JPS59166693A - Alloyed zinc-coated steel sheet and its manufacture - Google Patents

Alloyed zinc-coated steel sheet and its manufacture

Info

Publication number
JPS59166693A
JPS59166693A JP3806983A JP3806983A JPS59166693A JP S59166693 A JPS59166693 A JP S59166693A JP 3806983 A JP3806983 A JP 3806983A JP 3806983 A JP3806983 A JP 3806983A JP S59166693 A JPS59166693 A JP S59166693A
Authority
JP
Japan
Prior art keywords
steel sheet
diffraction
alloyed
coating film
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3806983A
Other languages
Japanese (ja)
Other versions
JPS6348957B2 (en
Inventor
Toshio Nakamori
中森 俊夫
Atsuyoshi Shibuya
渋谷 敦義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3806983A priority Critical patent/JPS59166693A/en
Publication of JPS59166693A publication Critical patent/JPS59166693A/en
Publication of JPS6348957B2 publication Critical patent/JPS6348957B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain the alloyed zinc-coated steel sheet suited to a precoated steel sheet, by specifying the phase structure of a coating film. CONSTITUTION:The alloyed zinc-coated steel sheet in which a coating film formed on a steel sheet comprises a single phase of GAMMA1-Fe5Zn21 or a dual phase of zeta-FeZn13. Hereon, the formed Zn coating film under a coating condition as such has the alloyed structure such that the ratio of the intensity of diffractor rays at a lattice distance of 2.60Angstrom in X-ray diffraction to that of the strongest diffractor rays existent in a lattice distance of 2.11-2.15Angstrom exists in a range satisfying Formula, wherein I(GAMMA1) is the difference between the peak intensity of diffraction at d=2.60Angstrom and a background, and Im is the difference between the strongest peak intensity in the range of d=2.11-2.15Angstrom and the background. The coating film of this kind is obtained by applying a zinc electroplating layer in an amount of about 10-60g/m<2> per one side onto a steel strip and then heat treating the coated steel strip at about 230-300 deg.C for about 3-1,000hr in a batch annealing oven for alloying treatment.

Description

【発明の詳細な説明】 本発明は、合金化亜鉛メブキ鋼板およびその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alloyed galvanized steel sheet and a method for manufacturing the same.

亜鉛系表面処理鋼板は、その防食性能及び経済性の点で
各種用途に用いられ、その中でも合金化亜鉛メッキ鋼板
は、溶接性、塗装後耐食性の有利性において、特に塗装
用素材として供給されている。
Zinc-based surface-treated steel sheets are used for various purposes due to their anti-corrosion performance and economic efficiency.Among these, alloyed galvanized steel sheets are especially supplied as materials for painting due to their advantages in weldability and post-painting corrosion resistance. There is.

従来、合金化亜鉛メッキ鋼板は、主として溶融亜鉛メッ
キ鋼板を、メッキ直後約600℃で連続的に熱処理する
ことにより生産されているが、一部は電気亜鉛メ・2キ
鋼板をハツチ熱処理によって処理することで生産されて
いる。
Conventionally, alloyed galvanized steel sheets are mainly produced by continuously heat-treating hot-dip galvanized steel sheets at approximately 600°C immediately after plating, but some are produced by hot-dip galvanized steel sheets that are subjected to hatch heat treatment. It is produced by

いずれの場合においても、その製品におけるメッキ皮膜
は金属間化合物となっており、金属間化合物特有の脆性
的な機械特性によりメッキ皮膜の成形性は限定されるが
その皮膜は主としてδ1−FeZn7より形成されてい
る。但し、電気メツキ母材の場合は350’C以下でハ
ツチ処理されることが多いのでζ−FeZn、%及びδ
1−FeZn、多相構造となることが多い。
In either case, the plating film on the product is an intermetallic compound, and the formability of the plating film is limited due to the brittle mechanical properties unique to intermetallic compounds, but the film is mainly formed from δ1-FeZn7. has been done. However, in the case of electroplated base material, it is often hatched at 350'C or less, so ζ-FeZn, % and δ
1-FeZn, which often has a multiphase structure.

