JPH0331495A - Surface-treated metallic material having highly corrosion resistance - Google Patents

Surface-treated metallic material having highly corrosion resistance

Info

Publication number
JPH0331495A
JPH0331495A JP16562289A JP16562289A JPH0331495A JP H0331495 A JPH0331495 A JP H0331495A JP 16562289 A JP16562289 A JP 16562289A JP 16562289 A JP16562289 A JP 16562289A JP H0331495 A JPH0331495 A JP H0331495A
Authority
JP
Japan
Prior art keywords
corrosion resistance
metallic material
lattice constant
plating layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16562289A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
佐藤 廣士
Tsugumoto Ikeda
池田 貢基
Atsushi Hisamoto
淳 久本
Nagisa Yamamura
山村 なぎさ
Shoji Nakamura
中村 昭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16562289A priority Critical patent/JPH0331495A/en
Publication of JPH0331495A publication Critical patent/JPH0331495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain the stabilized-quality surface-treated metallic material having highly corrosion resistance by forming a Zn-Ni-based alloy plating layer of an intermetallic compd. consisting essentially of a GAMMA phase having a specified lattice constant on the surface of a metallic material. CONSTITUTION:A Zn-Ni-based alloy plating layer is formed on the surface of a metallic material such as steel sheet. In this case, the plating layer is formed from an intermetallic compd. consisting essentially of a GAMMA phase (Ni5Zn21), and the lattice constant a0 is limited to conform to 8.950<=a0<=8.975Angstrom . The composition and electrolytic condition of the electroplating bath, etc., are strictly controlled by the GAMMA phase having such a lattice constant. Consequently, a surface-treated metallic material exhibiting stabilized excellent corrosion resistance is obtained.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は優れた耐食性を有する表面処理金属材に関し、
この表面処理金属材は、各種車輛や家庭用電気製品等の
外板として、あるいは各種建材等として有用なものであ
る。尚本発明で対象とする金属基材には、FeやFe合
金のほか、Cu。
[Detailed description of the invention] [Field of application in industry] The present invention relates to a surface-treated metal material having excellent corrosion resistance,
This surface-treated metal material is useful as outer panels of various vehicles and household electrical appliances, and as various building materials. In addition to Fe and Fe alloys, the metal substrates targeted by the present invention include Cu.

AI等の非鉄金属やそれらの合金が含まれ、その形状に
ついても板材や波板材をはじめとして管材、棒材等の如
何は問わないが、以下の説明では代表的な鋼板主体にし
て述べる。
Non-ferrous metals such as AI and their alloys are included, and their shapes may be plate materials, corrugated sheet materials, pipe materials, bar materials, etc., but in the following explanation, a typical steel sheet will be mainly used.

[従来の技術] 鋼板等を防食加工する手段としては従来よりZnめっき
が汎用されてきた。しかし鋼板等の耐食性向上に対する
要請は更に高くなる傾向にあり、従来のZnめっき鋼板
では需要者の要求を十分に満たすことができなくなって
いる。
[Prior Art] Zn plating has been widely used as a means for anticorrosion processing of steel plates and the like. However, the demand for improving the corrosion resistance of steel sheets and the like tends to become even higher, and conventional Zn-plated steel sheets are no longer able to fully meet the demands of customers.

この様な背景のもとで、電気めっき法を利用したZn−
Ni、Zn−Fe、Zn−Mn、Zn−Cr、Zn−C
o等の高耐食性Zn系合金めっき鋼板が開発された。こ
れらのうち代表的なものはZn−Ni合金めっき鋼板で
あり、Zn−Ni系合金めっきはめつぎ層中のNi含有
率が10〜15重量%程度、特に13重量%程度で高耐
食性を示すところから、実操業における品質管理では上
記Ni含有率が得られる様に製造条件を制御している。
Against this background, Zn-
Ni, Zn-Fe, Zn-Mn, Zn-Cr, Zn-C
Highly corrosion-resistant Zn-based alloy plated steel sheets such as Zn alloy have been developed. A typical example of these is Zn-Ni alloy plated steel sheet, and Zn-Ni alloy plating exhibits high corrosion resistance when the Ni content in the plating layer is about 10 to 15% by weight, especially about 13% by weight. Therefore, in quality control in actual operation, manufacturing conditions are controlled so that the above Ni content can be obtained.

