JPS59168712A - Method for bonding terminal of crystal oscillator - Google Patents

Method for bonding terminal of crystal oscillator

Info

Publication number
JPS59168712A
JPS59168712A JP4185683A JP4185683A JPS59168712A JP S59168712 A JPS59168712 A JP S59168712A JP 4185683 A JP4185683 A JP 4185683A JP 4185683 A JP4185683 A JP 4185683A JP S59168712 A JPS59168712 A JP S59168712A
Authority
JP
Japan
Prior art keywords
holding member
crystal
bonding
face
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4185683A
Other languages
Japanese (ja)
Inventor
Naoya Ohira
大平 尚哉
Shigenori Watanabe
渡辺 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP4185683A priority Critical patent/JPS59168712A/en
Publication of JPS59168712A publication Critical patent/JPS59168712A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To improve the reliability and stability by bonding terminals of a crystal oscillator with use of the thermal pressing method and the ultrasonic wave welding method in combination so as to improve the bonding strength. CONSTITUTION:Metallic thin films 3, 2a are adhered to a holding member bonding face and a head face bonding a head 2 on a crystal raw material plate. Then, a metallic thin film 13 is inserted between the holding member bonding face and the head face. Further, the head face is pressed to the holding member bonding face while the holding member face is heated by an electric heater 12. Simultaneously, an ultrasonic wave vibration is applied from the holding member side by using an ultrasonic wave welding horn 11, and the head part is bonded to the crystal raw material plate 4. The metallic films 3, 2a are adhered with gold, silver or aluminum in the thickness of 500Angstrom -10,000Angstrom by means of the sputtering, and the heating temperature is 200-500 deg.C and the pressure is 100- 500g for the pressing. Then, the vibration is applied for about 2sec in frequencies 20-60kHz at 1-5W of output. Thus, the tensile strength is over 1kg.

Description

【発明の詳細な説明】 本発明は、水晶振動子の端子接着方法に係るもので、従
来にない優れた電気的1機械的性能を有する水晶振動子
の端子接着方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of bonding terminals of a crystal resonator, and more particularly, to a method of bonding terminals of a crystal resonator having unprecedented electrical and mechanical performance.

一般に通信機器等に用いられる水晶振動子は、装置の心
臓部ともいうべきもので、2その高安定性と高信頼性が
要求される。特に長時間にわたる周波数゛安定度は、装
置全体の性能を大きく左右する重要な問題であり、一層
の向上が望まれている。
A crystal resonator generally used in communication equipment and the like is the heart of the device, and requires high stability and reliability. In particular, frequency stability over a long period of time is an important issue that greatly affects the performance of the entire device, and further improvement is desired.

この長時間にわたる周波数の安定性を得るために、通常
水晶振動子を容器内に封入し、この容器内部を一定の高
真空に保つ方法がとられる。−・定の高真空に保つため
には封入後における水晶や内部部品からのガスの脱着を
防ぐことが必要となり、そのためには振動子を真空封入
する際高温高真空中で長時間ベーキングする方法が最も
効果的である。
In order to obtain frequency stability over a long period of time, a method is generally used in which a crystal resonator is enclosed in a container and the interior of the container is maintained at a constant high vacuum. - In order to maintain a constant high vacuum, it is necessary to prevent the desorption of gas from the crystal and internal parts after the oscillator is sealed. To do this, there is a method of baking the resonator for a long time in a high temperature and high vacuum when vacuum encapsulating it. is the most effective.

