JPS59168952A - Reproducing system of optical magnetic memory - Google Patents

Reproducing system of optical magnetic memory

Info

Publication number
JPS59168952A
JPS59168952A JP4491283A JP4491283A JPS59168952A JP S59168952 A JPS59168952 A JP S59168952A JP 4491283 A JP4491283 A JP 4491283A JP 4491283 A JP4491283 A JP 4491283A JP S59168952 A JPS59168952 A JP S59168952A
Authority
JP
Japan
Prior art keywords
light
polarization direction
frequency
phase
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4491283A
Other languages
Japanese (ja)
Other versions
JPH056742B2 (en
Inventor
Yukinori Okazaki
之則 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4491283A priority Critical patent/JPS59168952A/en
Publication of JPS59168952A publication Critical patent/JPS59168952A/en
Publication of JPH056742B2 publication Critical patent/JPH056742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Abstract

PURPOSE:To reproduce information with a high quality and a high S/N ratio simplify the adjustment by making a beam, whose polarization direction is rotated with a frequency twice or more as high as a maximum frequency of a reproducing signal, incident to an optical magnetic memory and detecting the phase of a change in the polarization direction of a reflected light or a transmitted light on a basis of the rotation frequency of the incident light to reproduce information. CONSTITUTION:A frequency twice or more as high as a maximum frequency of the reproducing signal is selected as the frequency, with which the polarization direction is rotated, in accordance with the sampling theorem. The parallel luminous flux from a laser light source 26 becomes a linearly polarized light by a polarizer 28 and is divided to diffracted lights 30 and 31 in an acoustooptic modulator 29, and they are made incident to lambda/4 plates 33A and 33B to become clockwise and counterclockwise circularly polarized lights. Two circularly polarized lights become rotating linear polarized lights by mirrors 34 and 35 and are divided to a phase detection reference signal, which is made incident to a photodetector 38, and a light, which is condensed on an optical magnetic memory medium 40 and passes the mirror 36 again and passes an analyzer 41 and a photodetector 42, by a half mirror 36, and phase comparison is performed in a phase detector 43B to reproduce information recorded on the memory 40.

Description

【発明の詳細な説明】 産業上の利用分野 4−: ゛ 本発明は、光磁気効果を用いて情報を読み出す光磁気メ
モリの再生方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field 4-: The present invention relates to a reproduction method for a magneto-optical memory that reads information using the magneto-optical effect.

従来例の構成とその問題点 近年、レーザー光を用いて情報を高密度に記録し、再生
する光メモリ装置が開発されている。特にその中でも、
膜面に垂直方向に磁化の容易軸を持ツMnB1  、7
モル77 スノTbDyFe 、 TbGdFa等の磁
性薄膜をメモリ媒体に用いた光磁気メモリは、情報の消
去がたやすく行なえる高密度記録担体として注目を集め
ている。光磁気メモリへの情報の記録方法を第1図を用
いて説明する。磁性薄膜1Fi情報を記録する以前には
第1図(イ)に示すように磁化2が膜面に垂直方向で、
媒体全面に渡って一方向を向くように磁化されている。
2. Description of the Related Art Structures of Conventional Examples and Their Problems In recent years, optical memory devices have been developed that use laser light to record and reproduce information at high density. Especially among them,
MnB1,7 has an easy axis of magnetization perpendicular to the film surface.
A magneto-optical memory using a magnetic thin film such as TbDyFe or TbGdFa as a memory medium is attracting attention as a high-density recording carrier from which information can be easily erased. A method for recording information in a magneto-optical memory will be explained using FIG. 1. Before recording information on the magnetic thin film 1Fi, the magnetization 2 was in the direction perpendicular to the film surface, as shown in Figure 1 (a).
The entire surface of the medium is magnetized so as to face in one direction.