近年、この合金化亜鉛メッキ鋼板をプレコート素材とし
て使用する動きかある。しかし、プレコート累月として
用いる場合に以下の問題が発生してきた。それは弾性率
の高い塗膜を塗布した場合、耐衝撃性及び耐剪断性が著
しく劣悪となる点である。現実には、例えばこれらを切
板とするためシャーリングすると切断端部が中11以下
であるがメッキもろとも剥離する現象であり、鋼素地の
露出は外観商品価値及び、耐食性の低下を招く。かかる
現象は、塗膜の弾性率の増加即ち焼き上り後の塗膜硬度
の増加により、シャ一時の鋼板の変形機構において鋼/
メッキ界面に著しい応力集中を生じることにより説明さ
れる。
In recent years, there has been a movement to use this alloyed galvanized steel sheet as a pre-coated material. However, the following problems have occurred when used as a pre-coat layer. The problem is that when a coating film with a high modulus of elasticity is applied, the impact resistance and shear resistance become extremely poor. In reality, for example, when these are sheared to make cut plates, the cut ends are less than 11 in diameter, but the plating and the plating peel off, and the exposure of the steel base leads to a decrease in the appearance commercial value and corrosion resistance. This phenomenon is caused by an increase in the elastic modulus of the coating film, that is, an increase in the coating film hardness after baking, which causes the deformation mechanism of the steel plate during shoaling.
This is explained by the occurrence of significant stress concentration at the plating interface.

このような問題の対策として本発明者等は、特願昭57
−127355においてメッキ厚の増加及び母材成分の
特にP、C1の限定を開示した。しかし、特願昭57−
127355においては、塗膜の弾性率が極めて高い時
には十分な効果が期待できす、又メッキ厚の増加は一般
にパウダリングの発生を招きやすいため、問題があった
。一方、金属間化合物系以外の例えば亜鉛メッキ、Zn
−Al2メッキ等をプレコート材として用いると、ジャ
一時に塗膜の剥離が、塗膜弾性率の高い場合に生しる。
As a countermeasure to this problem, the present inventors proposed a patent application filed in 1983.
-127355 discloses an increase in plating thickness and limitations on base material components, particularly P and C1. However, the special application 1987-
In 127355, a sufficient effect can be expected when the elastic modulus of the coating film is extremely high, and an increase in plating thickness generally tends to cause powdering, which is problematic. On the other hand, materials other than intermetallic compounds such as zinc plating, Zn
- When Al2 plating or the like is used as a pre-coating material, the coating film may peel off quickly if the elastic modulus of the coating film is high.

それ故、従来の製品においては、弾性率の高い塗膜をコ
ーティングしてプレコート材とした場合、何等かの問題
を生しる。
Therefore, in conventional products, some problems arise when a precoat material is coated with a coating film having a high elastic modulus.

本発明者等は、かかる問題に濯みプレコート鋼板に適し
たメッキ鋼板を鋭意検削し、本発明を完成した。本発明
者等は、プレコート後耐剪断性に不十分であった合金化
熔融亜鉛メッキ鋼板に替えて電気メツキ母材の合金化亜
鉛メッキ(以下EGAと略称する)を採用することを検
討したが、耐剪断性は、前述しているように、溶融系と
同様劣悪であった。
The inventors of the present invention have solved this problem, have diligently inspected plated steel sheets suitable for pre-coated steel sheets, and have completed the present invention. The inventors of the present invention have considered using electroplated galvanized base material (hereinafter abbreviated as EGA) in place of alloyed hot-dip galvanized steel sheets, which had insufficient shear resistance after pre-coating. As mentioned above, the shear resistance was poor as in the melt type.

但し、耐剪断性は、溶融系、EGAを問わず合金化処理
温度に関係することを見い出し、これはメッキ皮膜の相
構造と関連すると推定し、更に検討を重ねた結果、従来
の常識よりかけはなれた熱処理条件を設定することで新
規な相構成法を開発し本発明を完成した。
However, we found that shear resistance is related to the alloying temperature regardless of melt system or EGA, and we assumed that this was related to the phase structure of the plating film.As a result of further investigation, we found that it is far from conventional wisdom. By setting separate heat treatment conditions, we developed a new phase composition method and completed the present invention.

本発明の合金化亜鉛メッキ鋼板は以下の構成を有してい
る。
The alloyed galvanized steel sheet of the present invention has the following configuration.

