JPS59169054A - Bulb - Google Patents

Bulb

Info

Publication number
JPS59169054A
JPS59169054A JP4305183A JP4305183A JPS59169054A JP S59169054 A JPS59169054 A JP S59169054A JP 4305183 A JP4305183 A JP 4305183A JP 4305183 A JP4305183 A JP 4305183A JP S59169054 A JPS59169054 A JP S59169054A
Authority
JP
Japan
Prior art keywords
bulb
refractive index
light
metal oxide
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4305183A
Other languages
Japanese (ja)
Other versions
JPH0522336B2 (en
Inventor
力 渡辺
晃 川勝
文夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4305183A priority Critical patent/JPS59169054A/en
Publication of JPS59169054A publication Critical patent/JPS59169054A/en
Publication of JPH0522336B2 publication Critical patent/JPH0522336B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はバルブ表面に可視光透過赤外線反射膜を設けた
電球の改良に関し、特に反射鏡と組合わせて使用される
ハロゲンを球に好適なものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the improvement of a light bulb in which a visible light transmitting infrared reflective film is provided on the bulb surface. It is.

〔発明の技術面背景〕[Technical background of the invention]

近年透明ガラスバルブの外面に可視光透過赤外線反射膜
を設けたハロゲン電球か一発された。この赤外線反射膜
は低屈折率の金属酸化物と高屈折率の金属酸化管とを又
互重層して光の干渉を利用して可視光を透過し、赤外線
を反射させるものである。そして、この膜においては可
視光透過率を最大にするため、各層を透明に構成してい
る。
In recent years, a halogen light bulb with a visible light-transmissive infrared reflective film on the outside of a transparent glass bulb has been released. This infrared reflecting film is made by alternately layering a metal oxide with a low refractive index and a metal oxide tube with a high refractive index, and utilizes light interference to transmit visible light and reflect infrared rays. In order to maximize visible light transmittance in this film, each layer is made transparent.

〔背景技術の問題点〕[Problems with background technology]

このハロゲン電球を反射鏡と組合わせて用いると、フィ
ラメントの微細構造たとえばコイル状フィラメントの各
ターンの光学像が被照面Vc現出され、均一な照射面が
得られない。
When this halogen bulb is used in combination with a reflecting mirror, an optical image of the fine structure of the filament, such as each turn of a coiled filament, appears on the irradiated surface Vc, making it impossible to obtain a uniform irradiated surface.

〔発明の目的〕[Purpose of the invention]

反射鏡と組合わせて使用しても良好な配光が得られる電
球を提供することを目的とする。
To provide a light bulb that provides good light distribution even when used in combination with a reflecting mirror.

〔発明の概要〕[Summary of the invention]

少なくとも高屈折率の金属酸化物の1層、−乙均粒径1
00八〜1μに結晶化させたことにより、透過光を拡散
させてフィラメント像の形成を防止したことである。
At least one layer of high refractive index metal oxide, - average grain size 1
By crystallizing it to a size of 0.08 to 1 μm, transmitted light is diffused and formation of filament images is prevented.

〔発明の実施例〕[Embodiments of the invention]

本発明の詳細を第1図示の実施例によって説明する。図
a 100 V Zoo W定格のノ・ロゲン電球を示
し、図中、(1)はT形バルブ、(2)はこのバルブ(
1)の外表面に形成した可視光透過赤外線反射膜、(3
)はバルブ(1)の基部を圧潰封止してなる封止部、(
4) 。
The details of the present invention will be explained by referring to the embodiment shown in the first figure. Figure a shows a 100 V Zoo W rated Norogen bulb, in which (1) is a T-shaped bulb and (2) is this bulb (
a visible light transmitting infrared reflective film formed on the outer surface of (1);
) is a sealing part formed by crushing and sealing the base of the valve (1), (
4).

(4)はこの封止部(3)内に埋設されたモリブデン導
入箔、(5) 、 (5)はコノ導入箔(41、+4)
 VC接続しテハ/I/プ(1)内に導入された1対の
内導線、(6)はこれら内導線(5) 、 (5)間に
装架されてバルブ(1)の中心線に位置するタングステ
/フィラメント、(7)は導入箔(4)。
(4) is the molybdenum-introduced foil embedded in this sealing part (3), (5), (5) is the molybdenum-introduced foil (41, +4)
A pair of inner conductors (6) connected to VC and introduced into the valve (1) are installed between these inner conductors (5) and (5) and connected to the center line of the valve (1). The tungsten/filament (7) is located at the introducing foil (4).

