JPS61225757A - Tubular type bulb - Google Patents

Tubular type bulb

Info

Publication number
JPS61225757A
JPS61225757A JP6590585A JP6590585A JPS61225757A JP S61225757 A JPS61225757 A JP S61225757A JP 6590585 A JP6590585 A JP 6590585A JP 6590585 A JP6590585 A JP 6590585A JP S61225757 A JPS61225757 A JP S61225757A
Authority
JP
Japan
Prior art keywords
bulb
visible light
tube
film
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6590585A
Other languages
Japanese (ja)
Inventor
永井 雅雄
狩野 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6590585A priority Critical patent/JPS61225757A/en
Publication of JPS61225757A publication Critical patent/JPS61225757A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 【発明の技術分野】 本発明は配光を改良した高効率電球に関し、特に複写機
用光源として好ましいものである。 〔発明の技術的背景〕 従来の複写機用ハロゲン電球は石英ガラスなどからなり
中心線に沿ってフィラメントを配設した管形バルブの内
外両面のうち少なくとも一方の面に酸化チタンなどから
なる高屈折率層およびシリカなどからなる低屈折率層を
9〜15層交互重層してなる可視光透過赤外線反射膜を
設けたもので、フィラメントから放射された光のうち可
視光は赤外線反射膜を透過して外部に放射され、赤外線
は赤外線反射膜で反射されてフィラメントに帰還してこ
れを加熱し、この結果、高効率でしかも赤外線放射が少
ない利点がある。 〔背景技術の間層点〕 大形の原稿を使用すると、原稿の縁から数1中央に寄っ
た部分に照度の低い部分が生じ、このため複写紙の側縁
部に露出不足部分が暗い線となって表われる。 〔発明の目的〕 本発明は被照射面側縁部の照度分布を均一にした管形電
球を提供することを目的とする。 〔発明の概要〕 本発明の第1は管端部において可視光透過赤外線反射膜
を構成する金属化合物の少なくとも一方を結晶化するこ
とによって赤外線反射能を失なうことなく散光性を付与
し、これによって発光効率を低下させることなく管端部
からの放射光を散乱させ、被照射面における側縁部の照
度分布を均一ならしめるものである。 本発明の第2は管端部において可視光透過赤外線反射膜
の放射側に散光膜を重ねて設けたことにより、第1発明
と同様な効果を奏するものである。 〔発明の実施例〕 本発明の詳細を図示の各実施例によって説明する。 実施例 】 本実施例は可視光透過赤外線反射膜の管端部分に可視光
拡散性を兼有させたもので、その詳細を第1図に示す。 ■は透明石英ガラスからなる直管形バルブ、■はこのバ
ルブ■の外面に形成された可視光透過赤外線反射膜、(
2a)はこの反射膜■の管端部分、に)、に)はバルブ
■の両端部を圧潰封止してなる封止部、■、■はこれら
封止部(イ)、に)内に埋設されたモリブデン導入箔、
0.■はこれら導入箔■、■に接続してバルブω内に導
入された内導線、■はこれら内導線0,0間に装架され
たタングステンコイルフィラメント、(ハ)、0・・・
はフィラメント■を支持するアンカ、■、■は導入箔■
、■に電気的に接続して封止部(イ)、(イ)の端面に
装置された端子である。そうして、バルブω内にはアル
ゴンなどの不活性ガスとともに所要のハロゲンを封入し
である。 上記可視光透過赤外線反射膜■は第2図に模型的に拡大
して示すように、バルブωの外表面に酸チタン、酸化タ
ンタルなどの金属化合物からなる高屈折率層(21)(
左上リハッチング)とシリカ、ふつ化マグネシウムなど
他の金属化合物からなる低屈折率層(22) (右上リ
ハッチング)とを9〜15層交互重層したもので、光の
干渉を利用して可視光を透過し、赤外線を反射するもの
である。そうして、この赤外線反射膜■の管端部分(2
a)、 (2a)は特に高屈折率層(21a)内にこれ
ら金属化合物の微結晶を適当に含有して可視光拡散性を
有する。そうして、低屈折率層(22a)内のこれら金
属化合物の結晶化は必ずしも必要ない。 このような可視光透過赤外線反射膜■の形成方法は種々
知られているが、−例をあげれば次のとおりである。ま
ず、バルブ■の外面全体にテトラインプロピルチタネー
トなどの有機金属化合物を所定厚さに塗布して乾燥し、
焼成してこれら金属の酸化物からなる高屈折率層(21
)を形成する。つ望いて、この層(21)表面にエチル
シリケートなどの他の有機金属化合物を所定厚さに塗布
して乾燥し、焼成してこれら金属の酸化物からなる低屈
折率層(22)を形成する。このようにして高屈折率層
(21)と低屈折率M (22)とを交互に形成して可
視光透過赤外線反射膜■に構成する。 つぎに、この赤外線反射膜■の管端部分(2a)を適当
時間バーナ焔で高温加熱して金属化合物を結晶化する。 第2図においては散点して結晶化していることを標示す
る。しかして、結晶化が過度に進むと赤外線反射能が失
なわれるので、加熱温度と加熱時間とを充分に管理する
ことができる。 つぎに1本実施例電球の作用を説明する。両端子0,0
間に通電すれば、フィラメント■は発熱して可視光とと
もに大量の赤外線を放射する。 そうして、これらの光のうち可視光は赤外線反射g■、
 (2a)を透過して外部に放射され、赤外線は赤外線
反射Jul(2)、 (2a)で反射されてフィラメン
ト■に帰還してこれを加熱し、発光効率を向上させる。 しかして、赤外線反射膜■の管端部分(2a)が散光性
を有するので、この部分(2a)を透過する可視光は適
度に散乱され、この結果、被照射面における側縁部の所
望照度範囲が若干広くなるとともに。 電球の管端に近い部位に光度が低い部分が存在するにも
かかられす、被照射面においては照度が平均化されて暗
い部分がなくなる。 この状態を第3図に示す0図は横軸に管長に沿った位置
をとり、縦軸に照度をとったもので、実線は本実施例、
破線は管端部に散光性を有しない従来例の照度分布をそ
れぞれ示す、この図からも本実施例電球の所望照度範囲
が広く、かつ管端部に暗い部分がないことが解る。 実施例 2 本実施例は第4図に示すとおり、可視光透過赤外線反射
膜(2)をバルブωの内面に形成したもので。 その他同一部分には同一符号を付して説明を省略する0
本実施例においても可視光透過赤外線反射膜■の具体構
造およびこの赤外線反射膜■の管端部分(2a)が適度
に結晶化して赤外線反射能と可視光拡散能とを併有する
こと前述の実施例1と同様である。 本実施例2のものも前述の実施例1と同様に。 被照射面における所望照度範囲が広く、かつ被照射面側
縁部の照度が平均化されて暗い部分がない。 実施例 3 本実施例は可視光透過赤外線反射膜の管端部分に散光膜
を重ねて設けたものでその詳細を第6図に示す、0)は
透明石英ガラスからなる直管形バルブ、■はこのバルブ
■の外面に形成された可視光透過赤外線反射膜、■、■
はこの赤外線反射膜■の管端部分の外面に形成された散
光膜、に)、■はバルブ中の両端部を圧潰封止してなる
封止部、■。 ■はこれら封止部に)、(イ)内に埋設されたモリブデ
ン導入箔、e、0はこれら導入箔■、■に接続してバル
ブω内に尋人された内導線、■はこれら内導線■、■間
に装架されたタングステンコイルフィラメント、■、■
・・・はこのフィラメント■を支持するアンカ、a)、
G11)は導入箔■、■に電気的に接続して封止部H)
、@)の端面に装着された端子である。そうして、バル
ブω内にはアルゴンなどの不活性ガスとともに所要のハ
ロゲンを封入しである。 上記可視光透過赤外線反射膜■は第6図に示すように、
実施例1と同様な高屈折率M (21)と低屈折率層(
22)とを9〜15層交互重層したものである。 上記散光膜■は酸化チタン、酸化タンタルなどの金属酸
化物からなる透光性連続膜体(31)内に気泡(32)
、 (32)・・・を含有したもので、要すればこのよ
うな膜体(31)を複数層重層して気泡の密度を向上さ
せてもよい。 このような散光膜■を得るにはテトラプロピルチタネー
トなどの有機金属化合物にフタル酸ジー2−エチルヘキ
シル(フタル酸ジオクチル、略称DOP)を適量添加し
て可視光透過赤外線反射膜■の管端部表面に塗布し、約
600℃の温度で焼成して、有機金属化合物が分解して
なる透光性連続膜体(31)中にDOPが分解してなる
気泡(32)を形成する。この気泡(32)はIII(
31)中に閉込められた独立気泡と外部に連通した凹孔
とからなるが、どちらも可視光を拡散する性質を有する
。 本実施例電球も前述の実施例1と同様、可視光透過赤外
線反射膜■によって赤外線が反射されてフィラメント■
に帰還するので高効率である。また、この電球の管端部
においては可視光透過赤外線反射MI■を透過した可視
光が散光膜■によって散乱されるので、管端部に光度の