ところで、従来の水晶振動子の端子接着方法は、水晶素
板丘の保持部材接着面にフリットガラス入りの銀導電塗
料を焼付けた後、その上に端子と電気的に接続した保持
部材を半田付けすることによって支持されている。この
半田付は端子接着方法は従来の接着法のうちでは強度が
最も大きく、工法も簡単でかつ信頼性も比較的高いこと
から広く採用されている。しかしながらこの方法は半1
,1(を用いるため水晶振動子を真空封入する際に半I
JH付けの融点以上の高温度で真空ベーキングができな
いため、長時間にわたる周波数安定性の確\ 保に限界があった。
By the way, the conventional method for bonding the terminals of a crystal resonator is to bake a silver conductive paint containing frit glass onto the holding member adhesive surface of the crystal base plate, and then solder the holding member electrically connected to the terminals on top of it. It is supported by This soldering terminal bonding method is widely used because it has the highest strength among conventional bonding methods, is simple, and has relatively high reliability. However, this method is half
, 1 (half-I) when vacuum sealing the crystal resonator.
Since vacuum baking cannot be performed at a temperature higher than the melting point of JH, there is a limit to ensuring long-term frequency stability.

゛  真空ベーキング時の加熱温度をEげる試みとして
半LIJ伺けを用いない種々の接着法が開発されつつあ
り、その代表例としてベルテし・フォン研究所では蒸着
薄膜に熱圧着させて振動子を支持するJ法か1川光され
実用化されている(IEEE Transaction
 VOL、 LM−17No、I  P、7e 〜79
cl’!388>参照)。この熱圧着法で支持した場合
は500℃の高真空中でベーキー/グが可能となり長時
間の周波数安定性が得られる。しかしながら、この方法
は熱圧着される68分の温度が高温にするため、熱膨張
による水晶の破砕が度々化し、又、部分加熱による水晶
の双晶化、支持強度か小さい等の点で欠点があった。
゛ In an attempt to increase the heating temperature during vacuum baking, various bonding methods that do not use semi-LIJ are being developed.As a representative example, the Berthe-Shi-Phong Research Institute has created a vibrator by thermocompression bonding to a vapor-deposited thin film. The J method that supports
VOL, LM-17No, IP, 7e ~79
cl'! 388>). When supported by this thermocompression bonding method, baking/grinding can be performed in a high vacuum at 500° C., and long-term frequency stability can be obtained. However, this method has disadvantages in that the temperature for 68 minutes of thermocompression bonding is high, resulting in frequent fracture of the crystal due to thermal expansion, twinning of the crystal due to partial heating, and low support strength. there were.

又、半田を用いない接着法として、超音波溶接法も開発
されている。この方法には種々のものがあるか一例とし
て、特公昭50−25428号公報に記載されたものが
ある。これは水晶素板上の接着部に水晶と密着力の優れ
たニクロム合金、銅、アルミニウムの真空蒸着層からな
る超音波溶接薄膜を形成し、その上に支持金属としてニ
ッケル板とアルミニウム板からなる合金を軽く密着せし
め、該合板の丘から超音波溶接機のフォーンを当て超音
波振動を加えることによって前記支持合板を前記溶接薄
膜に爆接している。この超音波溶接法は、強度の点でも
前記熱圧着法より優れているといわれるが、機械的振動
の多い場所で使用する信頼性の高い水晶振動子を得るた
めには、強度の点でかならずしも満足できるものではな
かった。
Additionally, an ultrasonic welding method has been developed as an adhesive method that does not use solder. There are various methods for this, and one example is the method described in Japanese Patent Publication No. 50-25428. This involves forming an ultrasonic welding thin film consisting of a vacuum-deposited layer of nichrome alloy, copper, and aluminum, which has excellent adhesion to the crystal, on the adhesive part on the crystal base plate, and on top of this a nickel plate and an aluminum plate as supporting metals. The supporting plywood is brought into explosive contact with the welding thin film by lightly adhering the alloy and applying ultrasonic vibrations by applying a horn of an ultrasonic welding machine to the top of the plywood. This ultrasonic welding method is said to be superior to the thermocompression bonding method in terms of strength, but in order to obtain a highly reliable crystal resonator for use in places with a lot of mechanical vibration, It wasn't satisfying.

