JPS59169210A - Lamination type wide band piezo-oscillator - Google Patents

Lamination type wide band piezo-oscillator

Info

Publication number
JPS59169210A
JPS59169210A JP58043482A JP4348283A JPS59169210A JP S59169210 A JPS59169210 A JP S59169210A JP 58043482 A JP58043482 A JP 58043482A JP 4348283 A JP4348283 A JP 4348283A JP S59169210 A JPS59169210 A JP S59169210A
Authority
JP
Japan
Prior art keywords
oscillator
capacitors
capacitor
inductor
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58043482A
Other languages
Japanese (ja)
Other versions
JPH0530323B2 (en
Inventor
Yuzo Shimada
嶋田 勇三
Shuzo Fujii
修三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58043482A priority Critical patent/JPS59169210A/en
Priority to EP83112593A priority patent/EP0111890B1/en
Priority to DE8383112593T priority patent/DE3382208D1/en
Priority to AU22427/83A priority patent/AU563467B2/en
Priority to US06/561,506 priority patent/US4574255A/en
Publication of JPS59169210A publication Critical patent/JPS59169210A/en
Publication of JPH0530323B2 publication Critical patent/JPH0530323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To obtain a miniature and economical wide band piezo-oscillator having high accuracy by providing one or more capacitors and resistance elements which can be replaced with those capacitors and resistance elements provided in an oscillating circuit. CONSTITUTION:One of crystal oscillators 21-1-21-3 having different characteristics is selected with desired characteristics. For this purpose, capacitors 1-1-1-3 and 3-1-3-3 and resistances 11-1-11-3 are selected in accordance with the characteristics of the desired crystal oscillator with no connection of an inductor 23 as long as the oscillation frequency given from an oscillating circuit is defined as a basic wave. In case the higher order frequencies is desired such as the 3rd, 5th frequencies, etc., the inductor 3 is connected to select the above- mentioned capacitors and resistances. Thus it is possible to obtain a miniature and economical wide band piezo-oscillator having high accuracy.

Description

【発明の詳細な説明】 本発明は、コンデンサ、抵抗及び導体配線を含む複合積
層セラミック基板を有する広帯域圧電発振器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a broadband piezoelectric oscillator having a composite laminated ceramic substrate containing a capacitor, a resistor, and a conductive trace.

従来、水晶発振器等における水晶振動子、コンデンサ、
抵抗等の受動部品およびトランジスター、ダイオード等
の能動部品は、セラミック等の基板にプリント配線層を
設は半田付けして回路を作り、それをユニットとして用
いることが行なわれていた0 この場合、円板形またはチップ型のコンデンサやチップ
抵抗等を1個づつ取付けねばならなかった〇 一方、従来、水晶振動子等の圧電素子を用いた発振器の
発振周波数においてその基本波および3次、5次等の高
次の周波数を得ようとした場合、電気回路およびそれを
構成するコンデンサ、抵抗等の部品を変更する必要があ
った。具体的に図によって説明すると第1図は、ある固
有振動数をもった水晶発振器により構成された基本波を
発生するための回路図である。回路は水晶振動子21、
増幅用トランジスタ22、およびコンデンサ1〜6、抵
抗11〜15より構成されている。この水晶振動子21
の3次、5次等の高次の周波数を得るためには第2図に
示すように、新たにインダクター器を必要とするほかに
コンデンサ31〜36および抵抗41〜45のうち一部
を適当なものに変更することも必要になってくるという
ように、新たな回路を形成しなければならなかった。
Conventionally, crystal resonators, capacitors, etc. in crystal oscillators, etc.
Passive components such as resistors and active components such as transistors and diodes were made by installing and soldering a printed wiring layer on a ceramic substrate to form a circuit and using it as a unit. In the past, plate-type or chip-type capacitors, chip resistors, etc. had to be installed one by one.On the other hand, conventionally, at the oscillation frequency of an oscillator using a piezoelectric element such as a crystal resonator, its fundamental wave, 3rd order, and 5th order In order to obtain higher-order frequencies such as, it was necessary to change the electric circuit and the parts that make up the circuit, such as capacitors and resistors. More specifically, FIG. 1 is a circuit diagram for generating a fundamental wave constituted by a crystal oscillator having a certain natural frequency. The circuit is a crystal oscillator 21,
It is composed of an amplifying transistor 22, capacitors 1-6, and resistors 11-15. This crystal oscillator 21
In order to obtain high-order frequencies such as the 3rd and 5th orders of In other words, new circuits had to be formed, such as changing things.

