JPS63235494A - Iron-zinc plated steel material and production thereof - Google Patents

Iron-zinc plated steel material and production thereof

Info

Publication number
JPS63235494A
JPS63235494A JP6827287A JP6827287A JPS63235494A JP S63235494 A JPS63235494 A JP S63235494A JP 6827287 A JP6827287 A JP 6827287A JP 6827287 A JP6827287 A JP 6827287A JP S63235494 A JPS63235494 A JP S63235494A
Authority
JP
Japan
Prior art keywords
plating
lower layer
iron
phase
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6827287A
Other languages
Japanese (ja)
Inventor
Kazuo Kondo
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6827287A priority Critical patent/JPS63235494A/en
Publication of JPS63235494A publication Critical patent/JPS63235494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain a corrosion resistant iron-zinc plated steel material having a lower layer with remarkably improved adhesion to the base steel material by inhibiting the formation of gamma1 phase made of an iron-zinc intermetallic compd. in a lower layer formed by plating and by regulating the zinc content in the lower layer. CONSTITUTION:The deterioration of the adhesion of a lower layer formed on a steel sheet by plating to the steel sheet is caused by the formation of gamma1 phase made of an intermetallic compd. represented by a chemical formula Fe3Zn21 in the lower layer, so the adhesion can be considerably improved by restricting the amt. of the gamma1 phase formed to <=1vol.%. By regulating the zinc content in the lower layer to 60-90atom.%, satisfactory corrosion resistance can be maintained. Since it is supposed that the formation of the gamma1 phase depends on the flowing conditions of a plating bath used to form the lower layer, the flowing conditions in this invention are decided according to the molar ratio between Fe<2+> and Zn<2+> (Zn<2+>+Fe<2+>) and Reynolds number Re. By plating under the decided flowing conditions, the formation of the gamma1 phase in the lower layer is inhibited and the adhesion of the layer to the base steel sheet can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車、家電製品等に使用される鉄亜鉛メッ
キ鋼材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to iron galvanized steel materials used in automobiles, home appliances, etc.

〔従来の技術〕[Conventional technology]

従来、鋼板上に二層から成る塗装下地用の鉄亜鉛メッキ
鋼板が知られている。この鋼板は裸耐食性(メッキのま
まの耐食性)塗装後耐食性、加工性に優れた塗装下地用
電気亜鉛メッキ鋼板である。
Conventionally, an iron-galvanized steel sheet for use as a base for painting is known, which consists of two layers on a steel sheet. This steel sheet is an electrogalvanized steel sheet for use as a paint base that has excellent corrosion resistance (corrosion resistance as plated), corrosion resistance after painting, and workability.

この二層のうち上層は塗膜密着性向上、化成処理性向上
のために設けられている層であり、そのため鉄含有率が
高く、下層は耐食性、加工性向上のための亜鉛含有率が
高い。
Of these two layers, the upper layer is a layer provided to improve paint film adhesion and chemical conversion treatment properties, so it has a high iron content, and the lower layer has a high zinc content to improve corrosion resistance and workability. .

この二層構造のメッキ層を有する耐食綱材はその優れた
総合的防錆性の故に、自動車のボディー等用の耐食鋼材
とて広く用いられている。
This corrosion-resistant steel material having a two-layered plating layer is widely used as a corrosion-resistant steel material for automobile bodies and the like because of its excellent comprehensive rust prevention properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の鉄亜鉛二層メッキ鋼板は、基材で
ある鋼板と下層メッキ層との密着性に難点がある。この
密着性不良の場合、プレス加工時のパウダリングや実車
走行時のチッピングの原因となり、大きな問題となって
いる。
However, the conventional iron-zinc double-layer plated steel sheet has a drawback in the adhesion between the base steel sheet and the lower plating layer. In the case of this poor adhesion, it causes powdering during press processing and chipping during actual vehicle driving, which is a major problem.