この膜1上にレーザー光3を照射して、膜1の一部を加
熱し局部的にキュリ一点付近まで温度を上昇させると共
に、この部分を含む領域に、外部磁界4を印加して、記
録前の磁化方向と反対の方向の磁界をかけると、レーザ
ー光3が照射された部分の磁化の方向が反転し、情報が
記録される。従って情報Uベージ は磁性薄膜1上に、磁化の方向の違いとして蓄積される
。一方、蓄積された情報の読み出しも、やはりレーザー
光を磁性薄膜上に照射し、磁化の方向の違いを光学的に
検出して行なわれる。このレーザー光を用いた検出方法
は、カー効果−或いはファラデー効果を利用したもので
、磁性体に照射した光の偏光方向が、磁化の方向によっ
て変化する現象を用いている。磁性薄膜から膜に蓄積さ
れた情報によって偏光方向が変化を受けて戻ってくる再
生光には、膜からの反射光と透過光が考えられるが、反
射光、透過光とも、同じ方向の磁化に対しては、偏光方
向の変化は同じ向きに起こる。
A laser beam 3 is irradiated onto this film 1 to heat a part of the film 1 to locally raise the temperature to around the Curie point, and an external magnetic field 4 is applied to the area including this part to record the film. When a magnetic field is applied in the opposite direction to the previous magnetization direction, the magnetization direction of the portion irradiated with the laser beam 3 is reversed, and information is recorded. Therefore, the information U page is accumulated on the magnetic thin film 1 as a difference in the direction of magnetization. On the other hand, reading out the stored information is also carried out by irradiating the magnetic thin film with laser light and optically detecting the difference in the direction of magnetization. This detection method using laser light utilizes the Kerr effect or Faraday effect, and uses a phenomenon in which the polarization direction of light irradiated onto a magnetic material changes depending on the direction of magnetization. The reproduction light that returns from the magnetic thin film with its polarization direction changed by the information stored in the film can be reflected light from the film or transmitted light, but both reflected light and transmitted light are magnetized in the same direction. In contrast, the change in polarization direction occurs in the same direction.

情報の検出方法を透過光を例にとり、第2図を用いて説
明する。第2図(イ)に示すように情報が記録された磁
性薄膜5に、矢印6の方向に偏光したレーザー光7を照
射すると、透過光8は照射前の偏光方向6に対して、十
08度回転して9の方向の偏光となる。一方一第2図(
I))に示すように磁性薄膜上で、磁化の方向が逆の方
向を向いた部分に。
A method of detecting information will be described using transmitted light as an example, with reference to FIG. When the magnetic thin film 5 on which information is recorded is irradiated with a laser beam 7 polarized in the direction of the arrow 6 as shown in FIG. The light is rotated by 9 degrees and becomes polarized in 9 directions. On the other hand, Figure 2 (
As shown in I)), on the magnetic thin film, the magnetization direction is in the opposite direction.

同じく矢印6の方向に偏光したレーザー光7を照射する
と、透過光1oは偏光方向6に対して、−θに#回転し
て11の方向の偏光となる。従って検光子を用いて、こ
れら偏光方向の異なった2つの光を区別すると、偏光方
向の違いが検光子を通った光の強度の違いとなり、光電
変換を行なう墨によシ、情報が再生されるわけである。
Similarly, when the laser beam 7 polarized in the direction of arrow 6 is irradiated, the transmitted light 1o is rotated by # in -θ with respect to the polarization direction 6, and becomes polarized light in the direction of 11. Therefore, if you use an analyzer to distinguish these two lights with different polarization directions, the difference in polarization direction will result in a difference in the intensity of the light passing through the analyzer, and the information will be reproduced by the ink that performs photoelectric conversion. That's why.

上に述べた再生方法を用いた光磁気メモリよりの情報の
再生の従来例を第3図を用いて説明する。
A conventional example of reproducing information from a magneto-optical memory using the above-described reproducing method will be described with reference to FIG.

レーザー光源12よりの光はコリメート・レンズ13に
よって平行光束となり−グラン・トムソン・プリズム等
の偏光子14によって直線偏光にされ一ハーフミラー1
5を通り、集光レンズ16によって光磁気メモリ媒体1
7上に集光される。光磁気メモリ媒体17によって偏光
方向が回転した反射光は、再びハーフミラ−16を通り
、更にハーフミラ−18で2分割され、各々検光子19
人。
The light from the laser light source 12 is converted into a parallel beam by a collimating lens 13, then linearly polarized by a polarizer 14 such as a Glan-Thompson prism, and then sent to a half mirror 1.
5 and magneto-optical memory medium 1 by a condensing lens 16.
The light is focused on 7. The reflected light whose polarization direction has been rotated by the magneto-optical memory medium 17 passes through the half mirror 16 again, and is further divided into two parts by the half mirror 18, each of which is sent to an analyzer 19.
Man.

19Bを通って光検出器2OA 、20Bに受光される
。検光子19A 、 19Bはやけりグラン・トムソン
・プリズム等で構成され一各々偏波面が+θX回転した
光、−θに回転した光を消光する6、、。
The light passes through 19B and is received by photodetectors 2OA and 20B. The analyzers 19A and 19B are constructed of Glan-Thompson prisms, etc., and extinguish light whose plane of polarization has been rotated by +θX and light whose plane of polarization has been rotated by −θ, respectively.

ような位置に設定されている。光検出器2OA 。It is set in such a position. Photodetector 2OA.

20Bの出力は、差動増幅器21によって差動出力が求
められ、磁化の方向変化による偏光方向の回転成分のみ
が検出される構成になっている。
The output of 20B is a differential output obtained by a differential amplifier 21, and is configured such that only a rotational component of the polarization direction due to a change in the direction of magnetization is detected.