また、異なった特性をもった水晶振動子を用いて所望の
発振周波数を得ようとした場合もコンデンサ、抵抗等の
部品を変更しなければならなかった。
Furthermore, when attempting to obtain a desired oscillation frequency using a crystal resonator with different characteristics, components such as capacitors and resistors had to be changed.

このように従来においては所望する周波数に対してその
都度回路を形成するか又は変更するためコスト的にも時
間的にもまた形状的にも不利であった0 本発明の目的は、上述の欠点を除去せしめ小型、高精度
でかつ経済的にすぐれた広帯域圧電発振器を実現するも
のである。
In this way, in the past, the circuit had to be formed or changed each time for a desired frequency, which was disadvantageous in terms of cost, time, and shape. The present invention aims to realize a compact, highly accurate, and economically superior broadband piezoelectric oscillator.

すなわち本発明は、絶縁体、誘電体、導体、抵抗体が一
体に積層され、焼成されてなる積層焼結体とその表面に
設置された半導体素子とインダクターと複数の圧電振動
子と該複数の圧電振動子のうちの任意の1つと接続可能
なスイッチとを具備してなる積層型広帯域圧電発振器で
あって、積層焼結体の内部にはコンデンサと抵抗素子と
配線用導体とが形成されており、該積層焼結体内部のコ
ンデンサと抵抗素子と配線用導体と前記インダクターと
圧電振動子とを含む発振回路が構成されており、該発振
回路中のコンデンサと抵抗素子にはそれぞれこれらと交
換可能な1以上のコンデンサと抵抗素子が配置されてい
るこを特徴とする積層型電圧制御圧電発振器である。
That is, the present invention provides a laminated sintered body in which an insulator, a dielectric, a conductor, and a resistor are integrally laminated and fired, a semiconductor element and an inductor installed on the surface of the laminated sintered body, a plurality of piezoelectric vibrators, and a plurality of piezoelectric vibrators. A multilayer broadband piezoelectric oscillator comprising a switch connectable to any one of the piezoelectric vibrators, wherein a capacitor, a resistance element, and a wiring conductor are formed inside the multilayer sintered body. An oscillation circuit is configured including a capacitor, a resistance element, a wiring conductor, the inductor, and a piezoelectric vibrator inside the laminated sintered body, and the capacitor and resistance element in the oscillation circuit are replaced with these, respectively. The present invention is a stacked voltage controlled piezoelectric oscillator characterized in that one or more possible capacitors and resistance elements are arranged.

以下、本発明を実施例に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.

第3図に本発明による実施回路例を示す。ここで21−
1〜21−3は異なる特性をもつ水晶振動子であり、1
−1〜1−3および3−1〜3−3は所望の水晶振動子
を選んだ場合の適合コンデンサであり、また工1−1〜
11−3は同じぐ適合抵抗であり、nは3次、5次等の
高次の周波数を得るために必要なインダクターである。
FIG. 3 shows an example of an implementation circuit according to the present invention. Here 21-
1 to 21-3 are crystal resonators with different characteristics;
-1 to 1-3 and 3-1 to 3-3 are compatible capacitors when a desired crystal oscillator is selected;
11-3 is a matching resistor, and n is an inductor necessary to obtain a high-order frequency such as 3rd or 5th order.