そこで本発明では、耐食性を有すると共に、鋼材との密
着性が画期的に向上した下層メッキ層を有する耐食鋼材
及びその製造法の提供を目的としている。
Therefore, the present invention aims to provide a corrosion-resistant steel material having a lower plating layer that has corrosion resistance and dramatically improved adhesion to the steel material, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決する手段としての本第−発明は、鋼材
表面に二層の鉄亜鉛メッキ層を有する鉄亜鉛メッキ鋼材
において、鉄と亜鉛との金属間化合物であるFe5Zn
ztなるΓ1相を1v10以下を含有し、かつメッキ被
膜中の含有亜鉛量が60〜90A10である下層メッキ
層を有することを特徴とするものであり、また本第二発
明は、メッキ浴中のp e 2 +イオンとZn t 
+イオンのモル比がFe”/ZnZn” > 0.4の
場合、該メッキ浴の鋼板に対する流動状態がレイノズル
数(Re)でRe上2XIQ”でメッキを行ない、メッ
キ浴中の同モル比が、0.2〈Zn”/ Fe”≦0.
4の場合、Re≦I X 104でメッキを行なって下
層メッキ層を形成することを特徴するものである。
The present invention as a means for solving the above-mentioned problems is to provide Fe5Zn, which is an intermetallic compound of iron and zinc, in an iron-galvanized steel material having two iron-zinc plating layers on the surface of the steel material.
The second invention is characterized by having a lower plating layer containing 1v10 or less of the Γ1 phase called zt, and the amount of zinc contained in the plating film is 60 to 90A10. p e 2 + ion and Zn t
When the molar ratio of + ions is Fe"/ZnZn"> 0.4, the flow state of the plating bath relative to the steel plate is the Raynozzle number (Re), and plating is performed at 2XIQ" above Re, and the same molar ratio in the plating bath is , 0.2〈Zn''/Fe''≦0.
In case No. 4, the lower plating layer is formed by plating with Re≦I x 104.

〔作 用〕[For production]

本発明者らの研究によれば、下層のメッキ層と鋼板との
密着性劣化の原因は、後述するように、下層メッキ層に
、Fe1ZnHという化学式で表わせる金属間化合物r
I相が生成することである。そこで、この相を1v70
以下に抑えることにより密着性を格段に向上させること
ができる。また、下層メッキ被膜中の亜鉛含有量を60
〜90A10とすることにより、良好な耐食性を維持で
きる。
According to the research conducted by the present inventors, the cause of the deterioration of the adhesion between the lower plating layer and the steel sheet is that the lower plating layer contains an intermetallic compound r represented by the chemical formula Fe1ZnH.
The I-phase is generated. Therefore, this phase is 1v70
Adhesion can be significantly improved by keeping the amount below. In addition, the zinc content in the lower plating film was increased to 60%.
By setting it as 90A10, good corrosion resistance can be maintained.

さらに、上記金属間化合物r1の生成は、下層メッキを
施す際のメッキ浴の流動条件に依存するとの知見に基づ
き、本発明では、この流動条件を、Fe”とZn”+の
モル比(Zn2+/Fe2)とレイノルズ数(Re)と
で規定しており、かかる流動条件で下層メッキを行えば
Γ1相の生成が抑えられ、上述の密着性が向上する。
Furthermore, based on the knowledge that the formation of the intermetallic compound r1 depends on the flow conditions of the plating bath when applying the lower layer plating, in the present invention, the flow conditions are adjusted by changing the molar ratio of Fe'' and Zn''+ (Zn2+ /Fe2) and Reynolds number (Re), and if the lower layer plating is performed under such flow conditions, the formation of the Γ1 phase is suppressed and the above-mentioned adhesion is improved.

〔発明の具体的構成〕[Specific structure of the invention]

以下、本発明を具体的に詳説する。 Hereinafter, the present invention will be specifically explained in detail.