そこで、本発明は、前記熱圧着法と超音波溶接法を併4
用して接着を行うことにより、熱圧着、超音波溶接のい
ずれか一方のみでは得ることのできない接着強度が大き
く、信頼性、安定性の高い水晶振動子を提供することを
目的とする。
Therefore, the present invention combines the thermocompression bonding method and the ultrasonic welding method.
The purpose of the present invention is to provide a crystal resonator with high adhesive strength, reliability, and stability that cannot be obtained by either thermocompression bonding or ultrasonic welding alone.

次に、本発明に係る超音波熱圧着法による水晶振動子の
実施例を図面を用いて詳細に説明する。
Next, an example of a crystal resonator manufactured by the ultrasonic thermocompression method according to the present invention will be described in detail with reference to the drawings.

第1図(a)は本発明に係る超音波熱圧着法を用いて保
持部材の一部たる支持線を水晶素板に接着した水晶振動
子を示す斜視図で、同図(b>は水晶!i′板と支持線
ヘッド部の接着部分を示す断面図でめ、る。図において
、lは保持部材の一部たる支持線で、リン青銅線からな
る。2は支持線のへ・ンド部で、支持線と同様リン青銅
からなるが同図(a)に示すように、1y;、ヘッド部
2の表面(以ド(ヘッド部面Jとする。)上には真空蒸
着あるいはスパッタリングで厚:! 500λ〜100
00人の金、銀。
FIG. 1(a) is a perspective view showing a crystal oscillator in which a support wire, which is a part of a holding member, is adhered to a crystal plate using the ultrasonic thermocompression bonding method according to the present invention; !I' is a cross-sectional view showing the adhesive part of the plate and the support wire head. In the figure, l is a support wire that is a part of the holding member and is made of phosphor bronze wire. 2 is the support wire head. The part is made of phosphor bronze like the support wire, but as shown in FIG. Thickness:!500λ~100
00 gold and silver.

アルミニウム等の金属薄膜2aを付着せしめている。4
はATカット等による水晶素板で、3は水晶素板4J:
に形成されかつ電極と電気的に接続された金属薄膜であ
る。金属薄膜3は真空蒸着あるいはスパッタリ〉・グ等
の技術で厚さ500人〜 10000人の金、銀、アル
ミニウム等の金属層を付着せしめたものである。6は保
持部材で導電金属からなり、保持部材6はろう材5で保
持部材6の一部たる支持線1に接着されている。8は端
子でその周囲に保持部材6を巻着している。9は端子8
の支持部で、金属性基台10から端子8を電気的に絶縁
支持するためガラス材からなる。支持線lと保持部材6
の接続部は金メッキ7を施し支持線1と保持部6とのろ
う付け5の接着を良くしている。13は金属薄膜2aと
、金属薄膜3を接着するため両者の間に形成される金属
薄板である。
A thin metal film 2a of aluminum or the like is attached. 4
is a crystal blank made by AT cutting etc. 3 is a crystal blank 4J:
It is a thin metal film formed on the substrate and electrically connected to the electrode. The metal thin film 3 is made by depositing a metal layer of gold, silver, aluminum, etc. with a thickness of 500 to 10,000 layers using techniques such as vacuum deposition or sputtering. A holding member 6 is made of a conductive metal, and the holding member 6 is bonded to a support wire 1, which is a part of the holding member 6, with a brazing material 5. 8 is a terminal around which the holding member 6 is wrapped. 9 is terminal 8
The support part is made of glass material in order to electrically insulate and support the terminal 8 from the metal base 10. Support line l and holding member 6
The connecting portion is plated with gold 7 to improve the adhesion of the brazing 5 between the support wire 1 and the holding portion 6. Reference numeral 13 denotes a thin metal plate formed between the thin metal film 2a and the thin metal film 3 to bond them together.