第3図において、光磁気メモリ媒体17よりの反射光強
度をI、とすると、ハーフミラ−18以降の検出系に入
いる光量は、ハーフミラ−15によって光量が捧になる
。検光子19A 、 19Bの角度は上述したように、
各々反射光の偏光方向が十θに度、或いは−θX#回転
した光だけを通過させるようになっている。すなわち第
4図22゜23に示した反射光の偏光方向に対し、検光
子の角度は24.25であシ、偏光方向が+θに度回転
した反射光の時、光検出器の一方に受光される光量は−
IBm2θx/2になり、他方の光検出器に受光される
光量は零となる。従って差動増幅器21の出力として得
られる再生信号の振幅はIR8石2θKに比例した値と
なる。
In FIG. 3, if the intensity of reflected light from the magneto-optical memory medium 17 is I, the amount of light entering the detection system after the half mirror 18 is reduced by the half mirror 15. As mentioned above, the angles of the analyzers 19A and 19B are
Only light whose polarization direction of reflected light has been rotated by 10 degrees or -θX# is allowed to pass through. In other words, the angle of the analyzer is 24.25 with respect to the polarization direction of the reflected light shown in Fig. 4, 22. The amount of light emitted is −
IBm2θx/2, and the amount of light received by the other photodetector becomes zero. Therefore, the amplitude of the reproduced signal obtained as the output of the differential amplifier 21 has a value proportional to IR8 2θK.

しかし一般に、偏光方向の回転角θには1°以下の値の
為、従来例の構成では光検出器に受光される光量lR5
1n2θに/2 は非常に小さくなり、光電変換過程を
経て得られる信号の8/N比は非常に悪いという欠点が
ある。又、差動出力として得られる再生信号振幅lR5
1n2θXも非常に小さな値であり、信号品質を更に低
下させている。更に、第3図の構成に於いて、検光子1
9A 、 19Bの結晶軸方向は、互いに2θ区の角度
をなすように精度よく合わせる必要が有り、θに〜1°
である事を考えると、光学系の調整が難しいという欠点
も有している。
However, in general, the rotation angle θ of the polarization direction has a value of 1° or less, so in the conventional configuration, the amount of light received by the photodetector lR5
There is a drawback that /2 becomes very small in 1n2θ, and the 8/N ratio of the signal obtained through the photoelectric conversion process is very poor. Also, the reproduced signal amplitude lR5 obtained as a differential output
1n2θX is also a very small value, further degrading the signal quality. Furthermore, in the configuration shown in FIG.
The crystal axis directions of 9A and 19B need to be precisely aligned so that they form an angle of 2θ with each other, and the crystal axes of
Considering this, it also has the disadvantage that it is difficult to adjust the optical system.

発明の目的 本発明は上記の種々の欠点に鑑みてなされたもので、光
磁気メモリ媒体に記録された情報を高品質にs/N比良
く再生し、かつ光学系の調整も簡単にできる再生方式を
提供する事を目的としている。
Purpose of the Invention The present invention has been made in view of the various drawbacks mentioned above, and provides a reproduction method that can reproduce information recorded on a magneto-optical memory medium with high quality and a good S/N ratio, and can also easily adjust the optical system. The purpose is to provide a method.

発明の構成 本発明は−レーザービームを光磁気メモリ上に照射し、
その反射光、或いは透過光を受光して一光磁気メモリ上
に磁化の変化として記録された情報を光学的に再生する
に際し、前記ビームとじて77.−□。
Structure of the Invention The present invention - irradiates a laser beam onto a magneto-optical memory;
When receiving the reflected light or transmitted light and optically reproducing information recorded as changes in magnetization on a photomagnetic memory, the beam is combined with 77. −□.

再生される情報信号が有する最高周波数の少なくとも2
倍以上の周波数で、偏光方向が回転する直線偏光を用い
一前記光磁気メモリ上に前記ビームを入射させて得られ
る光磁気メモリよりの反射光、或いは透過光の偏光方向
の変化を、入射光ビー−ムの偏光方向の回転周波数を基
準にして、位相検出を行なう事により、情報を再生する
事を特徴とするものである。
at least two of the highest frequencies that the information signal to be reproduced has;
Using linearly polarized light whose polarization direction rotates at a frequency that is more than double This method is characterized in that information is reproduced by performing phase detection based on the rotation frequency of the polarization direction of the beam.

又本発明は一前記入射光ビームの偏光方向の回転を作り
出す手段として、音響光学光変調素子を用いた事を特徴
とするものである。
Further, the present invention is characterized in that an acousto-optic light modulation element is used as a means for creating rotation of the polarization direction of the incident light beam.