低い部分があるにもかかわらず、被照射面においては照
度が平均化されて暗い部分がなくなり、さらに所望照度
範囲が若干広くなる効果がある。また、高温点灯によっ
て散光llI■が剥離し難い付帯効果がある。 本実施例 4 本実施例は第5図に示した構造において散光膜■を第7
図に示すように酸化チタン、酸化亜鉛な7どの散光性粉
末(33)をバインダとともに有機溶剤に分散させた液
を可視光透過赤外線反射1110表面に塗布して焼成し
たもので、その他同一部分には同一符号を付して説明を
略す。 本実施例も前述の実施例3と同様な作用効果がある。 実施例3および4の変形例 本変形例は第8図に示すとおり、バルブ■内面に前述と
同様な可視光透過赤外線反射膜■を形成するとともにバ
ルブ(1)の両端部外面に第6図または第7図に示した
と同様な散光!ll■、■を設けたもので、その他第5
図に示したと同一な部分には同一符号を付して説明を略
す。 本変形例もまた管端部におい°C赤外線反射膜■を透過
した可視光が散光膜■によって散乱されるので前述と同
様な理由によって有効照度縫囲が広く、かつ照度分布が
均一である。 なお、実施例3および4の変形としてバルブの内外両面
に可視光透過赤外線反射膜を設けてもよく、この場合に
は外面の赤外線反射膜表面に散光膜を設ければよい。 また、前述の各実施例はいずれも1個の長大なフィラメ
ントを配設したが本発明はこれに限らず。 たとえば複数のフィラメントを直列に離間配設してもよ
い、また、赤外線反射膜の散光性部分および赤外線反射
膜に付設する散光膜は少なくともバルブの一端部に設け
ればよい、そうして1本発明に普通管形電球にも適用し
て同様な効果がある。 〔発明の効果〕 このように、本発明の第1の管形電球は管形電球バルブ
の内外両面のうち少なくとも一方の面に設けた可視光透
過赤外線反射膜の少なくとも一方が管端部において結晶
化して赤外線反射能と可視光拡散能とを併有するので、
赤外線反射膜によって赤外線を反射してフィラメントに
帰還させて発光効率を向上し、かつ管端部において可視
光を散乱させるので、被照射面における所望照度範囲が
広くかつ照度分布が均一である。 また、本発明の第2図の管形電球は管形電球バルブの内
外両面のうち少なくとも一方の面に可視光透過赤外線反
射膜を設け、かつ管端部において赤外線反射膜の放射側
に散光膜を重ねて設けたので、第1発明と同様に赤外線
をフィラメントに帰還させて発光効率を向上し、かつ管
端部において赤外線反射膜を透過した可視光が散乱され
て被照射面における所望照度範囲が広くかつ照度分布が
均一である。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to a high-efficiency light bulb with improved light distribution, and is particularly suitable as a light source for copying machines. [Technical Background of the Invention] Conventional halogen light bulbs for copying machines include a tube-shaped bulb made of quartz glass or the like with a filament arranged along the center line, and at least one of the inner and outer surfaces of the bulb is made of high refractive material made of titanium oxide or the like. It is equipped with a visible light transmitting infrared reflective film made by alternately layering 9 to 15 low refractive index layers and low refractive index layers made of silica, etc. The visible light emitted from the filament is transmitted through the infrared reflective film. The infrared rays are reflected by the infrared reflective film and returned to the filament to heat it. As a result, it has the advantage of high efficiency and little infrared radiation. [Interlayer points in the background art] When a large original is used, a low-illuminance area appears in the area a few degrees closer to the center from the edge of the original, and as a result, the underexposed area appears as a dark line on the side edge of the copy paper. It appears as [Object of the Invention] An object of the present invention is to provide a tube-shaped light bulb that has a uniform illuminance distribution at the side edge of the illuminated surface. [Summary of the Invention] The first aspect of the present invention is to crystallize at least one of the metal compounds constituting the visible light transmitting infrared reflective film at the end of the tube, thereby imparting light scattering properties without losing infrared reflective ability. This scatters the emitted light from the end of the tube without reducing luminous efficiency, and makes the illuminance distribution uniform at the side edges of the irradiated surface. The second aspect of the present invention provides the same effects as the first aspect by providing a light scattering film overlapping the visible light transmitting infrared reflective film on the radiation side at the end of the tube. [Embodiments of the Invention] Details of the present invention will be explained with reference to the illustrated embodiments. Embodiment] In this embodiment, the tube end portion of the visible light transmitting and infrared reflecting film also has visible light diffusing properties, and the details thereof are shown in FIG. ■ is a straight tube bulb made of transparent quartz glass, ■ is a visible light transmitting infrared reflective film formed on the outer surface of this bulb (■),
2a) is the tube end portion of this reflective film ■, 2) and 2) are the sealing parts formed by crushing and sealing both ends of the bulb ■, and 2a and 2 are the insides of these sealing parts (a) and 2). embedded molybdenum introduction foil,