[発明が解決しようとする課題] ところが製造条件が極カ一定となる様にコントロールし
ようとしても、実操業では常に一定の条件が維持できる
訳ではなく、製造条件の僅かな違いによって耐食性に大
きなばらつきを生じることが経験されており、しばしば
問題になっている。
[Problem to be solved by the invention] However, even if we try to control the manufacturing conditions so that they are extremely constant, it is not always possible to maintain constant conditions in actual operation, and slight differences in manufacturing conditions can cause large variations in corrosion resistance. It has been experienced that this occurs and is often a problem.

たとえば第2図は、Zn−N1合金めっき鋼板(めっき
付着量: 20 g 7m2)におけるめっき層中のN
i含有率とSST赤錆発生時間の関係を示したグラフで
あり、耐食性はNi含有率によってかなりの変動が見ら
れるが、これは実験条件の僅かな違いによるばらつきが
現われたものと考えられる。
For example, Figure 2 shows the amount of N in the plating layer of a Zn-N1 alloy coated steel sheet (coating weight: 20 g 7m2).
This is a graph showing the relationship between i content and SST red rust generation time. Corrosion resistance varies considerably depending on nickel content, but this is thought to be due to variations due to slight differences in experimental conditions.

またZn−Niに更にFe、Co、Sn。Moreover, Fe, Co, and Sn are further added to Zn-Ni.

Cr、Mn等の金属を含有させて多元系合金めっきとす
ることにより耐食性が高められることも確認されている
が、この場合も上記Zn−Ni合金めっきの場合と同様
の理由で耐食性にかな′りのばらつきが生じてくる。
It has also been confirmed that corrosion resistance can be improved by incorporating metals such as Cr and Mn into a multi-component alloy plating, but in this case as well, corrosion resistance may be improved for the same reason as in the case of the Zn-Ni alloy plating mentioned above. There will be variations in the results.

たとえば第3図はZn−Ni−Sn3元系合金めっき鋼
板におけるNi含有率とSST赤錆発生時間の関係を示
すもので、この場合は10重量%前・後のNi含有率で
優れた耐食性を示すが、その変動、即ち実験によるばら
つきは著しい。
For example, Figure 3 shows the relationship between Ni content and SST red rust generation time in a Zn-Ni-Sn ternary alloy plated steel sheet. In this case, excellent corrosion resistance is shown at Ni content before and after 10% by weight. However, the variation, that is, the variation due to experiments, is significant.

この様にZn−Ni系合金めっきでは、Ni含有率だけ
を管理指標としてめっき条件等を制御したとしても安定
した耐食性が得られるとは限らず、優れた耐食性を確実
に得るにはNi含有率以外の管理指標を見出す必要があ
る。
In this way, in Zn-Ni alloy plating, even if the plating conditions are controlled using only the Ni content as a management index, it is not always possible to obtain stable corrosion resistance. It is necessary to find other management indicators.

本発明はこの様な事情に着目してなされたものであって
、その目的は、Ni含有率とは違う観点からZn−Ni
系合金めっき層の耐食性を支配する要因を明確にし、そ
れにより安定した品質(高耐食性)の表面処理金属材を
提供しようとするものである。
The present invention was made with attention to these circumstances, and its purpose is to improve Zn-Ni from a different perspective than the Ni content.
The objective is to clarify the factors that govern the corrosion resistance of alloy plating layers, and thereby provide surface-treated metal materials with stable quality (high corrosion resistance).

[課題を解決する為の手段] 上記課題を解決した本発明の構成は、表面にZn−Ni
系合金めっき層の形成された表面処理金属材であって、
めっき層がr (N is Zn2+)相を主体とする
金属間化合物からなり、その格子定数aoが 8.950≦80≦8.4175  (A ’)を満た
すものであるところに要旨を有するものである。
[Means for Solving the Problems] The structure of the present invention that solves the above problems has a structure in which Zn-Ni is used on the surface.
A surface-treated metal material having a system alloy plating layer formed thereon,
The gist is that the plating layer is made of an intermetallic compound mainly consisting of the r (N is Zn2+) phase, and its lattice constant ao satisfies 8.950≦80≦8.4175 (A'). be.