実施例の説明 以下、図面を参照して本発明の一実施例を詳細に説明す
る。第6図は本発明を用いた光磁気メモリ再生装置の第
1の実施例の構成を示す図である。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 6 is a diagram showing the configuration of a first embodiment of a magneto-optical memory reproducing apparatus using the present invention.

レーザー光源26より出た光は、コリメート・レンズ2
7によって平行光束にされ、偏光子28によって紙面に
垂直方向の直線偏光になシー音響光学光変調素子29に
入いる。音響光学光変調素子29内では周波数fAの超
音波によって入射したレーザービームは回折され、互い
に同じ強度の0次回折光3oと1次回折光31に分けら
れるが−この時これら2つの光ビームの間には超音波の
周波数fムだけ周波数差ができている。この2つの光ビ
ームは一第6図の面に垂直な直線偏光のまま、32人、
32Bのミラーで反射されて、λ/4板33A 、33
Bに入射する。2つのλ/4板の結晶軸の方向は、第6
図に示したように、入射する光の偏光方向44に対して
、45°をなし、かつ互いに直交する方向、46人、4
6Bに向けられている。このように置かれたλ/4板を
通過すると、入射した直線偏光は各々右廻り、左廻りの
円偏光となる。2つの円偏光はミラー34及びハーフ・
ミラー36で光路が一致させられると、超音波の周波数
fムで回転する直線偏光となり、ハーフ・ミラー36に
入いる。ハーフ・ミラー36によって2つに分けられた
光の内−一方は検光子37を通して光検出器38に入射
し1位相検出を行なう為の参照信号となる。・・−フ・
ミラー36によって分けられたもう一方の光は、集光レ
ンズ39により、e、。
The light emitted from the laser light source 26 passes through the collimating lens 2
The light beam is converted into a parallel light beam by a polarizer 7, and is converted into a linearly polarized light perpendicular to the plane of the paper by a polarizer 28, and enters an acousto-optic light modulation element 29. Inside the acousto-optic light modulator 29, the laser beam incident on the acousto-optic light modulator 29 is diffracted by the ultrasonic wave of the frequency fA, and is divided into the 0th-order diffracted light 3o and the 1st-order diffracted light 31, each having the same intensity. There is a frequency difference by the ultrasonic frequency fm. These two light beams remain linearly polarized perpendicular to the plane shown in Figure 6.
Reflected by mirror 32B, λ/4 plate 33A, 33
incident on B. The direction of the crystal axes of the two λ/4 plates is the sixth
As shown in the figure, 46 people, 4
It is aimed at 6B. When passing through the λ/4 plate placed in this manner, the incident linearly polarized light becomes clockwise and counterclockwise circularly polarized light, respectively. The two circularly polarized lights pass through the mirror 34 and the half-
When the optical paths are matched by the mirror 36, the light becomes linearly polarized light that rotates at the ultrasonic frequency fm, and enters the half mirror 36. One of the two lights divided by the half mirror 36 passes through the analyzer 37 and enters the photodetector 38, where it becomes a reference signal for detecting one phase.・・-fu・
The other light separated by the mirror 36 is sent to e, by a condensing lens 39.

って光磁気メモリ媒体4o上に集光される。光磁気メモ
リ媒体40より反射した光は、再び・・−フミラー36
を通り、検光子41を介して光検出器42に入いる。光
検出器38の出力を移相器43人によって適当量、信号
の位相を動かし、この結果の信号を基準として、光検出
器42の出力を平衡変調器等を用いた位相検出器43B
で位相比較を行ない一ローパス・フィルター43OKよ
って、fム以上の周波数成分を除去する事によって、光
磁気メモリ媒体40上に記録された情報が再生される。
The light is focused onto the magneto-optical memory medium 4o. The light reflected from the magneto-optical memory medium 40 is again...
The light passes through the analyzer 41 and enters the photodetector 42 . The output of the photodetector 38 is shifted by a suitable amount by a phase shifter 43, and using the resulting signal as a reference, the output of the photodetector 42 is transferred to a phase detector 43B using a balanced modulator or the like.
The information recorded on the magneto-optical memory medium 40 is reproduced by performing a phase comparison and removing frequency components of f or more using a low-pass filter 43OK.

次に光ビームの偏光方向の変化の過程及び信号処理の過
程を詳細に説明する。簡単の為に、第6図の面内で、光
ビームの進行方向に垂直な方向にX軸を、第6図の紙面
に垂直な方向にy軸をとる。
Next, the process of changing the polarization direction of the light beam and the process of signal processing will be explained in detail. For simplicity, within the plane of FIG. 6, the X-axis is taken in a direction perpendicular to the traveling direction of the light beam, and the y-axis is taken in a direction perpendicular to the plane of FIG. 6.