(4)に電気接続してバルブ(1)の基端に装着された
口金である。そうして、バルブ(1)内にはアルゴンな
どの不活性ガスとともに所要のハロゲンを封入しである
(4) is a cap attached to the proximal end of the valve (1) and electrically connected to the valve (4). Then, the required halogen is sealed in the bulb (1) along with an inert gas such as argon.

上記バルブ(1)は石英ガラス、硬質ガラスなどの透明
耐熱ガラスからなり、その外表面に赤外線反射膜(2)
が形成されている。
The above bulb (1) is made of transparent heat-resistant glass such as quartz glass or hard glass, and has an infrared reflective film (2) on its outer surface.
is formed.

上記可視光透過赤外線反射膜(2)は第2図に示すよう
に、シリカなどの光屈折率の小さい金属酸化物層QD(
右下りハツチノグ)と酸化チタンなどの光屈折率の大き
い金属酸化物層(22) (左下シハツチング)とが交
互重層してな)、通常各層は1000〜3000λの厚
さで5〜9層重層している。そして、本発明の特徴は少
なくとも大屈折率層(23が結晶化していることで、た
とえばこの層(2aの約90%が粒径的20OAの結晶
粒からなっている。このような結晶化された赤外線反射
膜(2)を得るには、たとえば通常の方法によってバル
ブ(1)外表面に7リカおよび酸化チタンの交互重層膜
を形成したのちバルブ(1)を1100°C以上の高温
で処理して酸化チタンを結晶化すればよい。そして、こ
の処理によりシリカが全く結晶化しなくともさしつかえ
ない。
As shown in FIG. 2, the visible light transmitting infrared reflective film (2) is a metal oxide layer QD (
A metal oxide layer with a high optical refractive index such as titanium oxide (22) (lower left hatching) is alternately layered), and each layer is usually 5 to 9 layers with a thickness of 1000 to 3000 λ. ing. A feature of the present invention is that at least the high refractive index layer (23) is crystallized. In order to obtain the infrared reflective film (2), for example, after forming an alternating multilayer film of 7 Lika and titanium oxide on the outer surface of the bulb (1) by a normal method, the bulb (1) is treated at a high temperature of 1100°C or higher. The titanium oxide may be crystallized by using this treatment.It is not necessary that silica be crystallized at all by this treatment.

つぎに、このハロゲン電球の作用を第3図によって説明
する。この電球を点灯するとフィラメント(6)が発光
し、この光がバルブ(1)を透過して赤外線反射膜(2
) K入射する。そして、入射光のうち赤外線はこの反
射膜(2)で反射してフィラメント(6)に帰還してこ
れを加熱し、発光効率向上に役立ち、また、可視光はこ
の反射膜(2)を透過する。このとき、可視光は結晶粒
の境界で、反射や屈折を繰返し、この結果、反射膜(2
)を透過するとき良好に拡散する。したがって、このハ
ロゲンを球はバルブ(1)が透明で表面平滑であるにも
かかわらず、放射可視光が拡散され、反射鏡と組合わせ
て用ムてもフィラメント(6)の光学像を被照面に映写
することがなく、均一な光照射が得られる。
Next, the operation of this halogen light bulb will be explained with reference to FIG. When this light bulb is turned on, the filament (6) emits light, and this light passes through the bulb (1) and infrared reflective film (2).
) K is incident. Of the incident light, infrared rays are reflected by this reflective film (2) and returned to the filament (6) to heat it, helping to improve luminous efficiency, while visible light is transmitted through this reflective film (2). do. At this time, visible light is repeatedly reflected and refracted at the boundaries of crystal grains, and as a result, the reflective film (2
), it diffuses well when transmitted. Therefore, even though the halogen bulb (1) is transparent and has a smooth surface, the emitted visible light is diffused, and even when used in combination with a reflector, the optical image of the filament (6) is transferred to the illuminated surface. Uniform light irradiation can be obtained without any projection.

また、酸化チタンは結晶化すると光屈折率が20〜50
%向上するので、この反射膜(2)の赤外線反射率が向
上し、また反射波長域が拡大する効果がある。この結果
を第4図に示す。図は横軸に波長をμの単位でとシ、縦
軸に透過率を(チ)の単位でとったもので、曲線図は従
来のシリカも鹸化チタンもいずれも結晶化していなユ赤
外線反射膜、曲線(R1は本発明のシリカが非晶質で酸
化チタンが結晶化している赤外線反射膜の分光光透過率
特性をそれぞれ示す。
In addition, when titanium oxide crystallizes, its optical refractive index is 20 to 50.
%, this has the effect of improving the infrared reflectance of this reflective film (2) and expanding the reflection wavelength range. The results are shown in FIG. In the diagram, the horizontal axis shows the wavelength in units of μ, and the vertical axis shows the transmittance in units of (ch). The film and the curve (R1 each represent the spectral light transmittance characteristics of the infrared reflective film of the present invention in which silica is amorphous and titanium oxide is crystallized.