0. ■ is an inner conductor connected to these introduction foils ■, ■ and introduced into the bulb ω, ■ is a tungsten coil filament installed between these inner conductors 0, 0, (c), 0...
is the anchor that supports the filament ■, ■, ■ is the introduction foil■
, ■ are electrically connected to the terminals installed on the end faces of the sealing parts (A) and (A). Then, the required halogen is sealed inside the bulb ω along with an inert gas such as argon. As shown schematically and enlarged in FIG. 2, the visible light transmitting infrared reflecting film (2) has a high refractive index layer (21) made of a metal compound such as titanium oxide or tantalum oxide on the outer surface of the bulb ω.
It consists of 9 to 15 alternate layers of low refractive index layers (22) (upper right rehatching) made of silica, magnesium fluoride, and other metal compounds (upper left rehatching), and uses light interference to detect visible light. It transmits infrared rays and reflects infrared rays. Then, the tube end portion (2
Particularly, a) and (2a) suitably contain microcrystals of these metal compounds in the high refractive index layer (21a) to have visible light diffusing properties. Thus, crystallization of these metal compounds within the low refractive index layer (22a) is not necessarily necessary. Various methods are known for forming such a visible light transmitting infrared reflecting film (1), and examples thereof are as follows. First, an organometallic compound such as tetralinepropyl titanate is applied to the entire outer surface of the valve ■ to a predetermined thickness and dried.
A high refractive index layer (21
) to form. Next, another organometallic compound such as ethyl silicate is applied to the surface of this layer (21) to a predetermined thickness, dried, and fired to form a low refractive index layer (22) made of oxides of these metals. do. In this way, the high refractive index layer (21) and the low refractive index layer M (22) are alternately formed to form a visible light transmitting infrared reflecting film (2). Next, the tube end portion (2a) of this infrared reflective film (2) is heated at a high temperature with a burner flame for an appropriate period of time to crystallize the metal compound. In FIG. 2, scattered dots indicate crystallization. If crystallization progresses excessively, the infrared reflecting ability is lost, so the heating temperature and heating time can be adequately controlled. Next, the operation of the light bulb of this embodiment will be explained. Both terminals 0,0
When electricity is applied between them, the filament (■) generates heat and emits a large amount of infrared rays along with visible light. Of these lights, visible light is reflected by infrared rays,
(2a) and is emitted to the outside, and the infrared rays are reflected by the infrared reflection Jul (2) and (2a) and return to the filament (2) to heat it and improve the luminous efficiency. Since the tube end portion (2a) of the infrared reflective film (2) has a light-diffusing property, the visible light that passes through this portion (2a) is appropriately scattered, and as a result, the desired illuminance at the side edge of the irradiated surface is With a slightly wider range. Even if there are areas with low luminous intensity near the end of the bulb, the illuminance is averaged on the irradiated surface, eliminating dark areas. This state is shown in Figure 3, where the horizontal axis represents the position along the pipe length and the vertical axis represents the illuminance.
The broken lines indicate the illuminance distribution of the conventional example which does not have light scattering properties at the tube end. This figure also shows that the desired illuminance range of the light bulb of this embodiment is wide and there is no dark portion at the tube end. Example 2 In this example, as shown in FIG. 4, a visible light transmitting infrared reflecting film (2) is formed on the inner surface of the bulb ω. Other identical parts are given the same reference numerals and explanations are omitted.0