λ/4板33A 、33Bを通過した後の各円偏光の電
場のX成分、X成分は−2つの光の強度は等しいから、
右廻り円偏光に対し 1o7. 、 左廻シ円偏光に対し。
The X component and X component of the electric field of each circularly polarized light after passing through the λ/4 plates 33A and 33B are - Since the intensities of the two lights are equal,
1o7 for right-handed circularly polarized light. , for left-handed circularly polarized light.

となる。ここでφは2つの光ビーム間の位相差を示して
いる。又各々の光ビームの周波数ωR1ωbの間には、
音響光学光変調素子によって作られた周波数差fムが存
在している。すなわちωL−ωR=2πfム ・・・・
・・・出用・・・田川・・・・・(5)である。この2
つの円偏光は−ハーフミラー36で重ね合わされると、
偏光状態はX成分が。
becomes. Here, φ indicates the phase difference between the two light beams. Also, between the frequencies ωR1ωb of each light beam,
There is a frequency difference f created by the acousto-optic light modulator. In other words, ωL-ωR=2πfm...
...Used by...Tagawa...(5). This 2
When the two circularly polarized lights are superimposed by the half mirror 36,
The polarization state is the X component.

となり、y成分が いる光を示している。検光子37がX成分のみを通す角
度に設定されていたとすると、ハーフミラ−36,検光
子37を通って、光検出器38に検出される光の強度は
、検出器が光の振動数(ωL+ωR)/2には応答しな
い為。
This indicates light with a y component. If the analyzer 37 is set at an angle that allows only the X component to pass through, the intensity of the light that passes through the half mirror 36 and the analyzer 37 and is detected by the photodetector 38 is determined by )/2 because it does not respond.

=”O(”I +cts (2rrflt、+φ))・
・・・・・・・・・・・(8)となる。ここで工。は入
射光強度を示している。
=”O(”I +cts (2rrflt, +φ))・
・・・・・・・・・・・・(8) Engineering here. indicates the incident light intensity.

一方、光磁気メモリ媒体40によって反射された光はメ
モリ上の磁化の方向によって、偏光方向が+θに或いは
−θに回転し、電場の各成分はとなる。ここでRは、光
磁気メモリ媒体4oの反射率を示している。検光子41
も37と同様、X方向の成分のみを通す角度に設定され
ていたとすると、ハーフミラ−36,検光子41を通っ
て光検出器42に検出される光の強度は、(8)式と同
様にして− 13、−ジ となる。ここでIRは光磁気メモリよシの反射光強度で
ある。(8)式で与えられる位相検出の為の参照信号の
交流成分を移相器43ムで9θ0位相を移し、この出力
と09式に示された情報信号の交流成分を、平衡変調器
等を用いた位相検出回路43Bで掛は合わせると、得ら
れる信号は S−1:セ肯(2πfAt+φ)・IR房(2πf、t
+φ±2491)・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・Dとな
る。この内筒−項は倍調波成分でありフィルター回路a
30で取シ除かれ、その結果、光磁気メモリの情報を反
映した信号 S±= + −IR癲2θX・・・・・・・・・・・印
・・・・・・・・・・(13が得られる。従って信号振
幅としては S =  18+ −S−l = In5In2θx 
  −−−−f141となる。
On the other hand, the polarization direction of the light reflected by the magneto-optical memory medium 40 is rotated to +θ or -θ depending on the direction of magnetization on the memory, and each component of the electric field is as follows. Here, R indicates the reflectance of the magneto-optical memory medium 4o. Analyzer 41
Similarly to 37, if the angle is set to allow only the component in the X direction to pass through, the intensity of the light that passes through the half mirror 36 and the analyzer 41 and is detected by the photodetector 42 is calculated as in equation (8). It becomes -13, -ji. Here, IR is the intensity of reflected light from the magneto-optical memory. The AC component of the reference signal for phase detection given by equation (8) is shifted by 9θ0 phase using a phase shifter 43, and this output and the AC component of the information signal shown in equation 09 are transferred to a balanced modulator, etc. When the phase detection circuit 43B used is multiplied by
+φ±2491)・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・D. This inner cylinder term is a harmonic component, and the filter circuit a
30, and as a result, the signal S±= + -IR2θX reflecting the information of the magneto-optical memory is... 13 is obtained. Therefore, the signal amplitude is S = 18+ -S-l = In5In2θx
-----It becomes f141.

本発明を用いて得られる信号振幅In5in2θI と
The signal amplitude In5in2θI obtained using the present invention.

従来例の構成で得られる信号振幅In5In20!を比
較すると1通常θに〜1°である為。
Signal amplitude In5In20 obtained with the conventional configuration! Comparing 1 to θ is usually ~1°.

