JPS59166587A - Coal purification - Google Patents

Coal purification

Info

Publication number
JPS59166587A
JPS59166587A JP59037186A JP3718684A JPS59166587A JP S59166587 A JPS59166587 A JP S59166587A JP 59037186 A JP59037186 A JP 59037186A JP 3718684 A JP3718684 A JP 3718684A JP S59166587 A JPS59166587 A JP S59166587A
Authority
JP
Japan
Prior art keywords
coal
oil
solvent
slurry
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59037186A
Other languages
Japanese (ja)
Other versions
JPH0579717B2 (en
Inventor
コ−ネリス・クレインジヤン
クインテイン・ジヨン・ビユ−クス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasol Operations Pty Ltd
Original Assignee
Sasol Operations Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasol Operations Pty Ltd filed Critical Sasol Operations Pty Ltd
Publication of JPS59166587A publication Critical patent/JPS59166587A/en
Publication of JPH0579717B2 publication Critical patent/JPH0579717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/006Combinations of processes provided in groups C10G1/02 - C10G1/08
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Coke Industry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 よび溶媒精製した石炭(以後SRCとも称する)に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solvent refined coal (hereinafter also referred to as SRC).

本発明によれば2工程方法において、第1工程で石炭を
溶媒と接触させ、これによって第1反応で石炭を部分的
に精製し、溶媒の幾分かを除去し、第2工程で、第2反
応で石炭を更に精製するため、第1工程からの部分的に
精製された石炭を残存溶媒と接触した状態のままにする
ことを含む石炭の精製方法を提供する。
According to the invention, in a two-step process, in a first step the coal is contacted with a solvent, whereby in a first reaction the coal is partially purified and some of the solvent removed, and in a second step a A method for purifying coal is provided that includes leaving partially purified coal from a first step in contact with residual solvent to further purify the coal in two reactions.

本発明方法は、上記第2反応後、少なくとも幾分かの残
存溶媒を除去し、これによって溶媒精製された石炭を製
造することを含むことができる。
The method of the present invention may include removing at least some residual solvent after the second reaction, thereby producing solvent purified coal.

溶媒は油であることができる。油は約り0℃〜約450
℃、例えば約り00℃〜約4 5 (1 °Cの沸点範
囲を有する石炭から誘導された油部分であることができ
る。
The solvent can be an oil. Oil is about 0℃~about 450℃
It can be an oil fraction derived from coal having a boiling point range of from about 00°C to about 45°C (1°C), for example.

第1工程での油封石炭の比が質量基準で約1:1〜約5
=1、好ましくは2:1であるとよく、従って第1工程
で油および石炭は油/石炭スラリーの形である。
The ratio of oil-sealed coal in the first step is about 1:1 to about 5 on a mass basis
=1, preferably 2:1, so that in the first step the oil and coal are in the form of an oil/coal slurry.

本発明方法はスラリーに触媒を添加することを含むこと
ができる。第1工程でのスラリー中の触媒対石炭の比は
質量基準で約1=50であるとよい。触媒は金属基触媒
であるとよい。
The method of the present invention can include adding a catalyst to the slurry. The ratio of catalyst to coal in the slurry in the first step may be about 1=50 on a mass basis. The catalyst is preferably a metal-based catalyst.

第1工程での接触は約り50℃〜約480℃、例えば約
400℃〜450℃の温度、約5 X 1 0”kPa
 〜約3 0 X I Q3kPa1例えば約2 0 
X 1 03kPaの圧力で行なうとよい。反応は水素
リッチ雰囲気で行なうとよい。第1反応の反応時間は2
0分未満、例えば約10分以下であることができる。
The contact in the first step is carried out at a temperature of about 50°C to about 480°C, e.g. about 400°C to 450°C, and about 5 x 10"kPa.
~about 30 X I Q3kPa1 e.g. about 20
This is preferably carried out at a pressure of X 103 kPa. The reaction is preferably carried out in a hydrogen-rich atmosphere. The reaction time of the first reaction is 2
It can be less than 0 minutes, such as about 10 minutes or less.

油の除去は蒸溜によって行なうことができる。Oil removal can be accomplished by distillation.