まず、本発明の完成に至る過程を説明すると、前述した
如く、本発明に係る鉄亜鉛メッキ鋼板は、鋼板上に鉄含
有率の高い上層メッキと、亜鉛含有率の高い下層メッキ
の二層を有し、これにより総合的な防錆効果を向上させ
ているものであるが、この高亜鉛側の下層メッキ組成は
、その裸耐食性、塗装後耐食性を考慮して被膜中の亜鉛
含有率がほぼ60〜90at%の範囲で製造されている
。そこで本発明者らは、この組成範囲の下層メッキと鋼
素地との密着生について検討することとした。
First, to explain the process leading to the completion of the present invention, as mentioned above, the iron-galvanized steel sheet according to the present invention has two layers on the steel sheet: an upper layer plating with a high iron content and a lower layer plating with a high zinc content. The composition of the lower layer plating on the high zinc side is such that the zinc content in the coating is almost the same, considering its bare corrosion resistance and post-painting corrosion resistance. It is produced in a range of 60 to 90 at%. Therefore, the present inventors decided to study the adhesion between the lower layer plating and the steel base in this composition range.

従来、この下層メッキと同組成範囲の鉄亜鉛合金電気め
っきの結晶構造がX線回折により調べられており、それ
によると、上記組成範囲にはη相。
Conventionally, the crystal structure of iron-zinc alloy electroplating having the same composition range as this lower layer plating has been investigated by X-ray diffraction, and it has been found that there is an η phase in the above composition range.

r相が存在することが確認されている。しかし本発明者
らの調査ではこのη相、r相は共に、上記密着性への影
響はないことが判明した。さらに、上記回折結果に現わ
れている。2θ−48,5±0、2°(Co−にα線に
よる。以下、単にCo−1crと記す。)に存在する回
折線はl、r相では説明できない。そこでこの位置に回
折線の出現する被膜の電子線回折を行ったところ、rl
相と同定できる回折リングが多く現われ、結局、2θ=
 48.5±0.2°(Co−にα)に存在する回折線
はΓ1相に帰因するものであることが明らかとなった。
The existence of r-phase has been confirmed. However, the inventors' investigation revealed that neither the η phase nor the r phase had any effect on the adhesion. Furthermore, it appears in the above diffraction results. The diffraction lines existing at 2θ-48, 5±0, 2° (based on Co- and α-rays, hereinafter simply referred to as Co-1cr) cannot be explained by the l and r phases. Therefore, when we performed electron beam diffraction on the film in which diffraction lines appeared at this position, we found that rl
Many diffraction rings that can be identified as phases appear, and in the end, 2θ=
It became clear that the diffraction line existing at 48.5±0.2° (α in Co-) was attributed to the Γ1 phase.

ここで、r1相とは、pe@Znt+なる化学式を有す
る金属間化合物である。
Here, the r1 phase is an intermetallic compound having the chemical formula pe@Znt+.

そこで、本発明者らはさらに研究を進めた結果、このΓ
1相の存在が、先に述べた密着生劣化の最大の原因であ
ることを突きとめた。
Therefore, as a result of further research, the present inventors found that this Γ
It was found that the presence of one phase was the biggest cause of the adhesive deterioration mentioned above.

従って、密着性を高めるには、rI相の生成を極力抑え
る必要があり、具体的には体積で1%以下の含有量とし
なければならない。含有量が1%以下であれば、密着性
に支障がない一方、1%を超えると、下層メッキ層の剥
離を生じるからである。
Therefore, in order to improve adhesion, it is necessary to suppress the formation of the rI phase as much as possible, and specifically, the content must be 1% or less by volume. If the content is 1% or less, there will be no problem with adhesion, but if it exceeds 1%, the lower plating layer will peel off.