形成された皮膜相はX線回折法によって得られる範囲に
おいてζ−FeZn、、及びp H−pe5 Zn21
よりなる。ζ−FeZn 、1は古くから公知の相、「
1−Fe5ZrIIIば、P、J、 Gellings
等によって示されている相である。但し、Fe−Zn系
金属間化合物のX線回折ピークは、衆知の通り極めて錯
綜しており回折線の同定に当っては学術的な議論の予想
されるところである。又、「とF、は結晶構造が倍比和
似型であるので、X線回折の格子定数のみの議論では判
別し得ない問題がある。
The formed film phase is ζ-FeZn, and pH-pe5 Zn21 in the range obtained by X-ray diffraction method.
It becomes more. ζ-FeZn, 1 is a long-known phase, "
1-Fe5ZrIII, P, J, Gellings
This is the phase shown by etc. However, as is well known, the X-ray diffraction peaks of Fe--Zn based intermetallic compounds are extremely complex, and academic debate is expected in identifying the diffraction lines. Furthermore, since the crystal structure of "and F" is a double ratio sum-like type, there is a problem that it cannot be distinguished by discussing only the lattice constant of X-ray diffraction.

従って、本発明者は、本発明を更に以下の様に具体化す
る。ζ−FeZn、、及び「1− Fes Znz、よ
りなる相構造とはまずδ1−FeZn Tのd= 2.
526人(C。
Therefore, the present inventor further embodies the present invention as follows. The phase structure consisting of ζ-FeZn and ``1-Fes Znz'' is defined as d=2. of δ1-FeZn T.
526 people (C.

Kα2θで人指41.2°)の回折線がほとんど検知さ
れないものを指す。次にζ−相の存在はd=2.44人
(Co Kcx 2θで42.8〜43.1°)の回折
線の検出によるものである。次にr】の存在はd=2.
60人(C。
Refers to a case in which the diffraction line of the index finger (41.2° at Kα2θ) is hardly detected. Next, the presence of the ζ-phase is due to the detection of the diffraction line of d=2.44 (42.8 to 43.1° in Co Kcx 2θ). Next, the existence of r] is d=2.
60 people (C.

Kα2θで40.2〜40.3°)の回折線(FI(4
44)面)の検出による。但しr、(444)と「(2
22)はほぼ同一の格子定数(d値)となるので、この
回折線がl”t(444)であるという確固たる物理学
釣車づけを有しているわけではない。
Diffraction line of Kα2θ 40.2-40.3° (FI(4
44) by detection of surface). However, r, (444) and “(2
22) have almost the same lattice constant (d value), so this diffraction line does not have a firm physics theory that it is l''t (444).

本発明者等が検討した結果、ここに述べているd=2.
60人回折線は明らかに「1とこの回折線の混成となる
d  =2.09人 (Co Kcx 2θ−50,8
°)の回折強度に対してd =2.44人の回折線(ζ
)とともに十分寄与率の高い1次回帰式を形成している
という、回折線強度の相関分析の結果が得られ、それ故
d=2.60人の回折線ば「t(444)が主であると
いう推定結果にもとづくものであって、本発明品が全(
V−Fe:+ Zn1oを含有しないことを規定するも
のではない。
As a result of studies by the inventors, the d=2.
The 60 person diffraction line is clearly a mixture of 1 and this diffraction line, d = 2.09 person (Co Kcx 2θ-50,8
d = 2.44 people's diffraction line (ζ
) and form a linear regression equation with a sufficiently high contribution rate. Therefore, for the diffraction line of a person with d = 2.60, ``t(444) is the main one''. This is based on the estimation result that there is
V-Fe:+ This does not stipulate that Zn1o is not contained.

かかるメッキ鋼板の更に優れた形態においては先述した
d=2.60人の回折線の強度を次式において相対的に
規定されるものである。
In a more excellent form of such a plated steel sheet, the intensity of the above-mentioned diffraction line of d=2.60 is relatively defined by the following equation.