溜去する油の容量は、油および石炭残渣が第2工程でな
おスラリーの形であり、第2工程でのスラリー中の触媒
の濃度が第1工程でのスラリー中の触媒の濃・度の少な
くとも2倍であるような量とするとよい。
The volume of oil to be distilled off is determined by the fact that the oil and coal residue are still in the form of a slurry in the second step, and the concentration of catalyst in the slurry in the second step is greater than the concentration of catalyst in the slurry in the first step. The amount should preferably be at least twice as large.

第2工程での接触はこれも約り50℃〜約480℃、例
えば約400℃〜450℃の温度、および約5×103
kPa〜約3 0 X I Q3kPa,例えば約2 
0 x l Q3kpaの圧力で行なうことができる。
The contacting in the second step is also at a temperature of about 50°C to about 480°C, such as about 400°C to 450°C, and about 5 x 103
kPa to about 30 X I Q3kPa, for example about 2
It can be carried out at a pressure of 0 x l Q3kpa.

第2工程での反応時間は約15分〜約150分であるこ
とができる。
The reaction time in the second step can be about 15 minutes to about 150 minutes.

本発明は上述した方法で作ったときの溶媒精製された石
炭にもおよぶ。
The invention also extends to solvent purified coal when made by the method described above.

本発明を下記の非限定的実施例によってここに説明する
The invention is now illustrated by the following non-limiting examples.

実施例 1 1、136重量%の柿発性分および10重量%の灰分を
含有する瀝青炭を粉末にし、約り00℃〜約420℃の
沸点範囲を有する石炭から誘導された油部分(溶媒)2
重量部でスラリーにした。このスラリ−1500yを、
5I!オートクレープ中で、添加触媒として石炭を基に
して2重量%のFe203で反応させた。第1工程で、
石炭を水素リッチ雰囲気中で溶媒と10分間約20X 
I Q3kPaの圧力および425℃の温度で接触させ
て、石炭を部分的に精製した。その後、第1工程のスラ
リー中の触媒濃度よりも約3倍大である触媒濃度を有す
るスラリーが牙−トラレープ中に残るまで充分な溶媒を
溜去した。ここで部分的に精製された石炭(即ち石炭残
渣)を、更に精製するため425°Cの温度および約2
0X I Q3kPaの圧力で第2工程で更に120分
間残存溶媒と接触した状態のままにした。次にオートク
レープを冷却し、内容物を処理して溶媒精製した石炭を
回収した(例えば未反応生成物を除去し、蒸溜できる油
を回収した)。
Example 1 1. Pulverized bituminous coal containing 136% persimmon content and 10% ash by weight, oil fraction (solvent) derived from the coal having a boiling point range of about 00°C to about 420°C 2
It was made into a slurry by weight. This slurry 1500y,
5I! The reaction was carried out in an autoclave with 2% by weight of Fe203 based on coal as added catalyst. In the first step,
Coal is heated approximately 20X with solvent in a hydrogen-rich atmosphere for 10 minutes.
The coal was partially purified by contacting at a pressure of IQ3 kPa and a temperature of 425°C. Sufficient solvent was then distilled off until a slurry remained in the fang-tralepe with a catalyst concentration that was approximately three times greater than the catalyst concentration in the slurry of the first step. The partially purified coal (i.e. coal residue) is now heated to a temperature of 425°C and about 2
It remained in contact with the residual solvent for a further 120 minutes in a second step at a pressure of 0X I Q3 kPa. The autoclave was then cooled and the contents treated to recover solvent-purified coal (e.g., to remove unreacted products and recover distillable oil).

1.2 1.1のスラリー15005’を添加触媒とし
て石炭を基にして2重量%のFe2O3を用い51オー
トクレーブ中で再び反応させた。反応条件は1.1にお
ける第1工程と同じであった。しかしながら第1工程で
の反応時間を130分に増大させ、その後溶媒は溜去し
なかった、即ち第2工程は行なわなかった。
1.2 Slurry 15005' of 1.1 was re-reacted in a 51 autoclave with 2 wt% Fe2O3 on coal as added catalyst. The reaction conditions were the same as the first step in 1.1. However, the reaction time in the first step was increased to 130 minutes, after which the solvent was not distilled off, ie the second step was not performed.