この回路は複数個の水晶振動子21−1〜21−3の中
から希望の特性をもつ水晶振動子を選んだ場合、この回
路から発振周波数を基本波としたいならばインダクター
nを接続せず、またコンデンサ1−1〜1−3および3
−1〜3−3、抵抗11−1〜11−3を水晶振動子の
特性に合わせて選択することにより得られる。また3次
・5次等の高次の周波数としたG)ならばインダクター
nを接続し、コンデンサ1−1〜1−3.3−1〜3−
3および抵抗11−1〜11−3を選定することによっ
て得ることができる。
In this circuit, if you select a crystal oscillator with desired characteristics from among multiple crystal oscillators 21-1 to 21-3, and if you want the oscillation frequency to be the fundamental wave from this circuit, inductor n is not connected. , and capacitors 1-1 to 1-3 and 3
-1 to 3-3 and resistors 11-1 to 11-3 are selected in accordance with the characteristics of the crystal resonator. In addition, if the frequency is set to a high-order frequency such as 3rd or 5th order (G), inductor n is connected and capacitors 1-1 to 1-3. 3-1 to 3-
3 and the resistors 11-1 to 11-3.

次にこの実施例の発振器の構造の断面図を模式的に第4
図に示す。ここで第3図に示す水晶振動子、トランジス
ターおよびインダクター以外のコンデンサ1−1〜1−
3.2.3−1〜3−3.4〜6、および抵抗11−1
〜11−3.12〜15は、積層基板内部に形成されて
いる。また特定の特性をもつ水晶振動子に適合した回路
を形成するための接続端子部、3次・5次等の高次の周
波数を発振させるのに適合した回路を形成するための接
続端子部、および複数個の水晶振動子のうちから希望の
周一波数である1個の水晶振動子を選定するためのスイ
ッチは積層基板の表面に形成されている。
Next, a cross-sectional view of the structure of the oscillator of this example is schematically shown in the fourth section.
As shown in the figure. Here, capacitors 1-1 to 1- other than the crystal resonator, transistor, and inductor shown in FIG.
3.2.3-1 to 3-3.4 to 6, and resistance 11-1
~11-3.12~15 are formed inside the laminated substrate. Also, a connecting terminal part for forming a circuit suitable for a crystal resonator with specific characteristics, a connecting terminal part for forming a circuit suitable for oscillating high-order frequencies such as 3rd order and 5th order, A switch for selecting one crystal resonator having a desired frequency frequency from among the plurality of crystal resonators is formed on the surface of the laminated substrate.

一方、図において51は絶縁体シート、52は誘電体シ
ート、兄はスルーホール部、54は印刷法又はグリーン
シート法により形成された抵抗体層、55は導体層、5
6はコンデンサ形成用内部電極層、61は抵抗形成部分
、62はコンデンサ形成部分、63は接続端子部、64
は切換えスイッチ、71は水晶振動子、72はトランジ
スタ、73はインダクターである。
On the other hand, in the figure, 51 is an insulator sheet, 52 is a dielectric sheet, the older brother is a through-hole part, 54 is a resistor layer formed by a printing method or a green sheet method, 55 is a conductor layer,
6 is an internal electrode layer for forming a capacitor, 61 is a resistor forming portion, 62 is a capacitor forming portion, 63 is a connecting terminal portion, 64
71 is a crystal oscillator, 72 is a transistor, and 73 is an inductor.

前記調整用コンデンサ1−1〜1−3.3−1〜3−3
および抵抗11−1〜11−3は基板表面に形成した接
続端子部をショートバーにより接続すれば選定できる。
The adjustment capacitors 1-1 to 1-3.3-1 to 3-3
The resistors 11-1 to 11-3 can be selected by connecting connecting terminal portions formed on the surface of the substrate with short bars.

第5図〜第8図に前記調整用コンデンサを作製する実施
例及び第9図〜第11図に調整用抵抗を作製する実施涌
を示す。第5図(a) 、 (b)は絶縁体シート51
上壷こ接続端子部63が形成されたもの。第6図(a)
 、 (b)は抵抗体層54が形成され、スルーホール
中には導体が形成された絶縁体シート、第7図(a)。
5 to 8 show an example of manufacturing the adjustment capacitor, and FIGS. 9 to 11 show an example of manufacturing the adjustment resistor. FIGS. 5(a) and 5(b) show the insulator sheet 51
An upper pot connection terminal portion 63 is formed. Figure 6(a)
, (b) is an insulating sheet on which a resistor layer 54 is formed and a conductor is formed in the through hole, and FIG. 7(a).