0.1<、1m/ I (+”+ ) ’i4.5但し
r (r、)は、a=2.60人の回折線強度とハック
グランドレベルの差であり、本発明者等が「1(444
)の回折線として推定するもの、1mは、d=2.11
〜d =2.15人の範囲CoKα2θで49.3〜5
0.2°の範囲に存在する最強ピーク強度とハックグラ
ンドの差である。これら2つの限定を設りた理由は、耐
剪断性の維持の為にはδ1−Fe Zn 7が少ないこ
ともしくは、全く存在しないこと及びrl(444)の
回折線強度が十分高いことが要求されるからであり、 1m/ l (「+ ) >4.5では、耐剪断性は著
しく劣化し、又1m/I(Fコ)  <0.1では効果
が飽和するのめならず後述の製造方法において著しく不
経済となるためである。なお1mで示す回折線は、結晶
学的に見て一般的にはζ−FeZn 、、、δ、 −F
eZn7、「1− Fe5Zn、、、r−Fe+Zn1
゜の混成回折線であり、本発明範囲においてはζ−Fe
Zn 、3 及びF】−Fe5Zn2+の混成となると
推定される。
0.1<, 1m/I (+”+) 'i4.5 However, r (r,) is the difference between the diffraction line intensity of a = 2.60 person and the hack ground level, and the present inventors 1 (444
), 1m is estimated as the diffraction line of d=2.11
~d = 49.3 to 5 in the range CoKα2θ of 2.15 people
This is the difference between the strongest peak intensity existing in a range of 0.2° and the hack ground. The reason for setting these two limitations is that in order to maintain shear resistance, it is required that δ1-Fe Zn 7 be small or not present at all, and that the diffraction line intensity of rl (444) be sufficiently high. If 1 m/I (F) > 4.5, the shear resistance deteriorates significantly, and if 1 m/I (Fco) < 0.1, the effect will be saturated, and the manufacturing process described below will be required. This is because the method is extremely uneconomical.Note that the diffraction line shown at 1 m is generally ζ-FeZn, , δ, -F from a crystallographic point of view.
eZn7, "1-Fe5Zn,, r-Fe+Zn1
It is a hybrid diffraction line of ζ-Fe in the scope of the present invention.
It is estimated that it will be a hybrid of Zn, 3 and F]-Fe5Zn2+.

本発明の合金化亜鉛メッキ鋼板を製造するときには、片
面当り10〜60g/mの電気亜鉛メッキ鋼板をハツチ
炉において温度230〜300°Cで3〜1000時間
処理する。
When manufacturing the alloyed galvanized steel sheet of the present invention, an electrogalvanized steel sheet with a weight of 10 to 60 g/m per side is treated in a hatch furnace at a temperature of 230 to 300° C. for 3 to 1000 hours.

焼鈍炉における加熱温度と保持時間の関係は板厚及びメ
ッキ量により定まるが、板厚0.5〜1.2鰭、電気亜
鉛メッキ量10〜60g/n((片面当り)では、第1
図に示した斜線部の条件が良いが、好ましくは250〜
280℃の温度で8〜1.00時間の処理が良い。30
0℃以上ではδ、相の析出がおこり230 ’C未満で
は反応が遅すぎる。各温度の下限時間以下では十分なr
l(444)の発達がなく、上限以上では、合金化が過
度となる。又、コイルの最高温度点が300°C以下で
あることが堅持されるならばタイト焼鈍にても可能であ
る。
The relationship between the heating temperature and the holding time in the annealing furnace is determined by the plate thickness and the amount of plating.
The conditions in the shaded area shown in the figure are good, but preferably 250~
Treatment at a temperature of 280°C for 8 to 1.00 hours is preferred. 30
At temperatures above 0°C, precipitation of the δ phase occurs, and below 230'C, the reaction is too slow. Sufficient r is required below the minimum time at each temperature.
There is no development of l(444), and above the upper limit, alloying becomes excessive. Tight annealing is also possible as long as the highest temperature point of the coil is maintained at 300°C or less.

以下実施例に基すき本発明を一層詳細に説明する。The present invention will be explained in more detail below based on Examples.

ZnSo4−71120 400g / 12.、Na
2 So470g/ a111ac120.4g/ I
2を含有するメッキ浴(pH3,3、浴温50℃) 1
6八/d mの電流密度で高純度亜鉛を陽極として40
g/mの皮膜量よりなる電気亜鉛メッキ鋼板0.5t 
 N80 x 150mmを作成した。
ZnSo4-71120 400g / 12. , Na
2 So470g/a111ac120.4g/I
Plating bath containing 2 (pH 3.3, bath temperature 50°C) 1
40% with high purity zinc as anode at a current density of 68%/dm.
0.5t electrogalvanized steel sheet with coating amount of g/m
A size of N80 x 150mm was made.

上記メッキ鋼板を第1表に示す熱処理条件でN2雰囲気
中で熱処理し、核材を當法でリン酸亜鉛処理、焼き上り
鉛筆硬度4Hのアクリル樹脂塗料25μmを塗布、その
後10℃の条件でクリアランス0.05amのシャー機
で剪断試験を実施した。別途Co Kα単色光によるX
線回折を行った。
The above-mentioned plated steel plate was heat treated in a N2 atmosphere under the heat treatment conditions shown in Table 1, the core material was treated with zinc phosphate using the same method, and 25 μm of acrylic resin paint with a baked pencil hardness of 4H was applied, followed by clearance at 10°C. Shear tests were conducted with a 0.05 am shear machine. X by separate Co Kα monochromatic light
Line diffraction was performed.