In this example as well, the specific structure of the visible light transmitting infrared reflective film (2) and the tube end portion (2a) of this infrared reflective film (2) are moderately crystallized to have both infrared reflecting ability and visible light diffusing ability. Same as Example 1. The second embodiment is similar to the first embodiment described above. The desired illuminance range on the irradiated surface is wide, and the illuminance at the side edges of the irradiated surface is averaged, so there are no dark areas. Example 3 In this example, a light diffusing film is superimposed on the tube end portion of a visible light transmitting infrared reflective film, and the details are shown in Fig. 6. 0) is a straight tube bulb made of transparent quartz glass; is the visible light transmitting infrared reflective film formed on the outer surface of this bulb ■, ■
(2) is a light-diffusing film formed on the outer surface of the tube end portion of this infrared reflecting film (2); (2) is a sealing portion formed by crushing and sealing both ends of the bulb; (2); ■ is the molybdenum introduced foil embedded in these sealing parts) and (a), e and 0 are the inner conductors connected to these introduced foils ■ and ■ and placed inside the valve ω, and ■ is inside these Tungsten coil filament installed between conductor wires ■, ■
... is an anchor that supports this filament ■, a),
G11) is electrically connected to the introduction foils ■ and ■ to seal the sealing part H)
, @) is a terminal attached to the end face. Then, the required halogen is sealed inside the bulb ω together with an inert gas such as argon. As shown in Figure 6, the visible light transmitting and infrared reflecting film ■ is as follows:
The same high refractive index M (21) and low refractive index layer (
22) and 9 to 15 layers are alternately layered. The light-diffusing film (■) has air bubbles (32) in a transparent continuous film (31) made of metal oxides such as titanium oxide and tantalum oxide.
, (32)... If necessary, a plurality of such membranes (31) may be layered to improve the density of the bubbles. To obtain such a light-diffusing film (2), an appropriate amount of di-2-ethylhexyl phthalate (dioctyl phthalate, abbreviated as DOP) is added to an organometallic compound such as tetrapropyl titanate to form a visible light-transmissive, infrared-reflective film (2) on the tube end surface. The film is coated on the substrate and fired at a temperature of about 600° C. to form bubbles (32) formed by decomposing DOP in a transparent continuous film body (31) formed by decomposing the organometallic compound. This bubble (32) is III (
31) It consists of closed cells trapped inside and concave holes communicating with the outside, both of which have the property of diffusing visible light. Similar to the above-mentioned Example 1, in this example light bulb, infrared rays are reflected by the visible light-transmitting infrared reflecting film ■, and the filament ■
It is highly efficient because it returns to In addition, at the tube end of this light bulb, the visible light that has passed through the visible light transmitting infrared reflective MI■ is scattered by the diffuser film ■, so even though there is a low luminous intensity area at the tube end, the irradiated surface In this case, the illuminance is averaged, dark areas are eliminated, and the desired illuminance range is slightly wider. Further, there is an additional effect that the diffused light llI■ is difficult to peel off due to high temperature lighting. Example 4 In this example, in the structure shown in FIG.
As shown in the figure, a liquid made by dispersing light-diffusing powder (33) such as titanium oxide or zinc oxide 7 in an organic solvent together with a binder is applied to the surface of the visible light transmitting infrared reflective 1110 and then fired. are given the same reference numerals and the explanation will be omitted. This embodiment also has the same effects as the third embodiment described above. Modifications of Examples 3 and 4 In this modification, as shown in FIG. 8, a visible light transmitting and infrared reflecting film similar to that described above is formed on the inner surface of the bulb (1), and the film shown in FIG. 6 is formed on the outer surface of both ends of the bulb (1). Or similar diffused light as shown in Figure 7! ll■,■, and other 5th