(b)は3種類の形状のコンデンサ形成用内部電極層が
形成された誘電体シート52、第8図(+1 、 (b
)は同じくコンデンサ形成用内部電極層が形成された絶
1縁体シートである。第5図のシートを最外層として配
置し、次に第6〜8図のシートの順で積層し、焼成する
。第9図(a) 、 (b)も第5図と同様に絶縁体シ
ート51上に接続端子部63が形成されたもの。第10
図(a) 、 (b)は絶縁体シート上に配線用導体が
形成されたもので、さらに第11図(a) 、 (b)
は3種類の形状の異なる抵抗体シートが形成された絶縁
体シートであり、この順に積層、焼成して調整用抵抗を
作製する。ここで各図の(a)はシートの平面図、(b
)は断面図である。
(b) shows a dielectric sheet 52 on which internal electrode layers for capacitor formation of three types of shapes are formed, FIG. 8 (+1, (b)
) is an insulating sheet on which an internal electrode layer for forming a capacitor is also formed. The sheet shown in FIG. 5 is placed as the outermost layer, and then the sheets shown in FIGS. 6 to 8 are laminated in this order and fired. 9(a) and 9(b) also have connection terminal portions 63 formed on an insulating sheet 51, similar to FIG. 5. 10th
Figures (a) and (b) show wiring conductors formed on an insulator sheet, and Figures 11 (a) and (b)
is an insulator sheet on which three types of resistor sheets of different shapes are formed, and the adjustment resistor is produced by laminating and firing in this order. Here, (a) of each figure is a plan view of the sheet, (b)
) is a cross-sectional view.

ここで用いる絶縁体生シートは酸化アルミニウム40〜
60重量%、ホウケイ酸鉛系結晶化ガラス40〜60重
量%の組成範囲で総量100%となるように選んだ混合
粉末を有機バインダー、有機溶媒、可塑剤と共に泥漿状
にしドクターブレード法等のスリップキャステング製膜
により20〜300μmの生シートをポリエステルフィ
ルム上に成形し剥離したのち所望の寸法にパンチングし
てシートを得る。
The insulator raw sheet used here is aluminum oxide 40~
A mixed powder selected to have a total amount of 100% in the composition range of 60% by weight and 40 to 60% by weight of lead borosilicate crystallized glass is made into a slurry with an organic binder, an organic solvent, and a plasticizer, and then slipped using a doctor blade method or the like. A green sheet of 20 to 300 μm is formed on a polyester film by casting film formation, peeled off, and then punched to a desired size to obtain a sheet.

ここで用いた結晶化ガラス粉末の組成は酸化物換算表記
に従ったとき酸化鉛、酸化ホウ素、二酸化ケイ酸、■族
元素酸化物、■族元素(但し、炭素、ケイ素、鉛は除く
)酸化物をそれぞれ重量比3〜65%、2〜50チ、4
〜65%、0.1〜50%、0.02〜20%のMu成
範囲で総量100チとなるように選んだ組成物で構成さ
れている。
The composition of the crystallized glass powder used here is based on the oxide conversion notation: lead oxide, boron oxide, silicic acid dioxide, oxides of group ■ elements, oxides of group ■ elements (excluding carbon, silicon, and lead). weight ratio of 3 to 65%, 2 to 50 inches, 4
It is composed of a composition selected such that the total amount is 100 pieces with a Mu content ranging from ~65%, 0.1~50%, and 0.02~20%.

