論
文においては第1図に示した如き構造のものが示
されている。この第1図に示す圧電振動子は、表
面が(100)面であるようなシリコン基板11の
表面の拡散或いはエピタキシヤル成長によつてボ
ロンを7×1019cm-3以上の濃度にドープしたシリ
コン薄膜12を形成した後、エチレンジアミン、
ピロカテコール及び水からなるエツチング液(以
下EDP液という)によつて基板11に空孔10
を形成し、さらにシリコン薄膜12の上に圧電性
薄膜13、上部電極14を形成し、またシリコン
薄膜12の他面に下部電極15を形成することに
よつて製造される。上記論文においては酸化亜鉛
(ZnO)からなる圧電性薄膜が1μm、シリコン薄
膜が6μmの場合に共振点435MHzにおけるクオリ
テイ・フアクタ(以下Qという)として3000とい
う値が示されている。
(Prior art and its problems) In recent years, piezoelectric vibrators have been proposed that can utilize the fundamental vibration of bulk wave thickness vibration or low-order harmonic vibration in a high frequency region of 50 MHz or higher. for example,
KM Larkin, JSWang, Applied
Physics Letters (Applied Physics)
Letters) February 1, 1981 (Vol.38, No.3) 125
From page 127, “Acoustic Bulk Wave
In a paper published under the title ``Composite Resonators'', a structure as shown in Figure 1 is shown. The piezoelectric vibrator shown in FIG. 1 is doped with boron to a concentration of 7×10 19 cm -3 or more by diffusion or epitaxial growth on the surface of a silicon substrate 11 whose surface is a (100) plane. After forming the silicon thin film 12, ethylenediamine,
Holes 10 are formed in the substrate 11 using an etching solution (hereinafter referred to as EDP solution) consisting of pyrocatechol and water.
It is manufactured by forming a piezoelectric thin film 13 and an upper electrode 14 on the silicon thin film 12, and forming a lower electrode 15 on the other surface of the silicon thin film 12. In the above paper, a value of 3000 is shown as a quality factor (hereinafter referred to as Q) at a resonance point of 435 MHz when the piezoelectric thin film made of zinc oxide (ZnO) is 1 μm thick and the silicon thin film is 6 μm thick.

しかしながら、シリコン薄膜上に形成された
ZnO薄膜はc軸配向した多結晶膜であり、その音
響的損失はシリコンに比較して大きい。上記論文
において3000という比較的大きなQが得られてい
るのはシリコン薄膜に比べてZnOの厚さが1/6と
小さいためである。たとえば、テイー・ダブリユ
ー・グラドコフスキー(T.W.Grudkowski)ら
によりアプライド・フイジクス・レクーズ
(Applied Physics Letters)1980年12月1日号
(Vol.37、No.11)993ページから995ページに
「Fundamental−mode VHF/UHF miniature
acoustic resonators and filters on silicon」と
題して発表された論文においては、ZnOが2.1μ
m、シリコンが4.4μmの場合、500MHzにおいて
Qが1200であつたと示されている。この場合シリ
コンに対するZnOの厚さ比は0.48であり、ラーキ
ンらの場合に比べてZnOの占める割合が大きいた
め、ZnOの音響的損失によつてQが小さくなつて
いる。
However, when formed on a silicon thin film,
The ZnO thin film is a c-axis oriented polycrystalline film, and its acoustic loss is greater than that of silicon. The relatively large Q of 3000 obtained in the above paper is due to the fact that the thickness of ZnO is 1/6 smaller than that of silicon thin film. For example, in Applied Physics Letters, December 1, 1980 (Vol. 37, No. 11), pages 993 to 995, TW Grudkowski et al. /UHF miniature
In a paper titled ``acoustic resonators and filters on silicon'', ZnO was
It is shown that when the silicon thickness is 4.4 μm, the Q is 1200 at 500 MHz. In this case, the thickness ratio of ZnO to silicon is 0.48, and since ZnO occupies a larger proportion than in the case of Larkin et al., Q becomes smaller due to the acoustic loss of ZnO.