上記1.1および10.2から得られた生成物の比較(
乾燥灰分不含石炭を基にした正味の重量%で計算した)
は次のとおりであった。
Comparison of products obtained from 1.1 and 10.2 above (
(calculated as net weight % based on dry ash-free coal)
was as follows.

実験1,1   実験1.2 GO+GO23,12,0 H208,07,2 C1〜C38,211,7 C4〜200℃    14,1   25.9200
〜420℃   16,0   17.9SRC(42
0°c+)   42,2   67.9不溶解   
    2.3    3.2両実験から得られたSR
Cを500℃でコークス化した(5時間加熱時間および
4時間コークス化時間)および1370℃で30分浜焼
した。
Experiment 1,1 Experiment 1.2 GO+GO23,12,0 H208,07,2 C1~C38,211,7 C4~200℃ 14,1 25.9200
~420℃ 16,0 17.9SRC (42
0°c+) 42,2 67.9 Insoluble
2.3 3.2 SR obtained from both experiments
C was coked at 500°C (5 hours heating time and 4 hours coking time) and beach baked at 1370°C for 30 minutes.

熱膨張係数をX線回折法でデ1乏焼したコークスを測定
した。熱膨張係数(CTE)は実験1.1から得られた
災焼したコークスについては0.4X10−6であった
、また実験1.2から得られたTrt焼したコークスに
ついては0.7X10−’であった。
The coefficient of thermal expansion of coke that had been burnt to a minimum was measured using an X-ray diffraction method. The coefficient of thermal expansion (CTE) was 0.4X10-6 for the calcined coke obtained from experiment 1.1 and 0.7X10-' for the Trt-baked coke obtained from experiment 1.2. Met.

上記結果から本発明の2工程法からすぐれた品質のコー
クスが得られることを知ることができる。型番こ2工程
法は溶媒要求量に関して自給性である。実験1.2は劣
った品質のコークスを与え、処理溶媒において大きな不
足であった。
From the above results, it can be seen that coke of excellent quality can be obtained from the two-step method of the present invention. This two-step process is self-sufficient in terms of solvent requirements. Run 1.2 gave inferior quality coke and was severely deficient in processing solvent.

実施例 2 実施例1のスラIJ −1500Yを再び添加触媒とし
て石炭を基をこして2重量%のF C203で51オー
トクレーブ中で反応させた。第1工程で石炭を約2Q 
x l 03kPaの圧力8よび425℃の温度で10
分間水素リッチ雰囲気中で溶媒と接触させた。その後第
1工程のスラリーの触媒濃度より約3倍大である触媒濃
度を有するスラリーがオートクレーブ中に残るまで充分
な溶媒を溜去した。オートクレーブの温度を445℃に
上昇させ、約20 X 10”kPaの圧力で第2工程
で更に60分間接触を続けた。
Example 2 The slurry IJ-1500Y of Example 1 was again reacted with 2% by weight of coal-based FC203 in a 51 autoclave as an added catalyst. Approximately 2Q of coal is used in the first process.
x l 10 at a pressure of 03 kPa8 and a temperature of 425 °C
The solution was contacted with the solvent in a hydrogen-rich atmosphere for minutes. Sufficient solvent was then distilled off until a slurry remained in the autoclave having a catalyst concentration that was approximately three times greater than the catalyst concentration of the first step slurry. The temperature of the autoclave was increased to 445° C. and contact continued for an additional 60 minutes in a second step at a pressure of approximately 20×10” kPa.

下記生成物スペクトルを得た(乾燥灰分不含石炭を基に
した正味質量96として計算した)。
The following product spectrum was obtained (calculated as a net mass of 96 based on dry ash-free coal).