このように、上述の実施例において酸化チタン結晶粒の
粒径が可視光の波長よシはるかに小さいにもかかわらず
、可視光を良好に拡散する。しかし、酸化チタン結晶粒
の平均粒径が100A未満のときは光拡散性がなくて本
発明の効果がなく、また平均粒径が1μを越えると被膜
強度が不足して剥離しやすく実用性がない。そうして、
被膜の厚さ方向の粒径は酸化チタン層の厚さによって制
限され、層の厚さによっては結晶粒が偏平になることも
ある。そこで、本発明において結晶粒の平均粒径を10
0 A〜1μの範囲に限定した。
As described above, in the above-described embodiment, although the particle size of the titanium oxide crystal grains is much smaller than the wavelength of visible light, visible light is well diffused. However, when the average particle size of the titanium oxide crystal grains is less than 100A, there is no light diffusing property and the present invention is not effective, and when the average particle size exceeds 1μ, the coating strength is insufficient and it is easy to peel off, making it impractical. do not have. Then,
The grain size in the thickness direction of the coating is limited by the thickness of the titanium oxide layer, and depending on the thickness of the layer, the crystal grains may become flat. Therefore, in the present invention, the average grain size of the crystal grains is set to 10
It was limited to a range of 0 A to 1 μ.

なお、前述の実施例において、光屈折率の小さい金属酸
化物の例としてシリカを用いたが本発明ではマグネシア
MgO、アルミナAJ、03などでもよく、また一部結
晶していてもかまわない。
In the above embodiments, silica was used as an example of a metal oxide with a low optical refractive index, but in the present invention, magnesia MgO, alumina AJ, 03, etc. may also be used, or it may be partially crystalline.

また、前述の実施例において、光屈折率の大きい金属酸
化物の例として酸化チタンを用いたが本発明では酸化ジ
ルコンZrO,、酸化タンタルTa20g、酸化セリウ
ムOe O,などでもよく、結晶化率は100%でなく
とも若干の効果がある。そうして、赤外線反射膜の各層
の厚さは本願の目的を害しない範囲で自由である。
Further, in the above embodiment, titanium oxide was used as an example of a metal oxide with a high optical refractive index, but in the present invention, zirconium oxide ZrO, tantalum oxide Ta20g, cerium oxide OeO, etc. may also be used, and the crystallization rate may be Even if it is not 100% effective, there is some effect. Thus, the thickness of each layer of the infrared reflective film is free within the range that does not harm the purpose of the present application.

さらに、本発明はハロゲン電球に限らず、普通白熱電球
にも適用できる。そして、赤外線反射膜はバルブの内外
いずれの面に設けてもよく、また両方に設けてもよい。
Furthermore, the present invention is applicable not only to halogen light bulbs but also to ordinary incandescent light bulbs. The infrared reflecting film may be provided on either the inner or outer surface of the bulb, or may be provided on both surfaces.