Components that are the same as those shown in the figures are designated by the same reference numerals and descriptions thereof will be omitted. Also in this modification, the visible light that has passed through the °C infrared reflective film (2) at the tube end is scattered by the light scattering film (2), so for the same reason as described above, the effective illuminance range is wide and the illuminance distribution is uniform. As a modification of Examples 3 and 4, visible light transmitting and infrared reflecting films may be provided on both the inner and outer surfaces of the bulb, and in this case, a light scattering film may be provided on the outer surface of the infrared reflecting film. Further, in each of the above-described embodiments, one long filament is provided, but the present invention is not limited to this. For example, a plurality of filaments may be arranged in series and spaced apart, and the light-diffusing portion of the infrared reflective film and the light-diffusing film attached to the infrared reflective film may be provided at least at one end of the bulb, and then one Similar effects can be obtained by applying the invention to ordinary tube-shaped light bulbs. [Effects of the Invention] As described above, in the first tube-shaped light bulb of the present invention, at least one of the visible light transmitting and infrared reflecting films provided on at least one of the inner and outer surfaces of the tube-shaped light bulb has crystallization at the tube end. Because it has both infrared reflecting ability and visible light diffusing ability,
Since the infrared reflecting film reflects infrared rays and returns them to the filament to improve luminous efficiency and scatters visible light at the end of the tube, the desired illuminance range on the irradiated surface is wide and the illuminance distribution is uniform. Further, the tube-shaped light bulb of FIG. 2 of the present invention is provided with a visible light-transmissive infrared reflective film on at least one of the inner and outer surfaces of the tube-shaped light bulb, and a diffuser film is provided on the radiation side of the infrared reflective film at the end of the tube. Since they are provided in layers, the infrared rays are returned to the filament as in the first invention to improve the luminous efficiency, and the visible light that has passed through the infrared reflective film at the end of the tube is scattered to achieve the desired illuminance range on the irradiated surface. The area is wide and the illuminance distribution is uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1rMは本発明の管形電球の第1の実施例の断面図、
第2図は同じく要部の模型的拡大断面図、第3U5!J
は同じく本発明の効果を示すグラフ、第4図は第2の実
施例の断面図、第5図は第3の実施例の断面図、第6図
は同じく要部の模型的拡大断面図、第7図は第4の実施
例の要部の模型的拡大断面図、第8図は第3および第4
の実施例の変形例である。 ■・・・バルブ ■・・・可視光透過赤外線反射膜 (22)・・・高屈折率層    (22)・・・低屈
折率層(2a)・・・結晶化した可視光透過赤外線反射
膜(21a)・・・結晶化した高屈折率層■・・・散光
g      (31)・・・透光性連続膜(32)・
・・気泡     (33)・・・散光性粉末■・・・
フィラメント
1rM is a sectional view of the first embodiment of the tube-shaped light bulb of the present invention;
Figure 2 is also a schematic enlarged sectional view of the main part, 3U5! J
4 is a sectional view of the second embodiment, FIG. 5 is a sectional view of the third embodiment, and FIG. 6 is a schematic enlarged sectional view of the main parts. FIG. 7 is a schematic enlarged sectional view of the main parts of the fourth embodiment, and FIG. 8 is a schematic enlarged sectional view of the main parts of the fourth embodiment.
This is a modification of the embodiment. ■...Bulb■...Visible light transmitting infrared reflective film (22)...High refractive index layer (22)...Low refractive index layer (2a)...Crystallized visible light transmitting infrared reflective film (21a)...Crystallized high refractive index layer ■...Scattered light g (31)...Transparent continuous film (32)
...Bubbles (33)...Diffusing powder■...
filament