Co + Co□        2.4H708,5 C1〜G313.2 04〜200℃      20.9 200〜420℃    14.4 srtc(420℃+)    385非溶解    
     2.2 実施例1と同じ方法でSRCから゛照焼したコークスを
作った、これは0.4 X 10”’のCTE値を有す
る高品質のものであった。この方法はディーゼルおよび
ガソリン沸点範囲(それぞれC6〜200℃および20
0〜420℃)で35%液体生成物を生成した。
Co + Co□ 2.4H708,5 C1~G313.2 04~200℃ 20.9 200~420℃ 14.4 srtc (420℃+) 385 Not dissolved
2.2 Teriyaki coke was made from SRC in the same manner as in Example 1, which was of high quality with a CTE value of 0.4 (C6~200℃ and 20℃ respectively)
0-420°C) to produce a 35% liquid product.

(10’ 実施例 3 実施例1のスラIJ −15009を、実施例2につい
て前述したのと同じ第1および第2工程で、実施例2と
同じ反応条件下で触媒として石炭を基にして2重量%の
F C203を用い5I!オートクレーブ中で反応させ
た。唯一の相異は、第2工程での反応時間を60分から
120分に増大したことである、これによって液体燃料
の生成が増大した。
(10'Example 3) The slurry IJ-15009 of Example 1 was treated with coal based catalyst as catalyst under the same first and second steps as described above for Example 2 and under the same reaction conditions as Example 2. % by weight of FC203 in a 5I! autoclave. The only difference was that the reaction time in the second step was increased from 60 to 120 minutes, which increased the production of liquid fuel. .

下記生成物スペクトルが得られた(乾燥灰分不含石炭を
基にした正味質量%として計算した)。
The following product spectrum was obtained (calculated as % net weight based on dry ash-free coal).

Go + Co22.7 H2O2,6 C1〜Cs        13.5 04〜200℃     20.4 200〜420℃     17.3 SRC(420℃+)    35.3非溶解    
    24 液体生成物の全収量は37.7%であり、一方、SRC
から作られたγN焼コークスのCTHは0,3×(11
) 10−6であった。
Go + Co22.7 H2O2,6 C1~Cs 13.5 04~200℃ 20.4 200~420℃ 17.3 SRC (420℃+) 35.3 Not dissolved
24 The total yield of liquid product was 37.7%, while SRC
The CTH of γN-baked coke made from
) It was 10-6.

実施例 4 再び実施例1のスラリー1500yを使用した、これに
添加触媒として石炭を基にして2重量%のFe2O3を
加えた。第1工程および第2工程の両方を連続流反応器
で行なった。第1工程に対して、11オートクレーブを
使′用した、−1第2工程に対しては直径25πmを有
する垂直開放管反応器を使用した。反応時間はオートク
レーブで15分、開放管反応器で120分とした。
Example 4 The slurry 1500y of Example 1 was again used, to which was added 2% by weight of Fe2O3 based on coal as an added catalyst. Both the first and second steps were performed in a continuous flow reactor. For the first step a 11 autoclave was used; for the second step a vertical open tube reactor with a diameter of 25 πm was used. The reaction time was 15 minutes in the autoclave and 120 minutes in the open tube reactor.

両工程の接触温度および圧力はそれぞれ425℃および
20 X I Q”kPaであった。下記生成物スペク
トルを得た(乾燥灰分不含石炭を基にした正味質量%と
して計算した)。
The contact temperature and pressure for both steps were 425° C. and 20×I Q”kPa, respectively. The following product spectra were obtained (calculated as % net mass based on dry ash-free coal).

CD 十Co22.8 H2°         10.0 C1〜C38,4 C4〜200℃     19.3 200〜420℃    20.3 SRC(420℃士)    378 非溶解        1.4 上記SRCから0.4 X 10−’のCT’E値を有
する焼コークスが作られた。
CD 10 Co22.8 H2° 10.0 C1 to C38,4 C4 to 200°C 19.3 200 to 420°C 20.3 SRC (420°C) 378 Undissolved 1.4 0.4 from the above SRC A burnt coke with a CT'E value of ' was produced.

第1および第2工程後回収した200〜420℃溜分は
再循環できる(即ち第1工程のためのスラリーを形成す
るため使j旧できる)。過剰の油は他の場所で使用でき
る、例えばディーゼル油にそれを品質向上できる。
The 200-420° C. fraction recovered after the first and second steps can be recycled (ie, used to form a slurry for the first step). Excess oil can be used elsewhere, for example, it can be upgraded into diesel oil.