誘電体化シートはFe2O,、PbO、Nb2O,、W
O3の粉末を所定# f+撤し、ボールミル混合してろ
過乾燥後700〜800℃で予焼を行なったのちボール
ミル粉砕した粉末を有機バインダー、有機溶媒、可塑剤
と共に混合し泥漿状にして絶縁体生シートの作成と同様
にドクターブレード法等のスリップキャスティング製膜
により10μm〜200μmのシートを得た。とこで用
いた誘電体材料はPb(Fe%・Nb%)o、(転)(
Fe%・W%)。−,7o、  の複合ペロブスカイト
化合物である。
The dielectric sheet is Fe2O,, PbO, Nb2O,, W
O3 powder is removed from a specified #f+ powder, mixed in a ball mill, filtered and dried, pre-baked at 700 to 800°C, and the ball milled powder is mixed with an organic binder, an organic solvent, and a plasticizer to form a slurry and form an insulator. A sheet of 10 μm to 200 μm was obtained by slip casting film formation such as a doctor blade method in the same manner as in the preparation of the green sheet. The dielectric material used here was Pb(Fe%・Nb%)o, (trans)(
Fe%/W%). -, 7o, is a composite perovskite compound.

また抵抗体としてはスクリーン印刷法により、抵抗体ペ
ーストを絶縁体生シート上又は誘電体生シート上に形成
する方法および抵抗体グリーンシート片を用いて形成す
る方法がある。ここで抵抗体ペーストは抵抗材料粉末と
有機ビヒクルを三本ロール等昏こより混練することによ
り得られる。一方抵抗体グリーンシートは二酸化ルテニ
ウム粉末と絶縁体生シートに用いたアルミナ・結晶化ガ
ラス粉末とをそれぞれ重量比10 : 90〜50 :
 50の範囲で所望の抵抗値が得られるように混合し、
エチルセルソルブ、ブチルカルピトールの有機溶媒、ブ
チルフタリル酸ブチルの有機可塑剤および有機バインダ
ーとしてポリビニルブチラール等を加えて泥漿化し、上
述同様に製膜し20μm〜200μmのシートを得た。
The resistor may be formed by screen printing, in which a resistor paste is formed on an insulator green sheet or dielectric green sheet, or by using resistor green sheet pieces. Here, the resistor paste is obtained by kneading the resistor material powder and the organic vehicle using a triple roll or the like. On the other hand, for the resistor green sheet, the ruthenium dioxide powder and the alumina/crystalline glass powder used for the insulator raw sheet are mixed in a weight ratio of 10:90 to 50:1, respectively.
Mix to obtain the desired resistance value in the range of 50,
Ethyl cellosolve, an organic solvent of butyl calpitol, an organic plasticizer of butyl butyl phthalate, and polyvinyl butyral as an organic binder were added to form a slurry, and a film was formed in the same manner as described above to obtain a sheet of 20 μm to 200 μm.

電極層および信号線に用いる導体はAu 、 Ag 。The conductors used for the electrode layers and signal lines are Au and Ag.

Pd 、 Pt等の金属の単体もしくは1以上含んだ合
金粉末を有機ビヒクルとともに混練しペースト状にした
ものを使用した。
A paste made by kneading a single metal such as Pd or Pt or an alloy powder containing one or more metals with an organic vehicle was used.

以上のように作製した各種シートとペーストを所定の配
列で積層、切断し、900℃で焼成した。
The various sheets and pastes produced as described above were laminated in a predetermined arrangement, cut, and fired at 900°C.

次にこの積層焼結体の表面に半導体素子、複数の圧電振
動子、及び圧電振動子選択スイッチを形成した。
Next, a semiconductor element, a plurality of piezoelectric vibrators, and a piezoelectric vibrator selection switch were formed on the surface of this laminated sintered body.

以上のような本発明構成法による積層型広帯域水晶発振
器を実現した結果、従来の形状の115〜IAoに体積
を縮小した広帯域圧電発振器が実現でき、さらに小型形
状にもかかわらず希望の圧電振動子3よび圧電振動子特
性番こ適合した回路形成機構を有しているため多機能で
しかも高精能でありかつ汎用性のある構造である1こめ
経済的である。
As a result of realizing a stacked broadband crystal oscillator using the construction method of the present invention as described above, a broadband piezoelectric oscillator with a volume reduced to 115 to IAo of the conventional shape can be realized, and the desired piezoelectric vibrator can be realized despite the smaller size. Since it has a circuit forming mechanism that is compatible with the characteristics of the piezoelectric vibrator and piezoelectric vibrator, it is multifunctional, highly precise, and has a versatile structure that is also economical.