第2図(a)、(b’)は支持線1を水晶素板4に接着
する方法を示す簡略図で、■は第1図と同様支持線、2
はヘッド部、2aは真空蒸着あるいはスパッタリング等
でヘッド部の表面−Eに付着せしめた厚さ 500人〜
 10000人の金、銀、アルミニウム等からなる金属
薄膜、3は真空蒸着あるいはスパッタリング等で氷晶素
板4に付着せしめた厚さ5Hλ〜 10000人の金、
銀、アルミニウム等からなる金属薄膜、4は水晶素板で
ある。13はヘッド部2と水晶素板4の間に挿入される
金属薄板である。11は超音波溶接ホーンで、20〜6
0KH2の振動数で超音波振動を加えるものである。1
2は電気ヒータで、水晶素板4や支持線1等を200〜
500°Cに加熱するためのものである。
Figures 2 (a) and (b') are simplified diagrams showing the method of bonding the support line 1 to the crystal blank 4, where ■ is the same as in Figure 1, the support line 2 is
2a is the thickness attached to the head surface -E by vacuum evaporation or sputtering, etc. 500 people ~
10,000 thick metal thin film made of gold, silver, aluminum, etc.; 3 is gold with a thickness of 5Hλ ~ 10,000 thick adhered to the ice crystal base plate 4 by vacuum evaporation or sputtering;
A metal thin film made of silver, aluminum, etc., and 4 a crystal blank plate. Reference numeral 13 denotes a thin metal plate inserted between the head portion 2 and the crystal blank 4. 11 is an ultrasonic welding horn, 20-6
Ultrasonic vibration is applied at a frequency of 0KH2. 1
2 is an electric heater, which heats the crystal base plate 4, support wire 1, etc. from 200~
It is for heating to 500°C.

そして、水晶素板4と支持V;Alとの接着は以下のよ
うに作なねれる。即ち、第2図(a)において、金属薄
板13をヘット部2と水晶素板4との間に挿入し、この
接着部分を水晶素板4の下部から電気ヒータ12で20
0〜500 ℃に加熱し、保持イ°;8材1側から超名
波爆接ポーン11にてヘッド部2に圧力を加えなから2
秒間程度超音波振動を加えるとへ・ラド部面1:の金属
薄膜2aと金属薄板13と金属薄膜3の間に振動エネル
ギーと加熱エネルギーさらに圧ろエネルギーが同時に加
わり、ヘッド部2の金属薄膜2aと金属薄板13と金属
薄膜3が溶着することになる。
Then, the bonding between the crystal blank 4 and the support V; Al is made as follows. That is, in FIG. 2(a), a thin metal plate 13 is inserted between the head part 2 and the crystal blank 4, and the adhesive part is heated from the bottom of the crystal blank 4 by an electric heater 12 for 20 minutes.
Heat to 0 to 500°C and hold; 8 Do not apply pressure to the head part 2 from the material 1 side with the ultrasonic explosion welding pawn 11.
When ultrasonic vibration is applied for about seconds, vibration energy, heating energy, and pressure energy are simultaneously applied between the metal thin film 2a of the head part 1: and the metal thin film 13, and the metal thin film 2a of the head part 2 is applied. Then, the thin metal plate 13 and the thin metal film 3 are welded together.

なお、ここで、?属薄板3上のへ、ンド部と接着される
部分を保持、部材接着面とする。
By the way, here? The part on the metal thin plate 3 that is to be bonded to the end portion is held and serves as the member bonding surface.

第21)U(b)はヘッド部2が円錐形状をしている場
合の実施例で、3aは水晶との密着性がすぐれているク
ローム層であり、金属薄膜3と水晶素板4の間に形成さ
れている。
21) U(b) is an embodiment in which the head portion 2 has a conical shape, and 3a is a chrome layer that has excellent adhesion to the crystal, and is between the metal thin film 3 and the crystal base plate 4. is formed.