S石20!/S石 2θに〜6o  ・・・・・・・・
・・・・・・・・・・・・・(珈となシ1本発明を用い
た再生の方が約60倍、信号振幅が増大する事がわかる
。又光検出器42に受光される光量も、従来例の場合l
R51n2θ、/2と非常に少なかったのに対し1本方
式の場合、Ql)式で表わされるように平均強度IRで
あり、約106倍の光強度となり、光電変換過程での信
号品質の16 2、 ベト苧〕! 劣化がなくなっている。さらに上述の説明に於いて、検
光子37.及び41の設定角度はどちらもX方向とした
が、実際には移相器43人の移相量を調整する事で設定
角度の補正ができる為、検光子の設定角度は任意の方向
でよい事になり、本方式を用いた場合、検光子の調整は
全く不必要になるO 本発明は、光磁気メモリに時間と共に偏光方向が変化す
る光を入射させ、光磁気メモリによる偏光方向の微小な
変化を、測定される信号の位相の変化として検出するも
のであシ、偏光方向を回転させる周波数は、サンプリン
グ定理より、再生される情報信号が有する最高の周波数
に対して、少なくとも2倍以上に選ぶ必要がある。上述
の実施例のように偏光方向が回転する光を作シ出す手段
として音響光学光変調素子を用いた場合、回転周波数を
与える超音波の周波数fムは80M)[z程度にとる事
ができ、40 M Hzまでの情報信号に対して本発明
の再生方式を用いる事が可能である。
20 S stones! /S stone 2θ~6o・・・・・・・・・
It can be seen that the signal amplitude increases by about 60 times in the reproduction using the present invention.Also, the light received by the photodetector 42 The amount of light is also l in the case of the conventional example.
R51n2θ, /2 was extremely small, whereas in the case of the single-wire system, the average intensity IR was approximately 106 times the light intensity, as expressed by the equation Ql), and the signal quality in the photoelectric conversion process was 16 2 , Beto ramie]! No more deterioration. Furthermore, in the above description, analyzer 37. The set angles of 41 and 41 were both in the X direction, but in reality, the set angles can be corrected by adjusting the amount of phase shift of the phase shifter 43, so the set angle of the analyzer can be set in any direction. Therefore, when this method is used, adjustment of the analyzer is completely unnecessary.The present invention allows light whose polarization direction changes with time to enter the magneto-optical memory, and allows the magneto-optical memory to adjust the polarization direction slightly. This method detects changes in the phase of the signal being measured as changes in the phase of the signal being measured.According to the sampling theorem, the frequency at which the polarization direction is rotated is at least twice the highest frequency of the information signal to be reproduced. You need to choose. When an acousto-optic light modulator is used as a means for producing light whose polarization direction is rotated as in the above embodiment, the frequency f of the ultrasonic wave that provides the rotational frequency can be set to approximately 80M)[z. , it is possible to use the reproduction method of the present invention for information signals up to 40 MHz.

本発明を用いた第2の実施例の構成を第7図に示す。こ
れは前記の第1の実施例よりもレーザー光の利用効率を
高め、同時に光学系企簡単にしたものである。音響光学
光変調素子より出た0次回折光30は第7図の面に垂直
なS偏波として偏光ビームスプリッタ−46に入り、全
反射される。
The configuration of a second embodiment using the present invention is shown in FIG. This improves the utilization efficiency of laser light compared to the first embodiment, and at the same time simplifies the design of the optical system. The 0th order diffracted light 30 emitted from the acousto-optic light modulator enters the polarizing beam splitter 46 as an S-polarized wave perpendicular to the plane of FIG. 7, and is totally reflected.

一方、−次回折光31はλ/2鈑47によってP偏波と
なり−ミラ−48によって、やはり偏光ビームスプリッ
タ−46に入り、全透過される。偏光ビームスプリッタ
−46より出た互いに偏波面が直交した2つの光は、結
晶軸方向が、入射する2つの光の偏光方向と46° を
なす方向に置かれたλ/4板49によって、右廻り、及
び左蜘りの円偏光になると同時に重ね合わされ回転する
直線偏光が形成される。この第2の実施例によると前記
第1の実施例のハーフ・ミラー35に於いて発生してい
た光量のロスがなくなり一部より簡単な光学系となる。
On the other hand, -order diffracted light 31 becomes P-polarized by the λ/2 plate 47, enters the polarizing beam splitter 46 by the -mirror 48, and is completely transmitted. The two lights whose polarization planes are orthogonal to each other emitted from the polarizing beam splitter 46 are split to the right by a λ/4 plate 49 whose crystal axis direction is set at 46° with the polarization direction of the two incident lights. At the same time, linearly polarized light that is superimposed and rotated is formed as circularly polarized light that rotates around and to the left. According to the second embodiment, the loss of light amount that occurred in the half mirror 35 of the first embodiment is eliminated, resulting in a partially simpler optical system.