上記のように、従来のシリコンの上に形成され
ていた圧電性薄膜は多結晶膜であるため音響的損
失が大きく、シリコン薄膜に対する圧電性薄膜の
厚さ比が大きくなると、小さなQ値しか得られな
いという欠点があつた。振動子の電気機械結合係
数はシリコン薄膜に対する圧電性薄膜の厚さ比が
小さくなるにしたがつて急激に減少するから、実
用的な見地からはシリコン薄膜に対する圧電性薄
膜の厚さ比が十分大きく、かつQ値の大きい振動
子が必要である。
As mentioned above, the conventional piezoelectric thin film formed on silicon is a polycrystalline film, so it has a large acoustic loss, and as the thickness ratio of the piezoelectric thin film to the silicon thin film increases, only a small Q value can be obtained. The drawback was that I couldn't do it. The electromechanical coupling coefficient of the vibrator decreases rapidly as the thickness ratio of the piezoelectric thin film to the silicon thin film decreases, so from a practical standpoint, the thickness ratio of the piezoelectric thin film to the silicon thin film is sufficiently large. , and a resonator with a large Q value is required.

(発明の目的) 本発明の目的は、このような従来の欠点を除去
せしめて、電気機械結合係数が大きく、かつQ値
の大きい薄膜圧電振動子を提供することにある。
(Object of the Invention) An object of the present invention is to eliminate such conventional drawbacks and provide a thin film piezoelectric vibrator having a large electromechanical coupling coefficient and a large Q value.

(発明の構成) 本発明によれば、ボロンを高濃度にドープした
シリコン単結晶からなる薄膜部材と、その上に形
成された酸化物単結晶薄膜と、さらに酸化物単結
晶薄膜の上に形成された圧電性結晶薄膜と電極と
から構成される振動部位を有し、該振動部位の周
縁部がシリコン基板によつて支持された構造を特
徴とする薄膜圧電振動子が得られる。
(Structure of the Invention) According to the present invention, a thin film member made of silicon single crystal doped with boron at a high concentration, an oxide single crystal thin film formed thereon, and further formed on the oxide single crystal thin film A thin-film piezoelectric vibrator is obtained, which has a vibrating part composed of a piezoelectric crystal thin film and an electrode, and has a structure in which the peripheral edge of the vibrating part is supported by a silicon substrate.

(構成の詳細な説明) 本発明は上述の構成をとることにより従来技術
の問題点を解決した。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration.

次に本発明を詳細に説明する。 Next, the present invention will be explained in detail.