本発明者は、周囲条件下固体ピッチ状材料であり、従来
通常石炭の直接水素化によって得られたSRCを、シレ
ートコ−キング法によりコークスを作るための原料とし
て使用できることが判った。かくつくられた未処理コー
クスは゛照焼でき、その後電極を作るため使用できる。
The inventors have found that SRC, which is a solid pitch-like material under ambient conditions and conventionally usually obtained by direct hydrogenation of coal, can be used as a feedstock for making coke by the sylate coking process. The green coke thus produced can be terilized and then used to make electrodes.

電極の品質は使用した元のまたは原料石炭の解重今度に
大きく依存する。
The quality of the electrodes is highly dependent on the degrafting of the original or raw material coal used.

単一工程で溶媒での石炭の溶媒和を含む石炭の解重合法
がある。溶媒和中、石炭は解重合されるが、石炭断片は
副反応で断片または溶媒分子と結合する強力な傾向を有
する、従って再循環溶媒の不足を生せしめる。これらの
望ましか(,13) らぬ副反応の発生を防止または減少させるため、良好な
触媒系および高水素圧が通常使用される。
There are methods of depolymerizing coal that involve solvation of the coal with a solvent in a single step. During solvation, coal is depolymerized, but coal fragments have a strong tendency to combine with fragments or solvent molecules in side reactions, thus creating a shortage of recycled solvent. To prevent or reduce the occurrence of these undesirable (,13) side reactions, good catalyst systems and high hydrogen pressures are commonly used.

これらの条件の下で異種原子含有量を減少させる必要が
ある長びいた反応時間は、液体および気体生成物の高収
率、従って固体SRCの低収率をもたらす。一方短い反
応時間を用いてSRC生成を最高にすると、この生成物
は高すぎる異種原子含有量をなお含有し、それを高品質
電極コークスの製造に好適ならしめる。
The prolonged reaction times required to reduce the foreign atom content under these conditions result in high yields of liquid and gaseous products and thus low yields of solid SRC. On the other hand, if short reaction times are used to maximize SRC production, the product still contains too high a foreign atom content, making it suitable for producing high quality electrode coke.

解重合反応中、硫化水素、二酸化炭素、−酸化炭素、ア
ンモニアおよび水の如きガスが発生する、これは解重合
中に石炭分子から異種原子硫黄、窒素および酸素が遊離
されることを示す。
During the depolymerization reaction, gases such as hydrogen sulfide, carbon dioxide, -carbon oxide, ammonia and water are evolved, indicating that heteroatomic sulfur, nitrogen and oxygen are liberated from the coal molecules during depolymerization.

理論に拘束されるのを望まぬのであるが、本発明者はコ
ークス化原料の分子構造中の異種原子が高温でそのグラ
ファイト化を、粘度を増大し、メソ相の塑性範囲を減す
ることによって妨害するものと信する( J Dubo
is、CAqacbeお・よびJ L Whiteの論
、メタログラフィ第3巻第337頁〜第360頁、19
70年参照)。水C14) 素添加分解は従ってできる限り溶媒精製した石炭の異種
原子含有量を減少させることが要求される。
Without wishing to be bound by theory, the inventors believe that foreign atoms in the molecular structure of the coking feedstock induce its graphitization at high temperatures by increasing its viscosity and reducing the plasticity range of the mesophase. I believe that it will interfere (J Dubo
is, CAqacbe and J.L. White, Metallography Vol. 3, pp. 337-360, 19
(see 1970). Water C14) elemental cracking is therefore required to reduce the foreign atom content of the solvent-purified coal as much as possible.

N+S十〇 米国特許第421051.7号には%−−−−丁一の比
がrFL焼されるコークスの品質と相関関係があり、最
低の値は良好な品質のコークスに相当することを示した
。これは基本ピッチの異種原子含有量が少な(、炭素含
有量が大でなければならぬことを再び示している。
N+S 10 U.S. Pat. No. 4,210,51.7 shows that the ratio of %--1 is correlated with the quality of the coke subjected to rFL baking, with the lowest value corresponding to good quality coke. Ta. This again shows that the base pitch must have a low foreign atom content (and a high carbon content).