Claims (2)

【特許請求の範囲】[Claims] (1)管形電球バルブの内外両面のうち少なくとも一方
の面に金属化合物からなる高屈折率層およびこれと異な
る金属化合物からなる低屈折率層を交互重層してなる可
視光透過赤外線反射膜を設けたものにおいて、上記赤外
線反射膜の少なくとも一方は上記バルブ端部において上
記金属化合物の少なくとも一方が結晶化して散光性を呈
することを特徴とする管形電球。
(1) A visible light transmitting and infrared reflecting film is formed by alternately layering a high refractive index layer made of a metal compound and a low refractive index layer made of a different metal compound on at least one of the inner and outer surfaces of the tube-shaped light bulb. A tube-shaped light bulb, characterized in that at least one of the infrared reflecting films exhibits light-diffusing properties due to crystallization of at least one of the metal compounds at the end of the bulb.
(2)管形電球バルブの内外両面のうち少なくとも一方
の面に高屈折率層および低屈折率層とを交互重層してな
る可視光透過赤外線反射膜を設けたものにおいて、上記
バルブの端部において上記赤外線反射膜の放射側に散光
膜を重ねて設けたことを特徴とする管形電球。
(2) A visible light transmitting infrared reflecting film formed by alternately layering a high refractive index layer and a low refractive index layer on at least one of the inner and outer surfaces of the tube-shaped light bulb, the end of the bulb A tube-shaped light bulb characterized in that a light-diffusing film is superimposed on the radiation side of the infrared reflecting film.
JP6590585A 1985-03-29 1985-03-29 Tubular type bulb Pending JPS61225757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6590585A JPS61225757A (en) 1985-03-29 1985-03-29 Tubular type bulb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6590585A JPS61225757A (en) 1985-03-29 1985-03-29 Tubular type bulb