第2図に本発明による薄膜圧電振動子の構造の
一例を示す。まず面方位が(100)のシリコン基
板11の表面に拡散或いはエピタキシヤル成長に
よつてボロンを7×1019cm-3以上の濃度にドープ
したシリコン薄膜12を形成した後、この上にス
ピネル、マグネシア、サフアイアなどの酸化物単
結晶薄膜16をエピタキシヤル成長させる。薄膜
の成長方法としてはCVD法が適当であるが、
MO−CVD法、分子線エピタキシー法などによ
つても成長させることができる。次にEDP液に
よつてシリコン基板11のエツチングを行なつて
空孔12を形成する。次に酸化物単結晶薄膜16
の上に圧電性薄膜13をエピタキシヤル成長させ
る。圧電性薄膜としては酸化亜鉛(ZnO)或いは
窒化アルミニウム(AlN)が適当であり、成長
方法としては低温化の観点からスパツタ法が適当
であるが、CVD法、MO−CVD法、イオンプレ
ーテイング法などによつても成長させることがで
きる。圧電性薄膜13の表面及びシリコン薄膜1
2の下面には電極14,15を形成する。従来、
シリコン基板の上にはC軸配向した多結晶の圧電
性薄膜しか成長できなかつたが、本発明において
は、シリコン上にまず酸化物単結晶薄膜をエピタ
キシヤル成長させ、この上に圧電性薄膜を成長さ
せることにより、単結晶の圧電性薄膜を形成する
ことができ、この点が本発明の大きな特徴であ
る。単結晶の圧電性薄膜は従来の多結晶膜に比べ
て音響的損失が極めて小さく、したがつて本発明
の振動子では、シリコン薄膜に対する圧電性薄膜
の厚さ比が大きい場合においても、十分大きなQ
値が得られる。
FIG. 2 shows an example of the structure of a thin film piezoelectric vibrator according to the present invention. First, a silicon thin film 12 doped with boron to a concentration of 7×10 19 cm -3 or more is formed on the surface of a silicon substrate 11 with a plane orientation of (100) by diffusion or epitaxial growth, and then spinel, A single crystal thin film 16 of an oxide such as magnesia or sapphire is epitaxially grown. The CVD method is suitable as a method for growing thin films, but
It can also be grown by MO-CVD method, molecular beam epitaxy method, etc. Next, the silicon substrate 11 is etched using an EDP solution to form holes 12. Next, oxide single crystal thin film 16
A piezoelectric thin film 13 is epitaxially grown thereon. Zinc oxide (ZnO) or aluminum nitride (AlN) is suitable for the piezoelectric thin film, and the sputtering method is suitable from the viewpoint of lowering the temperature, but the CVD method, MO-CVD method, and ion plating method are suitable. It can also be grown by Surface of piezoelectric thin film 13 and silicon thin film 1
Electrodes 14 and 15 are formed on the lower surface of 2. Conventionally,
Previously, only C-axis oriented polycrystalline piezoelectric thin films could be grown on silicon substrates, but in the present invention, a single crystal oxide thin film is first epitaxially grown on silicon, and then a piezoelectric thin film is grown on top of this. By growing it, a single-crystal piezoelectric thin film can be formed, which is a major feature of the present invention. A single-crystal piezoelectric thin film has an extremely small acoustic loss compared to a conventional polycrystalline film. Therefore, in the vibrator of the present invention, even when the thickness ratio of the piezoelectric thin film to the silicon thin film is large, the acoustic loss is sufficiently large. Q
value is obtained.

(実施例) 以下本発明の実施例について詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例 1 表面が(100)面であるようなシリコン基板の
表面にCVD法でボロンを7×1019cm-3以上の濃度
にドープした厚さ3μmのシリコン薄膜をエピタ
キシヤル成長させた。この上にCVD法で厚さ
0.2μmのマグネシア・スピネル(MgO・Al2O3
をエピタキシヤル成長させた後、窒化シリコン
(Si3N4)膜をエツチング・マスクとしてシリコ
ン基板の裏面からEDP液によつてエツチングを
行ない、空孔を形成した。次にマグネシア・スピ
ネル単結晶膜の上に厚さ4μmのZnOをRFマグネ
トロン・スパツタ法を用いて基板温度500℃でエ
ピタキシヤル成長させた。X線回折及び電子線回
折により、ZnO膜は単結晶膜であることが確認さ
れた。ZnO単結晶膜の表面及びシリコン薄膜の下
面に蒸着法によつてアルミニウムの電極を形成し
て第2図の構造の薄膜圧電振動子を作成した。
Example 1 A 3 μm thick silicon thin film doped with boron to a concentration of 7×10 19 cm -3 or more was epitaxially grown on the surface of a silicon substrate having a (100) plane by CVD. Thickness is added using CVD method on top of this.
0.2μm magnesia spinel (MgO・Al 2 O 3 )
After epitaxial growth, the silicon nitride (Si 3 N 4 ) film was used as an etching mask and etching was performed from the back surface of the silicon substrate using EDP solution to form holes. Next, ZnO with a thickness of 4 μm was epitaxially grown on the magnesia spinel single crystal film using the RF magnetron sputtering method at a substrate temperature of 500°C. It was confirmed by X-ray diffraction and electron diffraction that the ZnO film was a single crystal film. Aluminum electrodes were formed on the surface of the ZnO single crystal film and the bottom surface of the silicon thin film by vapor deposition to create a thin film piezoelectric vibrator having the structure shown in FIG. 2.

実施例 2 圧電性薄膜としてAlNをマグネシア・スピネ
ル単結晶膜の上にエピタキシヤル成長させ、実施
例1とまつたく同様に薄膜圧電動子を作成した。
実施例1と同様にAlN膜は単結晶膜であること
が確認された。
Example 2 AlN was epitaxially grown as a piezoelectric thin film on a magnesia spinel single crystal film, and a thin film piezoelectric element was produced in the same manner as in Example 1.
As in Example 1, it was confirmed that the AlN film was a single crystal film.