ここで、支持線lの直径0.09〜0.2oooφ、ヘ
ッド2の直径0.3〜O’、5mmφ、金属薄膜2a、
3をアルミニウムとし、かつその厚コ0.5〜1.5−
とじ、加熱温度200〜500℃、へ・ンド部2に加え
る圧力100〜500g、出力1〜5Wで周波数20〜
60KH2の超音波溶接ホーン11を用いて、約2秒間
振動させて本発明に係る超音波熱圧着させた場合、その
引っ張り強度は1Kg以Eとなる。この引っ張り強度は
超音波溶接のみの場合及び熱圧りのみの場合より大きく
なる。また経年変化も85°Cの7晶度でΔf=±I 
X 10  /+nonthと小さく、クリスタルイン
ピーダンスの温度特性の変化ΔRも従来品の1/2以下
に抑えることができる。ざらに温度係数も従来品の80
%程度となる。
Here, the diameter of the support line l is 0.09 to 0.2 oooφ, the diameter of the head 2 is 0.3 to O', 5 mmφ, the metal thin film 2a,
3 is aluminum, and its thickness is 0.5 to 1.5-
Stapling, heating temperature 200-500℃, pressure applied to the head/end section 2 100-500g, output 1-5W, frequency 20-500℃.
When ultrasonic thermocompression bonding according to the present invention is performed using a 60 KH2 ultrasonic welding horn 11 and vibrated for about 2 seconds, the tensile strength is 1 Kg or more. This tensile strength is greater than that in the case of only ultrasonic welding and the case of only hot pressing. Also, the aging change is Δf=±I at 85°C and 7 degrees of crystallinity.
X 10 /+nonth, which is small, and the change ΔR in the temperature characteristics of the crystal impedance can be suppressed to 1/2 or less of that of conventional products. The temperature coefficient is roughly 80 compared to the conventional product.
It will be about %.

なお、本発明は上記の一実施例のみに適用されるもので
はなく、他の水晶振動子、たとえば、音叉形水晶振動子
、ATカット水晶振動子、セラミンクスサポータ振動子
、高安定水晶振動子、フンベンクス型振動子、はり合わ
せた屈曲振動子にも同様に適用できることは言うまでも
ない。
Note that the present invention is not applied only to the above-mentioned embodiment, but can also be applied to other crystal resonators, such as tuning fork crystal resonators, AT-cut crystal resonators, ceramic supporter resonators, and highly stable crystal resonators. Needless to say, the present invention can be similarly applied to Hunbenx-type vibrators, and bonded bending vibrators.

以上詳細に説明したように、本発明は、水晶素板と、水
晶素板に接着するヘッド部を有する保持部材とを接着す
る水晶振動子の端子接着方法において、水晶素板上のヘ
ッド部を接着する保+4部材接着面とヘッド部面とに金
属薄膜を付着させ、保持部材接着面と−ラド部面との間
に金属薄板を挿入し、保持部材接着面を加熱しながらヘ
ッド部面を保持部材接着面側に圧着しつつ、保持部材側
から超音波溶接ホーンを用いて超音波振動を加え、ヘッ
ド部を水晶素板に接着することとしたので、従来の超音
波溶接のみの接着方法や熱圧着のみの接着方法に比べ、
接着部分の引っ張り強度は強くなり、水晶振動子の経年
変化、クリスタルインピーダンス値、温度係数を改善す
ることができる。
As described above in detail, the present invention provides a crystal resonator terminal bonding method for bonding a crystal base plate and a holding member having a head portion that is bonded to the crystal base plate. A thin metal film is attached to the adhesive surface of the +4 member to be adhered and the head part surface, a thin metal plate is inserted between the adhesive surface of the retainer member and the -rad part surface, and the head part surface is heated while heating the adhesive surface of the retainer member. We decided to apply ultrasonic vibration from the holding member side using an ultrasonic welding horn while crimping the holding member to the adhesion side, and then bond the head part to the crystal blank, compared to the conventional bonding method using only ultrasonic welding. Compared to bonding methods using only heat and pressure bonding,
The tensile strength of the bonded part is increased, and the aging of the crystal resonator, crystal impedance value, and temperature coefficient can be improved.