Publications (1)

Publication Number Publication Date
JPS61225757A true JPS61225757A (en) 1986-10-07

Family

ID=13300442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6590585A Pending JPS61225757A (en) 1985-03-29 1985-03-29 Tubular type bulb

Country Status (1)

Country Link
JP (1) JPS61225757A (en)

Similar Documents

Publication Publication Date Title
JPS61225757A (en) Tubular type bulb
JPS61225756A (en) Tubular type bulb
US3490855A (en) Photoflash lamp having an improved color temperature characteristic
JPH0949922A (en) Ultraviolet-ray shielding filter, lamp and illuminator
JPS59221967A (en) Bulb
JPS61225755A (en) Electric bulb
JP2974193B2 (en) Metal halide lamps for automotive headlights
JPS63232264A (en) Tubular light bulb
JP2696758B2 (en) Multilayer optical interference film
JPH0945295A (en) Incandescent lamp, reflection type lighting system using same, and vehicle headlight
JP2712349B2 (en) Light reflector and tube
JP2790468B2 (en) Manufacturing method of halogen bulb
JPH0439184B2 (en)
JPH03192649A (en) Incandescent lamp
JPH0259585B2 (en)
JPS59169054A (en) Bulb
JPH0279356A (en) Incandescent lamp
JPH03283350A (en) Incandescent lamp
JPS61225758A (en) Incandescent lamp
JPH0279355A (en) Incandescent lamp
JPS62186458A (en) Halogen lamp
JPH09265961A (en) Lamp, light reflector and reflecting type lighting system
JPH0451935B2 (en)
JPH0279357A (en) Incandescent lamp
JPH08271730A (en) Optical interference film and incandescent lamp, reflection type illuminator and optical device using the same