[作用] 本発明者らはZn−Ni系合金めっきに見られる前述の
様な耐食性のばらつぎを解消すべく、Ni含有率以外の
耐食性支配要因を明らかにしようとして色々研究を行な
った。その結果、Zn−Ni系合金層がr (N is
 Znzt)相を主体とする金属間化合物からなり、且
つその格子定数が8.950〜8.975  (A )
の範囲にあるものは、安定して優れた耐食性を示すこと
が確認された。そしてこうした傾向はZn−Ni合金め
っきのみならず、Zn−Niに他の金属としてFe、C
o。
[Function] In order to eliminate the above-mentioned variations in corrosion resistance observed in Zn-Ni alloy plating, the present inventors conducted various studies in an attempt to clarify the governing factors of corrosion resistance other than the Ni content. As a result, the Zn-Ni alloy layer r (N is
Znzt) phase, and its lattice constant is 8.950 to 8.975 (A)
It was confirmed that those within this range stably exhibit excellent corrosion resistance. This tendency is not limited to Zn-Ni alloy plating, but also when Zn-Ni is coated with other metals such as Fe and C.
o.

Sn、Cr、Mn等を適量含有させた多元系合金めっき
についても同様であり、r相を主体とするめっき層の格
子定数を8.950〜8.975  (A )の範囲に
設定することにより確実に高耐食性を得ることができる
The same is true for multi-component alloy plating containing appropriate amounts of Sn, Cr, Mn, etc., by setting the lattice constant of the plating layer mainly composed of r phase in the range of 8.950 to 8.975 (A). High corrosion resistance can be achieved reliably.

ちなみに341図は、Zn−Ni合金(Nl:6〜19
%、残部Zn)およびZn−N1−Sn合金(Ni:8
〜16%、 S n : 0.01〜2%、残部Zn)
よりなるめっき鋼板のr (Ni、Zn2.)相の格子
定数(A)とSST赤錆発生時間の関係を調べた結果を
示すグラフであり、いずれの合金めっきの場合も格子定
数が8.950〜8.975  (A )の範囲で優れ
た耐食性を示し、しかも夫々のグラフは安定した傾向を
示しており耐食性のばらつきが極めて少ないことを確認
することができる。
By the way, Figure 341 shows Zn-Ni alloy (Nl: 6-19
%, balance Zn) and Zn-N1-Sn alloy (Ni:8
~16%, Sn: 0.01~2%, balance Zn)
This is a graph showing the results of investigating the relationship between the lattice constant (A) of the r (Ni, Zn2.) phase and the SST red rust generation time of a plated steel sheet made of alloy. Excellent corrosion resistance was exhibited within the range of 8.975 (A), and each graph showed a stable trend, confirming that there was very little variation in corrosion resistance.

r相の格子定数が上記範囲にあるとき安定して高耐食性
を示す理由は完全に解明された訳ではないが、Zn−N
i系合金のr相は格子定数が上記範囲にあるときに物理
的・化学的に最も安定であり、これが耐食性に好結果を
もたらしたものと考えられる。そして上記範囲を外れる
格子定数のr相は比較的不安定であり、経時的な変質を
起し易いところから、耐食性も低くなるものと思われる
Although the reason why the r-phase lattice constant exhibits stable high corrosion resistance when it is in the above range has not been completely elucidated,
The r-phase of the i-based alloy is physically and chemically most stable when the lattice constant is within the above range, and this is thought to be the reason for the good corrosion resistance. It is believed that the r-phase with a lattice constant outside the above range is relatively unstable and tends to undergo deterioration over time, resulting in lower corrosion resistance.