次に、Γ1相の含有量を上記範囲に抑えるためのメッキ
条件を種々検討し、たところ、Γ1相の生成はメッキ時
のメッキ液の流動状態との関連が密であることを知見し
た。それゆえ、メッキ浴中のPe”+とZn”のモル比
に応じて、メッキ液の流動状態に対応する無次元パラメ
ーターであるレイノズル数(Re)によって、メッキ条
件を規定したのである(具体的条件は後述する。) この点、従来の鉄亜鉛下層用のメッキ層製造のための電
解セル中の流動状態は、高速電着操業のための高電流密
度操業時における電析物ののデンドライト成長またはパ
ウダー成長を防止するため液の強制吹込みによってもた
らされるものであったので、制御が確実に行われていな
かった。すなわち、電解槽内での流速の局所的な変動に
より流動条件が一定せず、上記Γ1相の発生が不可避で
あった。
Next, various plating conditions for suppressing the content of the Γ1 phase within the above range were investigated, and it was found that the formation of the Γ1 phase is closely related to the flow state of the plating solution during plating. Therefore, the plating conditions were defined by the Raynozzle number (Re), which is a dimensionless parameter that corresponds to the flow state of the plating solution, depending on the molar ratio of Pe"+ and Zn" in the plating bath. (Conditions will be described later.) In this respect, the flow state in the electrolytic cell for producing the conventional plating layer for the iron-zinc underlayer is similar to the dendrite growth of the deposits during high current density operation for high-speed electrodeposition operation. Or, it was brought about by forced injection of liquid to prevent powder growth, so control was not performed reliably. That is, the flow conditions were not constant due to local fluctuations in the flow velocity within the electrolytic cell, and the generation of the Γ1 phase was unavoidable.

〔実施例〕〔Example〕

次に実施例により本発明の作用効果を明らかにする。 Next, the effects of the present invention will be clarified through examples.

まず、実施例で採用した試験方法等について説明すると
、電着実験は、流動条件の再現性をよくするため、回転
円板電極(R,D、E)を使用した。回転円板電極の場
合、Re数は次の式で表わされる。
First, the test methods employed in the examples will be explained. In the electrodeposition experiment, rotating disk electrodes (R, D, E) were used in order to improve the reproducibility of flow conditions. In the case of a rotating disk electrode, the Re number is expressed by the following formula.

また、メッキ被膜中のr1相の体積含有率はX線回折(
Co4α)を用いて次の式で定義した。
In addition, the volume content of r1 phase in the plating film can be determined by X-ray diffraction (
Co4α) was defined using the following formula.

820.644 X r 1(7)積分強度(2θ=4
8.5+ 0.2°’) X 10010、 I Xη
の積分強度(2θ= 50.7±0.3)さらに、密着
性を検討するための試験法としては、第1図に示す引張
試験片(30X60m平行部)上にメッキを施し、ε1
−10%の変形を施し、テープ剥離後、その剥離面積率
を光学顕微鏡写真にて拡大して測定したここで剥離面積
率は次の式により定義する。
820.644 X r 1 (7) Integrated intensity (2θ=4
8.5+ 0.2°') X 10010, I Xη
(integrated strength of 2θ = 50.7 ± 0.3) Furthermore, as a test method to examine adhesion, plating was applied to the tensile test piece (30 x 60 m parallel part) shown in Figure 1, and ε1
-10% deformation was applied, and after the tape was peeled off, the peeled area ratio was enlarged and measured using an optical microscope photograph. Here, the peeled area ratio is defined by the following formula.

〔実施例〕〔Example〕

この例は、メッキ浴中のZn”″/Fe” > 0.4
の場合である。浴組成及び電着条件を下記する。
This example shows that Zn''/Fe'' in the plating bath > 0.4
This is the case. The bath composition and electrodeposition conditions are shown below.

Zn2+/Fe2=0.5. 0.6. 0.8. 1
.0  ’Na1SOn −1,2so l / IF
e”= 50・0〜1500 (ppm)pH−1,5 温度−50℃ 電流密度−80A/da” 電着時間−10秒 結果を第1表に示す。
Zn2+/Fe2=0.5. 0.6. 0.8. 1
.. 0 'Na1SOn -1,2sol/IF
e'' = 50.0 to 1500 (ppm) pH - 1.5 Temperature - 50°C Current density - 80 A/da'' Electrodeposition time - 10 seconds The results are shown in Table 1.