〔発明の効果〕〔Effect of the invention〕

本発明の電球は透明なガラスバルブの表面に低屈折率の
金属酸化物と高屈折率の金属酸化物とが交互重層してな
り、かつ少なくとも高屈折率の金属酸化物の1層が平均
粒径100八〜1μで結晶化している可視光透過赤外線
反射膜を設けたので、可視光を拡散し、反射鏡と組合わ
せてもフィラメントの光学像を被照面に形成することが
なく、さらに赤外線反射率の向上と反射波長域の拡大と
が得られる。
The light bulb of the present invention is formed by alternately layering a metal oxide with a low refractive index and a metal oxide with a high refractive index on the surface of a transparent glass bulb, and at least one layer of the metal oxide with a high refractive index has an average grain size. Since we have provided a crystallized visible light transmitting infrared reflective film with a diameter of 1008 to 1 μm, it diffuses visible light and does not form an optical image of the filament on the illuminated surface even when combined with a reflecting mirror. Improved reflectance and expanded reflection wavelength range can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電球の一実施例の断面図、第2図は同
じく要部拡大断面図、第3図は同じく作用説明図、第4
図は同じく分光光透過率特性のグラフである。 (1)・・・バルブ (2)・・・赤外線反射膜 (6)・・フィラメント Qυ・・・光屈折率の小さい金属酸化物(2カ・・・光
屈折率の大きい金属酸化物筒  1 図 第2図
FIG. 1 is a sectional view of one embodiment of the light bulb of the present invention, FIG. 2 is an enlarged sectional view of the main part, FIG.
The figure is also a graph of spectral light transmittance characteristics. (1)...Bulb (2)...Infrared reflective film (6)...Filament Qυ...Metal oxide with a small optical refractive index (2)...Metal oxide cylinder with a large optical refractive index 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 透明ガラスバルブの表面に低屈折率の金属酸化物と高屈
折率の金属酸化物とを父互重層してなる可視光透過赤外
線反射膜を設けてなル、少なくとも上記高屈折率の金属
酸化物の1層が平均粒径100Aないし1μで結晶化し
ていることを特徴とする電球。
A visible light transmitting and infrared reflecting film formed by alternating layers of a metal oxide with a low refractive index and a metal oxide with a high refractive index is provided on the surface of the transparent glass bulb. A light bulb characterized in that one layer of is crystallized with an average particle size of 100A to 1μ.
JP4305183A 1983-03-17 1983-03-17 Bulb Granted JPS59169054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4305183A JPS59169054A (en) 1983-03-17 1983-03-17 Bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4305183A JPS59169054A (en) 1983-03-17 1983-03-17 Bulb

Publications (2)

Publication Number Publication Date
JPS59169054A true JPS59169054A (en) 1984-09-22
JPH0522336B2 JPH0522336B2 (en) 1993-03-29

Family

ID=12653076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4305183A Granted JPS59169054A (en) 1983-03-17 1983-03-17 Bulb

Country Status (1)

Country Link
JP (1) JPS59169054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021572A1 (en) * 2000-09-07 2002-03-14 Matsushita Electric Industrial Co., Ltd. Thin film producing method and light bulb having such thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058885A (en) * 1973-09-20 1975-05-21
JPS5481688A (en) * 1977-12-13 1979-06-29 Toshiba Corp Incandescent lamp
JPS54112582A (en) * 1978-02-20 1979-09-03 Matsushita Electronics Corp Bulb
JPS57119454A (en) * 1981-01-16 1982-07-24 Tokyo Shibaura Electric Co Halogen lamp and method of producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058885A (en) * 1973-09-20 1975-05-21
JPS5481688A (en) * 1977-12-13 1979-06-29 Toshiba Corp Incandescent lamp
JPS54112582A (en) * 1978-02-20 1979-09-03 Matsushita Electronics Corp Bulb
JPS57119454A (en) * 1981-01-16 1982-07-24 Tokyo Shibaura Electric Co Halogen lamp and method of producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021572A1 (en) * 2000-09-07 2002-03-14 Matsushita Electric Industrial Co., Ltd. Thin film producing method and light bulb having such thin film
US6911125B2 (en) 2000-09-07 2005-06-28 Matsushita Electric Industrial Co., Ltd. Thin film producing method and light bulb having such thin film

Also Published As

Publication number Publication date
JPH0522336B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
JPS60258846A (en) Incandescent bulb
JPH0439854A (en) Lighting device
JPS59169054A (en) Bulb
US3528725A (en) Color temperature correction light transmitting filter
JPS59221967A (en) Bulb
JPH0521043A (en) Lighting device
JP3496498B2 (en) Incandescent light bulb
JP2550709B2 (en) Lighting equipment
JPH08315784A (en) Incandescent lamp and reflection type lighting system using this
JPS6180203A (en) Light interference body
JP2001160377A (en) Tungsten halogen lamp, headlight for automobiles, and illuminator
JPS5834680Y2 (en) incandescent light bulb
JPH0582107A (en) Halogen lamp having dichroic mirror
JPS644167Y2 (en)
JP3153254B2 (en) Lamp and manufacturing method thereof
JPH02288003A (en) Lighting apparatus
JPH0256802A (en) Light source device
JPS61225756A (en) Tubular type bulb
JPS61225758A (en) Incandescent lamp
JP2574331B2 (en) Halogen bulb
JP3102041B2 (en) Incandescent light bulb
JPH01115051A (en) Halogen lamp
JPH0560910A (en) Illuminator
JPH0439184B2 (en)
JPS61225757A (en) Tubular type bulb