上記の様な格子定数のr相を得る為の方法は特に制限さ
れず、電気めっき、蒸着めつき等の通常のめっき手法が
適用できる。たとえば電気めっきにおいてはめつき浴組
成や電解条件等を、蒸着めっきにおいては基板温度等を
厳密に制御することにより達成できる。
The method for obtaining the r-phase having the lattice constant as described above is not particularly limited, and ordinary plating methods such as electroplating and vapor deposition plating can be applied. For example, this can be achieved by strictly controlling the plating bath composition, electrolytic conditions, etc. in electroplating, and by strictly controlling the substrate temperature, etc. in vapor deposition plating.

[実施例] 電気めっき法を採用し、鋼板表面に第1表に示す組成の
Zn−Ni系合金めっきを施した。このときめっき浴組
成、pH,電流密度、電流波形等を制御することによっ
て、合金めっき層をr相生体の金属間化合物としつつ、
その格子定数を調整した。めっき付着量はいずれも約2
0g/+a2となる様に調整した。
[Example] Electroplating was employed to plate the surface of a steel plate with a Zn-Ni alloy having the composition shown in Table 1. At this time, by controlling the plating bath composition, pH, current density, current waveform, etc., while making the alloy plating layer an intermetallic compound of the r-phase body,
Its lattice constant was adjusted. The amount of plating deposited is approximately 2
It was adjusted so that it was 0g/+a2.

尚Zn−Ni系合金めっき層にはr相のほかZn(η)
相を生じる可能性があるが、本例で得られためっき層は
いずれもr相を主体とするものであり、夫々の格子定数
は第1表に併記する通りであった。
In addition to the r phase, the Zn-Ni alloy plating layer also contains Zn(η).
Although there is a possibility that phases may be formed, the plating layers obtained in this example were all mainly composed of r-phase, and the lattice constants of each were as shown in Table 1.

各合金めっき鋼板をJIS  Z  2371に準拠し
た塩水噴霧試験(SST)に付し、赤錆発生時間によっ
て耐食性を評価した。
Each alloy-plated steel sheet was subjected to a salt spray test (SST) in accordance with JIS Z 2371, and the corrosion resistance was evaluated based on the red rust generation time.

(耐食性評価) ◎:SST赤錆発生赤錆発生時間2鼠0△,     
77     1 0 0〜150時間X :    
 It     1 0 0時間以下結果は第1表に併
記する通りであり、r相の格子定数が本発明の規定範囲
内である実施例(No。
(Corrosion resistance evaluation) ◎: SST red rust occurrence red rust occurrence time 2 0 △,
77 100 to 150 hours
It 100 hours or less The results are also listed in Table 1, and the lattice constant of the r phase is within the specified range of the present invention (No.

1〜6)はいずれも優れた耐食性を示しているのに対し
、格子定数が規定範囲を外れる比較例(No. 7〜1
3)の耐食性は不十分である。
Nos. 1 to 6) all show excellent corrosion resistance, whereas comparative examples (Nos. 7 to 1) in which the lattice constants are outside the specified range
The corrosion resistance of 3) is insufficient.

[発明の効果] 本発明は以上の様に構成されており、Zn−Ni系合金
層をr相生体の金属間化合物により構成すると共にその
格子定数が特定範囲に収まる様に制御することによって
、安定して優れた耐食性を示すZn−Ni系の合金めっ
き金属材を提供し得ることになった。
[Effects of the Invention] The present invention is configured as described above, and by configuring the Zn-Ni alloy layer with an r-phase biological intermetallic compound and controlling the lattice constant so that it falls within a specific range, It is now possible to provide a Zn-Ni alloy plated metal material that stably exhibits excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はZn−Ni系合金めっき層のr相の格子定数と
SST赤錆発生時間の関係を示すグラフ、第2、3図は
Zn−Ni系合金めっき層中の含有率とSST赤錆発生
時間の関係を示すグラフである。
Figure 1 is a graph showing the relationship between the r-phase lattice constant of the Zn-Ni alloy plating layer and the SST red rust generation time, and Figures 2 and 3 are the graphs showing the content in the Zn-Ni alloy plating layer and the SST red rust generation time. It is a graph showing the relationship between.