上表から明らかなように、Re数が2X103を超える
と、Γ1相の体積含有率が1%以下となり、同時にメッ
キ被膜の剥離面積率も激減する。従って、本発明の範囲
が被膜の密着性向上に極めて効果の大きいことがわかる
。なお、被膜中のZn:a度はRe数の増大に伴い増大
する傾向にあるので、下層メッキを施す目的である耐食
性の向上にも寄与することになる。
As is clear from the above table, when the Re number exceeds 2×10 3 , the volume content of the Γ1 phase becomes 1% or less, and at the same time, the peeled area ratio of the plating film also sharply decreases. Therefore, it can be seen that the scope of the present invention is extremely effective in improving the adhesion of the coating. Note that since the Zn:a degree in the film tends to increase as the Re number increases, it also contributes to improving the corrosion resistance, which is the purpose of applying the lower layer plating.

〔実施例2〕 この例は、メッキ浴中のZn2+/Fe2が、0.2〈
Zn”/ Fe”≦0.4の場合である。浴組成はzn
 t * /Fe”を0.2.0.3.0.4とした。
[Example 2] In this example, Zn2+/Fe2 in the plating bath was 0.2<
This is the case when Zn''/Fe''≦0.4. The bath composition is zn
t*/Fe" was set to 0.2.0.3.0.4.

他の条件は実施例1と同じである。Other conditions are the same as in Example 1.

結果を第2表に示す。The results are shown in Table 2.

第2表より、本発明範囲CRe数≦lXl0’)が密着
性向上効果が大きいことが明らかである。
From Table 2, it is clear that the range of the present invention (CRe number≦lXl0') has a large effect on improving adhesion.

次に、以上述べた実施例1,2における被膜の剥離状態
の例を写真により示すと、第2図、第3図は夫々、Γ1
相の体積率0.8%、同25%のときの引張試験後の#
層状態を逼影したものである。
Next, to show an example of the peeling state of the coating in Examples 1 and 2 described above using photographs, FIGS. 2 and 3 show Γ1
# after tensile test when phase volume ratio is 0.8% and 25%
This is a close-up of the layer condition.

剥離面積は第3図、即ちrlの体積率25%の被膜の方
がはるかに大であることが一見して明らかである。
At first glance, it is clear that the peeled area is much larger in the film shown in FIG. 3, that is, with the rl volume ratio of 25%.

このように本発明の範囲外で、剥離面積が大となる原因
としては、次の2点が考えられる。
The following two points can be considered as reasons why the peeled area becomes large outside the scope of the present invention.

■r1相なる金属間化合物の硬度(500kg/鶴2)
が高く、r相(300kg/m”以下)に比べ、著しく
脆いため、鋼板の変形に追従しきれず、剥離が多くなっ
た。
■Hardness of intermetallic compound of r1 phase (500kg/Tsuru 2)
Since it has a high weight and is extremely brittle compared to the r-phase (300 kg/m" or less), it cannot fully follow the deformation of the steel plate, resulting in increased peeling.