以上の他の酸化物単結晶薄膜としてマグネシア
(MgO)、サフアイア(Al2O3)をシリコン薄膜上
にエピタキシヤル成長させ、この上にZnO或いは
AlNをエピタキシヤル成長させた薄膜圧電振動
子も実施例1と同様の方法で作成した。
Magnesia (MgO) and sapphire (Al 2 O 3 ) are grown epitaxially on a silicon thin film as other oxide single crystal thin films, and ZnO or ZnO is grown on top of this.
A thin film piezoelectric vibrator made of epitaxially grown AlN was also produced in the same manner as in Example 1.

従来の薄膜圧電振動子、すなわちシリコン薄膜
上にZnO或いはAlNの多結晶膜を形成したもの
と、本発明の前記実施例の薄膜圧電振動子につい
て、共振点におけるQ値を測定して比較した。シ
リコン薄膜と圧電性薄膜の圧さは実施例に示した
とおり3μm及び4μmである。共振周波数はZnO
を用いたものでは約500MHz、AlNを用いたもの
では約400MHzであつた。測定の結果、従来の振
動子では800、本発明の振動子では3000というQ
値が得られた。
The Q value at the resonance point was measured and compared between a conventional thin film piezoelectric vibrator, that is, one in which a polycrystalline film of ZnO or AlN is formed on a silicon thin film, and the thin film piezoelectric vibrator of the above embodiment of the present invention. The thicknesses of the silicon thin film and piezoelectric thin film are 3 μm and 4 μm, as shown in the examples. Resonant frequency is ZnO
The frequency was about 500MHz for the one using AlN, and about 400MHz for the one using AlN. As a result of measurement, the Q of the conventional vibrator was 800 and the vibrator of the present invention was 3000.
value was obtained.

(発明の効果) 以上詳細に述べた通り、本発明によれば電気機
械結合係数が大きく、かつ従来に比べ圧電性薄膜
の膜厚をシリコン薄膜の膜厚に対して相対的に厚
くしてもQ値の大きい薄膜圧電振動子が得られ
る。
(Effects of the Invention) As described in detail above, according to the present invention, the electromechanical coupling coefficient is large, and even if the thickness of the piezoelectric thin film is relatively thicker than that of the silicon thin film compared to the conventional method, the electromechanical coupling coefficient is large. A thin film piezoelectric vibrator with a large Q value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜圧電振動子の概略図、第2
図は本発明の一実施例を示す薄膜圧電振動子の概
略図である。 図において10は空孔、11はシリコン基板、
12はシリコン薄膜、13は圧電性薄膜、14,
15は電極、16は酸化物単結晶薄膜をそれぞれ
示す。
Figure 1 is a schematic diagram of a conventional thin film piezoelectric vibrator, Figure 2
The figure is a schematic diagram of a thin film piezoelectric vibrator showing an embodiment of the present invention. In the figure, 10 is a hole, 11 is a silicon substrate,
12 is a silicon thin film, 13 is a piezoelectric thin film, 14,
Reference numeral 15 indicates an electrode, and reference numeral 16 indicates an oxide single crystal thin film.

Claims (1)