既知の方法においては、良好な品質のSRCの低収量ま
たは品質の劣るSRCの高収量の何れもが得られる。
In known methods either low yields of good quality SRC or high yields of poor quality SRC are obtained.

本発明者は、本発明]こよって提供する2工程法におい
ては(この場合第1工程の溶媒の幾分かを除去する結果
として、上記副反応が最少にされるかまたは減少せしめ
られる)、反応条件を、(1)高品質(即ち低異棟原子
含有量)の高収量および溶媒要求量に見られる如く自足
性が得られ、あるいは(II)液体生成物の高収量で高
品質のSRCの低収率が得られるように選択できると(
15) 信じる。SRCは高品質電極コークスの製造に適してい
る。
The present invention thus provides a two-step process in which the side reactions described above are minimized or reduced as a result of removing some of the solvent of the first step. The reaction conditions are modified to provide (1) self-sufficiency as seen in high yields of high quality (i.e., low outmoded atom content) and solvent requirements, or (II) high quality SRC with high yields of liquid products. can be selected to give a low yield of (
15) Believe. SRC is suitable for producing high quality electrode coke.

更に添加金属基触媒の使用をせずに(即ち石炭中に存在
する天然の触媒活性度のみを利用して)、本発明の2工
程法によって、溶媒要求量に見られる如き自足性および
高品質SRCの大量を得ることかできると信する。しか
しながら、金属基触媒を使用するとき(この場合同様の
生成物スペクトルを得るため高い反応温度および短い反
応時間が利用できる)、溶媒要求量に見られる如き自足
性の同じ程度および高品質SRCの実質的に同じ大量が
得られる。金属基触媒を用いることによりおよび第1工
程と第2工程の反応条件を変えることにより、得られる
液体生成物の量を変えることができる。
Additionally, without the use of added metal-based catalysts (i.e., utilizing only the natural catalytic activity present in the coal), the two-step process of the present invention provides self-sufficiency and high quality as seen in solvent requirements. I believe it is possible to obtain a large amount of SRC. However, when using metal-based catalysts (in which case higher reaction temperatures and shorter reaction times can be utilized to obtain similar product spectra), the same degree of self-sufficiency as seen in solvent requirements and the effects of high quality SRC The same amount can be obtained. By using metal-based catalysts and by varying the reaction conditions of the first and second steps, the amount of liquid product obtained can be varied.

本発明方法は、上記既知の方法と比較したとき低い初期
触媒濃度を使用でき、上記既知の方法で可能であるより
も低い全般的触媒使用量を可能にする。
The method of the present invention allows the use of lower initial catalyst concentrations when compared to the known methods described above, allowing lower overall catalyst usage than is possible with the known methods described above.

第1頁の続き (老発 明 者 フィンティン・ジョン・ビュークス 南アフリカ共和国オレンジ・フ リー・ステイト・セイゾルバー グ・ヴラールデインゲン・スト リート38Continuation of page 1 (Fintin John Bewkes, old genius) south africa orange fruit lee state solver Gu Vlaardingen Sto. REIT 38

Claims (1)