本発明を用いた第3の実施例の構成を第8図に示す。こ
れは前記第1の実施例よりも安定に参照信号を得るよう
にし友ものである。ハーフ・ミラ17、−ジ ー36より出た光の内−一部の光がミラー60ム。
The configuration of a third embodiment using the present invention is shown in FIG. This allows the reference signal to be obtained more stably than in the first embodiment. Half-mirror 17, some of the light emitted from G-36 is mirror 60m.

50Bを通って、集光レンズ39と共に、光磁気メモリ
ー媒体4oの表面の凹凸に追随して動くミラー51上に
入射している。ミラー61からの反射光が検光子52を
通って光検出器63に受光され、光電変換されて得られ
る信号が位相検出の為の参照信号として用いられている
。この構成によると、光磁気メモリ媒体の表面の凹凸に
寄因する参照信号と情報信号の間の時間的な遅れ量の変
化がなくなり、カー回転による位相変化以外は参照信号
と情報信号は一定の位相差にする事が可能になり1位相
検出がより安定になる。
The light passes through 50B and is incident on the mirror 51, which moves along with the condenser lens 39 to follow the irregularities on the surface of the magneto-optical memory medium 4o. The reflected light from the mirror 61 passes through the analyzer 52 and is received by the photodetector 63, and the signal obtained by photoelectric conversion is used as a reference signal for phase detection. With this configuration, there is no change in the amount of time delay between the reference signal and the information signal due to unevenness on the surface of the magneto-optical memory medium, and the reference signal and the information signal remain constant except for phase changes due to Kerr rotation. It becomes possible to use a phase difference, making single-phase detection more stable.

発明の詳細 な説明したように、本発明を用いると光磁気メモリよシ
の情報の再生に於いて、信号光量が例えば約10倍、再
生信号振幅も約60倍という高い品質で信号が再生され
一同時に検光子の微調整を全く必要としない光学系も実
現される。
As described in detail about the invention, when the present invention is used to reproduce information from a magneto-optical memory, the signal can be reproduced with high quality, for example, about 10 times the amount of signal light and about 60 times the amplitude of the reproduced signal. At the same time, an optical system that does not require any fine adjustment of the analyzer can also be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光磁気メモリの記録過程原理を示す斜18、、
、−ジ 視図、第2図は光磁気メモリの再生過程原理を示す側面
図、第3図は従来の光磁気メモリ再生方式の構成を示す
ブロック図、第4図は従来例の再生方式に於ける偏光方
向の状態を説明する図、第6図は本発明の光磁気メモリ
再生方式の第1の実施例を示すブロック図、第6図は本
発明の同実施例に於ける偏光方向の状態を説明する図、
第7図は本発明の第2の実施例を示すブロック図、第8
図は本発明の第3の実施例を示すブロック図である。 26・・・・・・L/−f−i源’−27・・・・・・
コリメートレンズ、28・・・・・・偏光子、29・・
・・・・音響光学光変調素子−30・・・・・・0次回
折光、31・・・・・・1次回折光。 32ム、32B・・・・・・ミラー+33ム、33B・
・団・λ/4板、34・・・・・・ミラー−35,36
・・・・・・ハーフミラ−537・・・・・・検光子、
38・・・・・・光検出器、39・・・・・・集光レン
ズ−40・・・・・・光磁気メモリ媒体、41・・・・
・・検光子、42・・・・・・光検出器、43ム・・・
・・・移相器、43B・・・・・・位相検出器、43C
・・・・・・ローパスフィルター、44・・・・・・偏
光方向、46ム、46B・・・・・・λ/4板の結晶軸
方向、46・・・・・・偏光ビームス″−ペーゾ 7’ IJフッタ147・・・・・・λ/2根−4g・
・・・・・ミラー−49−−−−・・λ/4鈑−5OA
 、50B−−−−−ベラ−−s 1・・・・・ベラ−
152・・・・・・検光子、53・・・・・・光検出器
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (イ) (ロジ 第2図 (イ)                (ロ)第4図 ?3 第5図 第6図 第8図 導β    43Q
Figure 1 shows the principle of the recording process of magneto-optical memory.
Fig. 2 is a side view showing the principle of the reproducing process of magneto-optical memory, Fig. 3 is a block diagram showing the configuration of a conventional magneto-optical memory reproducing method, and Fig. 4 is a diagram of the conventional reproducing method. 6 is a block diagram showing the first embodiment of the magneto-optical memory reproducing method of the present invention. FIG. 6 is a diagram explaining the state of the polarization direction in the same embodiment of the present invention. A diagram explaining the state,
FIG. 7 is a block diagram showing a second embodiment of the present invention;
The figure is a block diagram showing a third embodiment of the present invention. 26...L/-f-i source'-27...
Collimating lens, 28...Polarizer, 29...
...Acousto-optic light modulation element-30...0th order diffracted light, 31...1st order diffracted light. 32mm, 32B... Mirror + 33mm, 33B.
・Group・λ/4 plate, 34...Mirror-35, 36
...Half mirror-537...Analyzer,
38...Photodetector, 39...Condensing lens-40...Magneto-optical memory medium, 41...
...Analyzer, 42...Photodetector, 43m...
... Phase shifter, 43B ... Phase detector, 43C
......Low pass filter, 44...Polarization direction, 46M, 46B...Crystal axis direction of λ/4 plate, 46...Polarized beams''-Pezo 7' IJ footer 147...λ/2 root -4g・
...Mirror-49----...λ/4 plate-5OA
, 50B------Bella--s 1...Bella-
152...Analyzer, 53...Photodetector. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (A) (Logic Figure 2 (A) (B) Figure 4?3 Figure 5 Figure 6 Figure 8 Guide β 43Q