なお、尚然実施例で用いた水晶振動子でなく、他の圧電
物質を用いた振動子も使用可能である。
Note that it is of course possible to use a vibrator using other piezoelectric materials instead of the crystal vibrator used in the embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来用いられている基本波および高次
周波数用の水晶発振器の一例を示す回路図、第3図は本
発明の実施例を示す回路図、第4図は本発明の実施例を
示す積層型広帯域水晶発振器の模式的構成断面図である
。第5図〜第11図は本発明の発振器の製造方法を示す
図である。 図において、1〜6はコンデンサ、11〜15は抵抗、
2工は水晶振動子、22はトランジスタ、nはインダク
ター、31〜36はコンデンサ、41〜45は抵抗、5
1は絶縁体シート、52は誘電体シート、53はスルー
ホール部、54は抵抗体層、55は導体層、56はコン
デンサ形成用内部電極層、61は抵抗形成部分、62は
コンデンサ形成部分、63は接続端子部、71は水晶振
動子、72はトランジスタ、73は切換えスイッチであ
る。 第 1 図 第2図 第3図 第4図 第5図   (0)    <b) 第9図
1 and 2 are circuit diagrams showing an example of a conventionally used crystal oscillator for fundamental waves and high-order frequencies, FIG. 3 is a circuit diagram showing an embodiment of the present invention, and FIG. 4 is a circuit diagram showing an example of the present invention. FIG. 1 is a schematic cross-sectional view of a stacked broadband crystal oscillator according to an embodiment of the present invention. 5 to 11 are diagrams showing a method of manufacturing an oscillator according to the present invention. In the figure, 1 to 6 are capacitors, 11 to 15 are resistors,
2 is a crystal resonator, 22 is a transistor, n is an inductor, 31 to 36 are capacitors, 41 to 45 are resistors, 5
1 is an insulator sheet, 52 is a dielectric sheet, 53 is a through-hole portion, 54 is a resistor layer, 55 is a conductor layer, 56 is an internal electrode layer for forming a capacitor, 61 is a resistor forming portion, 62 is a capacitor forming portion, 63 is a connection terminal section, 71 is a crystal resonator, 72 is a transistor, and 73 is a changeover switch. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 (0) <b) Figure 9

Claims (1)

【特許請求の範囲】[Claims] 絶縁体、誘電体、導体、抵抗体が一体に積層され、焼成
されてなる積層焼結体とその表面に設置された半導体素
子とインダクターと複数の圧電振動子と該複数の圧電振
動子のうちの任意の1つと接続可能なスイッチとを具備
してなる積層型広帯域圧電発振器であって、積層焼結体
の内部にはコンデンサと抵抗素子と配線用導体とが形成
されており、該積層焼結体内部のコンデンサと抵抗素子
と配線用導体と前記インダクターと圧電振動子とを含む
発振回路が構成されており、該発振回路中のコンデンサ
と抵抗素子にはそれぞれこれらと交換可能な1以上のコ
ンデンサと抵抗素子が配置されていることを特徴とする
積層型電圧制御圧電発振器。
A laminated sintered body formed by laminating and firing an insulator, a dielectric, a conductor, and a resistor, a semiconductor element and an inductor installed on its surface, a plurality of piezoelectric vibrators, and among the plurality of piezoelectric vibrators. A multilayer broadband piezoelectric oscillator is provided with a switch connectable to any one of the multilayer sintered body, in which a capacitor, a resistive element, and a wiring conductor are formed inside the multilayer sintered body. An oscillation circuit is configured including a capacitor, a resistance element, a wiring conductor, the inductor, and a piezoelectric vibrator inside the body, and each of the capacitor and resistance element in the oscillation circuit has one or more replaceable elements. A multilayer voltage-controlled piezoelectric oscillator characterized by the arrangement of a capacitor and a resistance element.
JP58043482A 1982-12-15 1983-03-16 Lamination type wide band piezo-oscillator Granted JPS59169210A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58043482A JPS59169210A (en) 1983-03-16 1983-03-16 Lamination type wide band piezo-oscillator
EP83112593A EP0111890B1 (en) 1982-12-15 1983-12-14 Monolithic multicomponents ceramic substrate with at least one dielectric layer of a composition having a perovskite structure
DE8383112593T DE3382208D1 (en) 1982-12-15 1983-12-14 MONOLITHIC MULTILAYER CERAMIC SUBSTRATE WITH AT LEAST ONE DIELECTRIC LAYER MADE OF A MATERIAL WITH PEROVSKIT STRUCTURE.
AU22427/83A AU563467B2 (en) 1982-12-15 1983-12-15 Ceramic substrate for piezoelectric element
US06/561,506 US4574255A (en) 1982-12-15 1983-12-15 MMC Substrate including capacitors having perovskite structure dielectric and electrical devices including MMC substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58043482A JPS59169210A (en) 1983-03-16 1983-03-16 Lamination type wide band piezo-oscillator