なお、以上の効果を奏する水晶振動子の端子接着方法と
して、金属薄板13を挿入するのではなく、あらかじめ
水晶薄板13に相当する金属を金jg 7+M膜2a、
3ヒに形成し、これらを超音波熱圧着法により接着する
フコ法も考えられる。しがしこの方法によっては、金属
薄膜2aの膜厚を厚くする必要が生じるが、真空蒸着等
の技術によってこの膜厚を厚くすると、金属薄fI*2
aの形成に特開を要するばかりか、該金属の浪費にもつ
ながり、さらに、金属の種類、ヘッド部、保持部材の形
状により、工程の数が増えることとなり、好ましくない
。また金属薄膜、2 aの代りに金属薄膜3の膜厚を厚
くすると、電極部分の膜厚も厚くなり水晶振動子の電気
性能を悪化させ、好ましくない。
In addition, as a method for bonding the terminals of a crystal resonator that achieves the above-mentioned effects, instead of inserting the thin metal plate 13, the metal corresponding to the thin crystal plate 13 is preliminarily coated with gold jg 7+M film 2a,
A fuco method may also be considered, in which three layers are formed and these are bonded by ultrasonic thermocompression bonding. However, depending on this method, it is necessary to increase the thickness of the metal thin film 2a, but if this film thickness is increased using a technique such as vacuum evaporation, the metal thin film fI*2
Not only does the formation of a require a patent application, but it also leads to waste of the metal.Furthermore, the number of steps increases depending on the type of metal, the shape of the head portion, and the holding member, which is undesirable. Moreover, if the thickness of the metal thin film 3 is increased instead of the metal thin film 2a, the thickness of the electrode portion will also increase, which will deteriorate the electrical performance of the crystal resonator, which is not preferable.

本発明はこのような方法による水晶振動子の端子接着方
法をも改善するものである。
The present invention also improves the method of bonding terminals of a crystal resonator using such a method.

さらに本発明に係る水晶振動子の端子接着方法によれば
、ヘッド部の表面上に、ある程度凹凸があっても5、金
属薄膜2aがこれをカバーするため、この面をプリフォ
ームする必要なく良好に接着ができ、水晶振動子の作成
1程が簡略化できる。
Furthermore, according to the method for adhering terminals of a crystal resonator according to the present invention, even if there is some degree of unevenness on the surface of the head portion, the metal thin film 2a covers this, so there is no need to preform this surface and the surface is well-formed. can be bonded to the crystal resonator, which simplifies the first step in making the crystal resonator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係る超音波熱圧着法を用いて保
持部材の一部たる支持線を水晶素板に接着した水晶振動
子を示す斜視図で、同図(b)は水晶素板と支持線ヘッ
ド部の接着部分を示す断面図である。第2図(a)、(
b)は支持線lを水晶素板4に接着する方法を示す簡略
図である。 1・支持線      2・ヘッド部 2a・金属薄膜    3・金属薄膜 4・水晶素板     6・保持部材 8・端子       11会超音波熔接ホー〕/12
・電気ヒータ   13拳金属薄板特許出願人    
日本電波工業株式会社代  理  人       弁
理士  辻      實(外1名) 第 1 図 (b) 第2 目
FIG. 1(a) is a perspective view showing a crystal resonator in which a support wire, which is a part of a holding member, is bonded to a crystal plate using the ultrasonic thermocompression bonding method according to the present invention, and FIG. FIG. 3 is a cross-sectional view showing a bonded portion between a blank plate and a support wire head portion. Figure 2 (a), (
b) is a simplified diagram showing a method of adhering the support line l to the crystal blank plate 4. 1・Support wire 2・Head part 2a・Metal thin film 3・Metal thin film 4・Crystal plate 6・Holding member 8・Terminal 11 ultrasonic welding hose]/12
・Electric heater 13 fist metal thin plate patent applicant
Representative of Nippon Dempa Kogyo Co., Ltd. Patent attorney Minoru Tsuji (1 other person) Figure 1 (b) 2nd page

Claims (1)