Claims (1)

【特許請求の範囲】 (1)表面にZn−Ni系合金めっき層の形成された表
面処理金属材であって、めっき層が(Ni_5Zn_2
_1)相を主体とする金属間化合物からなり、その格子
定数a_0が 8.950≦a_0≦8.975(Å) を満たすものであることを特徴とする高耐食性表面処理
金属材。
[Scope of Claims] (1) A surface-treated metal material having a Zn-Ni alloy plating layer formed on the surface, the plating layer being (Ni_5Zn_2
_1) A highly corrosion-resistant surface-treated metal material, characterized in that it is made of an intermetallic compound mainly consisting of phase, and its lattice constant a_0 satisfies 8.950≦a_0≦8.975 (Å).
JP16562289A 1989-06-27 1989-06-27 Surface-treated metallic material having highly corrosion resistance Pending JPH0331495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16562289A JPH0331495A (en) 1989-06-27 1989-06-27 Surface-treated metallic material having highly corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16562289A JPH0331495A (en) 1989-06-27 1989-06-27 Surface-treated metallic material having highly corrosion resistance

Publications (1)

Publication Number Publication Date
JPH0331495A true JPH0331495A (en) 1991-02-12

Family

ID=15815861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16562289A Pending JPH0331495A (en) 1989-06-27 1989-06-27 Surface-treated metallic material having highly corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0331495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001602A1 (en) * 1992-07-10 1994-01-20 Kawasaki Steel Corporation Rustproof steel sheet excellent in various characteristics including corrosion resistance
JP2021158108A (en) * 2020-03-28 2021-10-07 東洋鋼鈑株式会社 Surface-treated plate for alkaline secondary battery, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001602A1 (en) * 1992-07-10 1994-01-20 Kawasaki Steel Corporation Rustproof steel sheet excellent in various characteristics including corrosion resistance
US5510196A (en) * 1992-07-10 1996-04-23 Kawasaki Steel Corporation Corrosion resistant steel sheets improved in corrosion resistance and other characteristics
AU671843B2 (en) * 1992-07-10 1996-09-12 Kawasaki Steel Corporation Rustproof steel sheet excellent in various characteristics including corrosion resistance
JP2021158108A (en) * 2020-03-28 2021-10-07 東洋鋼鈑株式会社 Surface-treated plate for alkaline secondary battery, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0174019B1 (en) Steel strip plated with a zinc-based coating layer containing an inorganic dispersoid
EP0182964B1 (en) High corrosion resistance composite plated steel strip and method for making
JPS6056436B2 (en) Surface-treated steel sheet with excellent corrosion resistance and phosphate treatment properties
JP2754126B2 (en) Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
EP0125657B1 (en) Corrosion-resistant steel strip having zn-fe-p alloy electroplated thereon
JPH0331495A (en) Surface-treated metallic material having highly corrosion resistance
JPS6343479B2 (en)
JPS63243295A (en) Rust preventive steel sheet having superior corrosion resistance
JP2704816B2 (en) Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
JPS6026835B2 (en) Zinc-manganese alloy electroplated steel sheet with excellent corrosion resistance in salt water environments
US5273643A (en) Method of producing zinc-chromium alloy plated steel sheet with excellent plating adhesiveness
JPS61207597A (en) Alloyed hot dip galvanized steel sheet having superior workability
JP2991877B2 (en) Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
JP2712924B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion, chemical conversion treatment and coating film adhesion
JP2754125B2 (en) Hot-dip Zn-Al plated steel sheet with excellent appearance, blackening resistance over time and corrosion resistance
JP2833380B2 (en) Zn-Ni-based alloy-plated steel excellent in corrosion resistance and method for producing the same
JPS5989785A (en) Alloy plated steel sheet having two coating layer having excellent corrosion resistance and paint adhesion and production thereof
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JPS59129781A (en) Plated steel material with superior corrosion resistance
JP2509939B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPS6240398A (en) Double-plated steel sheet having high corrosion resistance
JP2569993B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
JPS6354079B2 (en)
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
JPH03115594A (en) Restproof steel sheet having superior corrosion resistance