Publications (2)

Publication Number Publication Date
JPS59169210A true JPS59169210A (en) 1984-09-25
JPH0530323B2 JPH0530323B2 (en) 1993-05-07

Family

ID=12664939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58043482A Granted JPS59169210A (en) 1982-12-15 1983-03-16 Lamination type wide band piezo-oscillator

Country Status (1)

Country Link
JP (1) JPS59169210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159322U (en) * 1987-10-08 1989-04-13

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479468A (en) * 1977-12-08 1979-06-25 Fujitsu Ltd Method of producing ceramic multiicircuit layer board
JPS5793702A (en) * 1980-12-02 1982-06-10 Mitsubishi Electric Corp Quartz oscillating circuit
JPS5816595A (en) * 1981-07-23 1983-01-31 ティーディーケイ株式会社 Hybrid integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479468A (en) * 1977-12-08 1979-06-25 Fujitsu Ltd Method of producing ceramic multiicircuit layer board
JPS5793702A (en) * 1980-12-02 1982-06-10 Mitsubishi Electric Corp Quartz oscillating circuit
JPS5816595A (en) * 1981-07-23 1983-01-31 ティーディーケイ株式会社 Hybrid integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159322U (en) * 1987-10-08 1989-04-13

Also Published As

Publication number Publication date
JPH0530323B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
JP3680765B2 (en) Dielectric porcelain composition
US4574255A (en) MMC Substrate including capacitors having perovskite structure dielectric and electrical devices including MMC substrate
US9532454B2 (en) Monolithic ceramic component and production method
JPH07326536A (en) Ceramic capacitor
JP3088021B2 (en) Voltage controlled oscillator
WO1992014275A1 (en) Dielectric filter
JPH0897070A (en) Ceramic capacitor
JPS59169210A (en) Lamination type wide band piezo-oscillator
JPH0468803B2 (en)
JP2000082605A (en) Temperature compensation circuit
JPS5917232A (en) Composite laminated ceramic part and method of producing same
JPS59144206A (en) Crystal oscillator made of laminated ceramic
JP3317246B2 (en) Composite ceramic and composite ceramic element
JPS5917233A (en) Method of producing composite laminated ceramic part
KR100490501B1 (en) Piezoelectric vibrator and fabricating method therefor
JP2957041B2 (en) Multilayer dielectric filter
JPS6221260B2 (en)
JPS59168705A (en) Laminated type voltage controlled piezoelectric oscillator
JPH053161B2 (en)
JPH053162B2 (en)
JPH11265808A (en) Surge absorbing element and manufacture of the same
JPH0817675A (en) Chip type laminated ceramic capacitor
JPH03261122A (en) Variable capacitance element
JPS59110208A (en) Composite laminated multifrequency crystal oscillator
JP2853088B2 (en) Ceramic block with composite capacitance