【特許請求の範囲】[Claims] 水晶素板と、水晶素板に接着するヘット部ご有する保持
部材とを接着する水晶振動子の端子接着力法において、
水晶票板上のヘッド部を接着する保持部材接着面とヘッ
ド部面とに金属薄膜を伺着させ、保)−+j部材接着而
面ヘッド部面との間に金属7;ル根を挿入〜し、保持部
材接着面を加熱しながらヘッド部面を保持部材接着面側
に圧着しつつ、保持部材側から超音波溶接ホーンを用い
て超音波振動を加え、ヘッド部を水晶素板に接着するこ
とを特徴とする水晶振動子の端子接着方法。
In the crystal resonator terminal adhesion method, which adheres a crystal base plate and a holding member having a head part that is adhered to the crystal base plate,
A thin metal film is attached to the adhesion surface of the holding member to which the head part is adhered on the crystal plate and the head part surface, and a metal 7 is inserted between the head part surface and the surface to which the holding member is attached. Then, while heating the adhesive surface of the holding member and pressing the head part onto the adhesive surface of the holding member, apply ultrasonic vibration from the holding member side using an ultrasonic welding horn to adhere the head part to the crystal blank. A method for bonding terminals of a crystal resonator.
JP4185683A 1983-03-14 1983-03-14 Method for bonding terminal of crystal oscillator Pending JPS59168712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4185683A JPS59168712A (en) 1983-03-14 1983-03-14 Method for bonding terminal of crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4185683A JPS59168712A (en) 1983-03-14 1983-03-14 Method for bonding terminal of crystal oscillator

Publications (1)

Publication Number Publication Date
JPS59168712A true JPS59168712A (en) 1984-09-22

Family

ID=12619886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4185683A Pending JPS59168712A (en) 1983-03-14 1983-03-14 Method for bonding terminal of crystal oscillator

Country Status (1)

Country Link
JP (1) JPS59168712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265090A2 (en) * 1986-10-22 1988-04-27 The Singer Company Method for making multisensor piezoelectric elements
JPH01244324A (en) * 1988-03-25 1989-09-28 Nippon Dempa Kogyo Co Ltd Pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265090A2 (en) * 1986-10-22 1988-04-27 The Singer Company Method for making multisensor piezoelectric elements
JPH01244324A (en) * 1988-03-25 1989-09-28 Nippon Dempa Kogyo Co Ltd Pressure sensor

Similar Documents

Publication Publication Date Title
JP3826875B2 (en) Piezoelectric device and manufacturing method thereof
JP2001015540A (en) Electronic element, surface acoustic wave element, method for mounting them, manufacture of electronic parts or surface acoustic wave device, and surface acoustic wave device
JPS59168712A (en) Method for bonding terminal of crystal oscillator
WO2000076066A1 (en) Piezoelectric vibrator
JP2005033390A (en) Piezoelectric device and manufacturing method for the same
JPH10284972A (en) In-package support structure for piezoelectric vibrator
JPS5812417A (en) Bonding method for terminal of quartz oscillator
JPS60260221A (en) Support structure and support method of piezoelectric vibrator
JPH07116868A (en) Method and device for joining metallic material
JPH02105710A (en) Crystal resonator
JPS5827548Y2 (en) crystal oscillator
JP3398295B2 (en) Piezoelectric component and method of manufacturing the same
JPH0238497Y2 (en)
JPH11274892A (en) Piezoelectric vibrator and production thereof
JP3431524B2 (en) Hermetic package, metal cap for manufacturing the same, method for manufacturing the metal cap, and method for manufacturing hermetic package
JP3940607B2 (en) Surface acoustic wave device
JPS63262911A (en) Glass sealed piezoelectric vibrator
JPH0477010A (en) Manufacture of package for containing piezoelectric resonator
JPS58100414A (en) Method of producing barium titanate with aluminum electrode
JPS6140930B2 (en)
JPS63127610A (en) Manufacture of surface acoustic wave device
WO1990014738A1 (en) Ultrasonic probe and method of producing the same
JPH02183538A (en) Semiconductor device
JPH0520014Y2 (en)
JPS5834970B2 (en) Atsudenshindoushi