Claims (2)

【特許請求の範囲】[Claims] (1)磁性薄膜の膜面に垂直方向の磁化の変化として記
録された情報を光ビームにより読み取る際。 光ビームとして再生される情報信号が有する最高周波数
の少なくとも2倍以上の周波数で、偏光方向が回転する
直線偏光ビームを用い、前記磁性薄膜上に前記光ビーム
を入射させて得られる磁性薄膜からの反射光、或いは透
過光の偏光方向の変化を、入射光ビームの偏光方向の回
転周波数を基準にして位相検出する事によって。 前記情報を再生する事を特徴とする光磁気メモリ再生方
式。
(1) When reading information recorded as changes in magnetization perpendicular to the film surface of a magnetic thin film using a light beam. A linearly polarized beam whose polarization direction is rotated at a frequency that is at least twice the highest frequency of an information signal reproduced as a light beam is used, and the light beam is incident on the magnetic thin film. By detecting the phase of changes in the polarization direction of reflected light or transmitted light based on the rotation frequency of the polarization direction of the incident light beam. A magneto-optical memory reproducing method characterized by reproducing the information.
(2)回転する直線偏光を作り出す手段として、音響光
学光変調素子を用いた墨を特徴とする特許請求範囲第1
項記載の光磁気メモリ再生方式。
(2) Claim 1, which is characterized by black ink using an acousto-optic light modulation element as a means for producing rotating linearly polarized light.
Magneto-optical memory reproducing method described in .
JP4491283A 1983-03-17 1983-03-17 Reproducing system of optical magnetic memory Granted JPS59168952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4491283A JPS59168952A (en) 1983-03-17 1983-03-17 Reproducing system of optical magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4491283A JPS59168952A (en) 1983-03-17 1983-03-17 Reproducing system of optical magnetic memory

Publications (2)

Publication Number Publication Date
JPS59168952A true JPS59168952A (en) 1984-09-22
JPH056742B2 JPH056742B2 (en) 1993-01-27

Family

ID=12704667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4491283A Granted JPS59168952A (en) 1983-03-17 1983-03-17 Reproducing system of optical magnetic memory

Country Status (1)

Country Link
JP (1) JPS59168952A (en)

Also Published As

Publication number Publication date
JPH056742B2 (en) 1993-01-27

Similar Documents

Publication Publication Date Title
WO1980001016A1 (en) Magneto-optical anisotropy detecting device
JP2706128B2 (en) Magneto-optical reproducing device
JPS6145439A (en) Reading method and apparatus of optical signal
JPS59203259A (en) Optical magnetic disc device
JPH0363139B2 (en)
JPS59168952A (en) Reproducing system of optical magnetic memory
JPS63100640A (en) Magneto-optical reproducing device
JPS5992457A (en) Optical reproducer
JP2797618B2 (en) Recording signal reproducing apparatus for magneto-optical recording medium
JP3083894B2 (en) Optical playback device
JPS59157856A (en) Reproduction structure for photomagnetic information recorder
JP2657959B2 (en) Detecting device for detecting optical transition in magneto-optical storage device
JPH0542741B2 (en)
JPS62134839A (en) Optical magnetic reproducing device
JPS61198458A (en) Method for reproducing magnetooptic information
JPS61233444A (en) Optical reproducing device
JP2574916B2 (en) Optical device for reproducing magneto-optical recording media
JPS60223044A (en) Photomagnetic reproducer
JPH043575B2 (en)
JPS61165845A (en) Optical reproducer
JPH053666B2 (en)
JPS6318550A (en) Optical head for magneto-optical disk
JPS6095744A (en) Method for optomagnetic recording and reproduction
JPH03256251A (en) Method and device for reproducing magneto-optical disk
JPH0240153A (en) Magneto-optical pickup device