第1表から本発明による製品性能は極めて秀逸であるこ
とが容易に理解できる。
From Table 1, it can be easily understood that the product performance according to the present invention is extremely excellent.

なお第2図にX線回折図を示す。Note that FIG. 2 shows an X-ray diffraction diagram.

AはEGA 260 °Cx 6hr BはEGA 260℃x20hr(本発明)CはEGA
  320  °Cx  lhrでCにおいてはδ1相
の回折線がある。
A is EGA 260 °C x 6 hr B is EGA 260 °C x 20 hr (invention) C is EGA
At 320°C x lhr, there is a δ1 phase diffraction line in C.

本発明は熱処理された亜鉛系メッキ鋼板全般に及ぶもの
であり、あらかしめ20%以下のFeを含有させた電気
Fe−Znメッキ鋼板を熱処理する場合も含まれる。更
に熱処理される亜鉛被覆蒸着皮膜であっても原理的には
全く同一である。
The present invention extends to heat-treated zinc-based plated steel sheets in general, and also includes the case where electric Fe-Zn plated steel sheets containing approximately 20% or less of Fe are heat-treated. Furthermore, the principle is exactly the same even for a zinc-coated vapor-deposited film that is heat-treated.

本明細書中で述べるFl−Fe5Zn、、の詳細構造に
関しては例えば下記の文献に記載があるが従来のAST
Mカードには存在しない。
The detailed structure of Fl-Fe5Zn, which is described in this specification, is described in the following document, but the conventional AST
It does not exist on M cards.

(1日、J、Gellings 、  G、 GIER
MAN等、Z、 Metallkde 、;Bd、71
  (1980)  H,2,P、 70妄 4、図面の簡単な説明               
 8第1図は、焼鈍炉における加熱温度と保持時間の関
係を示した図、 第2図はX線回折図である。
(1st, J. Gellings, G. GIER
MAN et al., Z. Metallkde, ;Bd, 71
(1980) H, 2, P, 70 Delusion 4, Brief explanation of drawings
8. Figure 1 is a diagram showing the relationship between heating temperature and holding time in an annealing furnace, and Figure 2 is an X-ray diffraction diagram.

第1図 時間(h「)Figure 1 time (h'')

Claims (1)

【特許請求の範囲】 (1)鋼板上に形成された皮膜がr 1−Fes Zr
+++単独相ないしばζ−FeZr++3との複相より
なることを特徴とする、合金化亜鉛メブキ鋼板。 (2)合金化亜鉛メッキ鋼板の製造において鋼板上Gこ
形成されたFe−Zn系の被膜の被覆ままの状態のX線
回折の格子間隔2.60人の回折線強度と格子間隔2.
11〜2.15人に存在する最強回折線の強度比が次式
をみたす範囲にある合金層組織を有することを特徴とす
る合金亜鉛メッキ鋼板。 0.1≦1m/ I、(「t )≦4.5但しI (「
+ )  :d =2.60人の回折ピーク強度とへツ
クグランドの差 1m : d =29.H〜2.15人の範囲の最強ピ
ーク強とハックグランドの差 (3)鋼板上に形成された皮膜がr4−Fe5 Zn、
、単独相ないしはζ−FeZn、、との複相よりなる合
金化亜鉛メッキ鋼板の製造において、鋼帯に片面当たり
lO〜60g/r/の電気亜鉛メッキを施し、次いでハ
ツチ焼鈍炉で230〜300°C,3〜1000時間の
条件で合金化のため加熱処理を行なうことを特徴とする
、合金化亜鉛メッキ鋼板の製造方法。
[Claims] (1) The film formed on the steel plate is r 1-Fes Zr
An alloyed galvanized steel sheet characterized by consisting of +++ single phase or multiple phase with ζ-FeZr++3. (2) Intensity of diffraction lines and lattice spacing of X-ray diffraction of the uncoated state of the Fe-Zn coating formed on the steel plate in the production of alloyed galvanized steel sheet: 2.60 Diffraction line intensity and lattice spacing: 2.
An alloy galvanized steel sheet characterized by having an alloy layer structure in which the intensity ratio of the strongest diffraction lines existing in the range of 11 to 2.15 satisfies the following formula. 0.1≦1m/I, ('t)≦4.5 provided that I ('
+ ): d = 2.60 Difference between the diffraction peak intensity of a person and the ground: 1 m: d = 29. Difference between the strongest peak strength in the range of H ~ 2.15 people and hack ground (3) The film formed on the steel plate is r4-Fe5 Zn,
, a single phase or a multi-phase alloyed galvanized steel sheet with ζ-FeZn, etc., the steel strip is electrolytically galvanized at a rate of lO to 60 g/r/per one side, and then galvanized at a rate of 230 to 300 g/r/l in a Hutch annealing furnace. 1. A method for producing an alloyed galvanized steel sheet, which comprises performing a heat treatment for alloying at °C for 3 to 1000 hours.
JP3806983A 1983-03-08 1983-03-08 Alloyed zinc-coated steel sheet and its manufacture Granted JPS59166693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3806983A JPS59166693A (en) 1983-03-08 1983-03-08 Alloyed zinc-coated steel sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3806983A JPS59166693A (en) 1983-03-08 1983-03-08 Alloyed zinc-coated steel sheet and its manufacture