■η、r相と比べ、格子定数aの大きいΓ1相(a =
 17.963)を含むため、電着応力が大きく、それ
が剥離原因となった。
■Γ1 phase with a larger lattice constant a than the η and r phases (a =
17.963), the electrodeposition stress was large, which caused peeling.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明ではrl相の発生を抑えることに
より、下層メッキ層の鋼素地への密着性が格段に向上し
た。
As described above, in the present invention, by suppressing the generation of the rl phase, the adhesion of the lower plating layer to the steel substrate is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引張試験片を表す図、第2図、第3図は夫々、
rlの体積率が0.8 Vlo及び25V/O(7)被
膜の引張試験後の剥離面積を示す金属U織の写真である
Figure 1 is a diagram showing a tensile test piece, Figures 2 and 3 are respectively,
FIG. 2 is a photograph of a metal U-woven fabric showing the peeled area after a tensile test of a film with an rl volume ratio of 0.8 Vlo and 25 V/O (7). FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)鋼材表面に二層の鉄亜鉛メッキ層を有する鉄亜鉛
メッキ鋼材において、鉄と亜鉛との金属間化合物である
Fe_5Zn_2_1なるΓ_1相を1V/O(体積比
)以下を含有し、かつメッキ被膜中の含有亜鉛量が60
〜90A/O(原子数比)である下層メッキ層を有する
ことを特徴とする鉄亜鉛メッキ鋼材。
(1) In an iron-galvanized steel material having two iron-zinc plating layers on the surface of the steel material, the steel material contains Γ_1 phase consisting of Fe_5Zn_2_1, which is an intermetallic compound of iron and zinc, at 1 V/O (volume ratio) or less, and is plated. The amount of zinc contained in the coating is 60
An iron-galvanized steel material characterized by having a lower plating layer having an atomic ratio of ~90 A/O.
(2)メッキ浴中のFe^2^+イオンとZn^2^+
イオンのモル比がZn^2^+/Fe^2^+>0.4
の場合、該メッキ浴の鋼板に対する流動状態がレイノル
ズ数(Re)でRe≧2×10^3でメッキを行ない、
メッキ浴中の同モル比が、0.2<Zn^2^+/Fe
^2^+≦0.4の場合、Re≦1×10^4でメッキ
を行なって下層メッキ層を形成することを特徴とする鉄
亜鉛メッキ鋼材の製造方法。
(2) Fe^2^+ ions and Zn^2^+ in the plating bath
The molar ratio of ions is Zn^2^+/Fe^2^+>0.4
In this case, plating is performed when the flow state of the plating bath relative to the steel plate is the Reynolds number (Re), and Re≧2×10^3,
The same molar ratio in the plating bath is 0.2<Zn^2^+/Fe
A method for producing iron-galvanized steel material, characterized in that when ^2^+≦0.4, plating is performed with Re≦1×10^4 to form a lower plating layer.
JP6827287A 1987-03-23 1987-03-23 Iron-zinc plated steel material and production thereof Pending JPS63235494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6827287A JPS63235494A (en) 1987-03-23 1987-03-23 Iron-zinc plated steel material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6827287A JPS63235494A (en) 1987-03-23 1987-03-23 Iron-zinc plated steel material and production thereof

Publications (1)

Publication Number Publication Date
JPS63235494A true JPS63235494A (en) 1988-09-30

Family

ID=13368955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6827287A Pending JPS63235494A (en) 1987-03-23 1987-03-23 Iron-zinc plated steel material and production thereof

Country Status (1)

Country Link
JP (1) JPS63235494A (en)

Similar Documents

Publication Publication Date Title
JP2001107213A (en) HOT-DIP Zn-Mg-Al BASE ALLOY COATED STEEL WIRE AND ITS PRODUCTION METHOD
JPH05320952A (en) High strength cold rolled steel sheet excellent in corrosion resistance after coating
JPS6056436B2 (en) Surface-treated steel sheet with excellent corrosion resistance and phosphate treatment properties
JP2009209383A (en) Phosphate-treated electro-galvanized steel plate
JPS63235494A (en) Iron-zinc plated steel material and production thereof
JPS58177447A (en) Manufacture of galvanized steel plate with superior corrosion resistance and coatability
JPS6039153A (en) Alloyed hot-galvanized steel sheet with superior resistance to working
JPS6343479B2 (en)
JPS61207597A (en) Alloyed hot dip galvanized steel sheet having superior workability
JPH0368749A (en) Production of hot dip galvanized steel sheet
TWI844276B (en) Melt-plated steel
JP2509939B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPS59129781A (en) Plated steel material with superior corrosion resistance
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JP2001059198A (en) Zn-Co PLATED METALLIC SHEET EXCELLENT IN CORROSION RESISTANCE AND ITS PRODUCTION
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JPS60155695A (en) Surface treated steel sheet for manufacturing can
JPS60131977A (en) Surface treated steel sheet having superior suitability to chemical conversion treatment
JP2636589B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion and chemical conversion treatment
JPH03243755A (en) Organic composite alloying hot dip galvanized steel sheet excellent in press formability
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPS6348957B2 (en)
JPH01159398A (en) Surface treated steel sheet having superior suitability to phosphating
JPH055905B2 (en)
JPS58210193A (en) Iron-zinc alloy electroplated steel plate having excellent phosphatability