【特許請求の範囲】 1 ボロンを高濃度にドープしたシリコン単結晶
からなる薄膜部材と該薄膜部材の上に形成された
酸化物単結晶薄膜と、該酸化物単結晶薄膜の上に
形成された圧電性単結晶薄膜と電極とから構成さ
れる振動部位を有し、該振動部位の周縁部がシリ
コン基板によつて支持された構造を特徴とする薄
膜圧電振動子。 2 シリコン単結晶からなる薄膜部材の上に形成
された酸化物単結晶薄膜はスピネル、マグネシ
ア、サフアイアのうち1以上の材料からなる単結
晶薄膜である特許請求の範囲第1項記載の薄膜圧
電振動子。 3 酸化物単結晶薄膜の上に形成された圧電性単
結晶薄膜は酸化亜鉛、窒化アルミニウムのいずれ
かの材料からなる単結晶薄膜である特許請求の範
囲第1項記載の薄膜圧電振動子。
[Claims] 1. A thin film member made of silicon single crystal doped with boron at a high concentration, an oxide single crystal thin film formed on the thin film member, and a thin film formed on the oxide single crystal thin film. 1. A thin film piezoelectric vibrator having a structure in which a vibrating part is composed of a piezoelectric single crystal thin film and an electrode, and a peripheral part of the vibrating part is supported by a silicon substrate. 2. Thin film piezoelectric vibration according to claim 1, wherein the oxide single crystal thin film formed on the thin film member made of silicon single crystal is a single crystal thin film made of one or more of spinel, magnesia, and sapphire. Child. 3. The thin film piezoelectric vibrator according to claim 1, wherein the piezoelectric single crystal thin film formed on the oxide single crystal thin film is a single crystal thin film made of either zinc oxide or aluminum nitride.
JP6629484A 1984-04-03 1984-04-03 Thin film piezoelectric oscillator Granted JPS60210018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6629484A JPS60210018A (en) 1984-04-03 1984-04-03 Thin film piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6629484A JPS60210018A (en) 1984-04-03 1984-04-03 Thin film piezoelectric oscillator

Publications (2)

Publication Number Publication Date
JPS60210018A JPS60210018A (en) 1985-10-22
JPH0548642B2 true JPH0548642B2 (en) 1993-07-22

Family

ID=13311654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6629484A Granted JPS60210018A (en) 1984-04-03 1984-04-03 Thin film piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JPS60210018A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019351A1 (en) * 1990-05-25 1991-12-12 Toyo Communication Equipment Co., Ltd. Structure of electrode and lead thereof of ultra thin plate piezoelectric resonator
US6349454B1 (en) * 1999-07-29 2002-02-26 Agere Systems Guardian Corp. Method of making thin film resonator apparatus
US6555946B1 (en) * 2000-07-24 2003-04-29 Motorola, Inc. Acoustic wave device and process for forming the same
US6501121B1 (en) 2000-11-15 2002-12-31 Motorola, Inc. Semiconductor structure
JP2002374145A (en) * 2001-06-15 2002-12-26 Ube Electronics Ltd Piezoelectric thin-film resonator
US6498358B1 (en) 2001-07-20 2002-12-24 Motorola, Inc. Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating

Also Published As

Publication number Publication date
JPS60210018A (en) 1985-10-22

Similar Documents

Publication Publication Date Title
US4456850A (en) Piezoelectric composite thin film resonator
EP0616426B1 (en) Surface acoustic wave device having a lamination structure
JP3703773B2 (en) Manufacturing method of crystal unit
Hickernell DC triode sputtered zinc oxide surface elastic wave transducers
US4952832A (en) Surface acoustic wave device
GB2069278A (en) Surface acoustic wave device
JPH0532925B2 (en)
JPH10270978A (en) Surface acoustic wave element and its manufacture
Shiosaki et al. Piezoelectric thin films for SAW applications
US4501987A (en) Surface acoustic wave transducer using a split-finger electrode on a multi-layered substrate
JPH0548642B2 (en)
JPS6357966B2 (en)
JPH0211043B2 (en)
Hickernell et al. Surface‐elastic‐wave properties of dc‐triode‐sputtered zinc oxide films
JP4058973B2 (en) Surface acoustic wave device, frequency filter, oscillator, electronic circuit, and electronic device
JP3079509B2 (en) Thin film laminated crystal and manufacturing method thereof
JP2000165188A (en) Piezoelectric resonator
JP3493315B2 (en) Piezoelectric resonator
JPH10209794A (en) Piezoelectric thin-film resonator
US4511817A (en) Temperature compensated orientation of berlinite for surface acoustic wave devices
Muralt et al. Piezoelectric materials parameters for piezoelectric thin films in GHz applications
JPH01103310A (en) Surface acoustic wave element
Nakagawara et al. High power durable SAW antenna duplexers for W-CDMA with epitaxially grown aluminum electrodes
US4525643A (en) Temperature compensated orientations of berlinite for surface acoustic wave devices
JPS59169215A (en) Production of thin film piezoelectric oscillator