Publications (2)

Publication Number Publication Date
JPS59166693A true JPS59166693A (en) 1984-09-20
JPS6348957B2 JPS6348957B2 (en) 1988-10-03

Family

ID=12515196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3806983A Granted JPS59166693A (en) 1983-03-08 1983-03-08 Alloyed zinc-coated steel sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPS59166693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913746A (en) * 1988-08-29 1990-04-03 Lehigh University Method of producing a Zn-Fe galvanneal on a steel substrate
KR100290567B1 (en) * 1996-12-13 2001-06-01 이구택 Method for producing electrolytic galvanized steel sheets having superior surface quality and processability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317534A (en) * 1976-08-02 1978-02-17 Nippon Kokan Kk Production method of oneeside coating zinc plated steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317534A (en) * 1976-08-02 1978-02-17 Nippon Kokan Kk Production method of oneeside coating zinc plated steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913746A (en) * 1988-08-29 1990-04-03 Lehigh University Method of producing a Zn-Fe galvanneal on a steel substrate
KR100290567B1 (en) * 1996-12-13 2001-06-01 이구택 Method for producing electrolytic galvanized steel sheets having superior surface quality and processability

Also Published As

Publication number Publication date
JPS6348957B2 (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US10144196B2 (en) Steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
US11618938B2 (en) Steel sheet having a hot-dip Zn—Al—Mg-based coating film excellent in terms of surface appearance and method of manufacturing the same
EP2915904B1 (en) Hot-pressing steel plate and manufacturing method for a hot-pressing member
GB2032961A (en) Multi-layer corrosion resistant plating utilizing alloys hving micro-throwing powr
JPS59166693A (en) Alloyed zinc-coated steel sheet and its manufacture
JP2009209383A (en) Phosphate-treated electro-galvanized steel plate
EP0125657B1 (en) Corrosion-resistant steel strip having zn-fe-p alloy electroplated thereon
JPS6354079B2 (en)
JP2004232029A (en) COATED HOT DIP Al-Zn BASED ALLOY PLATED STEEL SHEET HAVING EXCELLENT SURFACE APPEARANCE, AND PRODUCTION METHOD THEREFOR
JPH03281765A (en) Production of zn-al alloy-plated steel wire excellent in corrosion resistance and fatigue resistance
JPS61179861A (en) Zn alloy hot dipped steel plate having high corrosion resistance
JPH0849091A (en) Production of electrogalvanized steel sheet
JPH07238387A (en) Electrogalvanized steel sheet excellent in uniformity and appearance
JPS58210193A (en) Iron-zinc alloy electroplated steel plate having excellent phosphatability
JP2509939B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPS5834168A (en) Treatment for fe-zn alloying of zinc hot dipped steel plate
JP3212842B2 (en) Electrogalvanized steel sheet and surface treated electrogalvanized steel sheet with excellent surface appearance uniformity
JPH07243083A (en) Elctrogalvanized steel sheet excellent in corrosion resistance after coating as well as in uniformity of external appearance of plating
JPS6229510B2 (en)
JPS59129783A (en) Cold-rolled steel sheet with superior suitability to phosphating and manufacture
JPH083712A (en) Galvannealed steel sheet excellent in powdering resistance and low temperature chipping resistance
JPS63235494A (en) Iron-zinc plated steel material and production thereof
JPS6082651A (en) Production of alloyed galvanized steel plate
JPH0331495A (en) Surface-treated metallic material having highly corrosion resistance
JPH02118096A (en) Production of zn alloy electroplated steel sheet having superior chemical convertibility