【特許請求の範囲】 1、 2工程法において、第1工程で石炭を溶媒と接触
させ、これによって第1反応で石炭を部分的に精製し、
溶媒の幾分を除去し、第2工程で第2反応において石炭
を更に精製するため第1工程からの部分的に精製された
石炭を残存溶媒と接触した状態のままに置くことを含む
ことを特徴とする石炭の精製方法。 2 第2反応後生なくとも幾分かの残存溶媒を除去し、
これによって溶媒精製した石炭を製造する特許請求の範
囲第1項記載の方法。 3、溶媒が油であり、石炭が粉砕された形である特許請
求の範囲第2項記載の方法。 4 油が約り0℃〜約450℃の沸点範囲を有する石炭
から誘導された油溜分である特許請求の範囲第3項記載
の方法。 5 第1工程での油対石炭比が質量基準で約1:1〜約
5:1であり、従って油および石炭が第1工程で油/石
炭スラリーの形である特許請求の範囲第3項または第4
項記載の方法。 6、 スラリーに触媒を加えることを含む特許請求の範
囲第5項記載の方法。 7、第1工程でのスラリー中の触媒対石炭の比が質量基
準で約1=50である特許請求の範囲第6項記載の方法
。 8、触媒が金属基触媒である特許請求の範囲第6項また
は第7項記載の方法。 9、第1工程での接触を約り50℃〜約480℃の温度
、および約5 X ] 03kPa〜約30 X 10
3kPaの圧力で行なう特許請求の範囲第6項〜第8項
の何れか一つに記載の方法。 10、水素リッチ雰囲気で行ない、第1反応の反応時間
が20分未満である特許請求の範囲第6項〜第9項の何
れか一つに記載の方法。 11、油の除去を蒸溜によって行なう特許請求の範囲第
6項〜第10項記載の方法。 12、溜去される油の容量が、第2工程での油および石
炭残渣がなおスラリーの形であり、第2工程でのスラリ
ー中の触媒の濃度が第1工程でのスラリー中の触媒の濃
度の少な(とも2倍であるようにする特許請求の範囲第
11項記載の方法。 13  第2工程での接触を約り50℃〜約480℃の
温度、?よび約5×103kPa〜約30 X 103
kPaの圧力で行なう特許請求の範囲第11順または第
12項記載の方法。 14  第2工程での反応時間が約15分〜約150分
である特許請求の範囲第13項記載の方法。
[Claims] 1. In a two-step process, the coal is brought into contact with a solvent in the first step, thereby partially refining the coal in the first reaction,
removing some of the solvent and leaving the partially purified coal from the first step in contact with the remaining solvent to further purify the coal in a second reaction in a second step. Characteristic coal refining method. 2 removing at least some residual solvent after the second reaction;
The method according to claim 1, wherein solvent-purified coal is produced by this method. 3. The method according to claim 2, wherein the solvent is oil and the coal is in pulverized form. 4. The method of claim 3, wherein the oil is an oil distillate derived from coal having a boiling range of about 0°C to about 450°C. 5. The oil to coal ratio in the first step is from about 1:1 to about 5:1 by weight, such that the oil and coal are in the form of an oil/coal slurry in the first step. or the fourth
The method described in section. 6. The method of claim 5 comprising adding a catalyst to the slurry. 7. The method according to claim 6, wherein the ratio of catalyst to coal in the slurry in the first step is about 1=50 on a mass basis. 8. The method according to claim 6 or 7, wherein the catalyst is a metal-based catalyst. 9. Temperature of about 50° C. to about 480° C., and about 5× ] 03 kPa to about 30×10
A method according to any one of claims 6 to 8, which is carried out at a pressure of 3 kPa. 10. The method according to any one of claims 6 to 9, wherein the first reaction is carried out in a hydrogen-rich atmosphere and the reaction time of the first reaction is less than 20 minutes. 11. The method according to claims 6 to 10, wherein the oil is removed by distillation. 12. The volume of oil distilled off is such that the oil and coal residue in the second step are still in the form of a slurry, and the concentration of catalyst in the slurry in the second step is greater than that of the catalyst in the slurry in the first step. 13. The method of claim 11 in which the concentration is lower (both twice as high). 30 x 103
The method according to claim 11 or claim 12, which is carried out at a pressure of kPa. 14. The method of claim 13, wherein the reaction time in the second step is about 15 minutes to about 150 minutes.
JP59037186A 1983-02-28 1984-02-27 Coal purification Granted JPS59166587A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA831366 1983-02-28
ZA83/1366 1983-02-28

Publications (2)

Publication Number Publication Date
JPS59166587A true JPS59166587A (en) 1984-09-19
JPH0579717B2 JPH0579717B2 (en) 1993-11-04

Family

ID=25576562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59037186A Granted JPS59166587A (en) 1983-02-28 1984-02-27 Coal purification

Country Status (5)

Country Link
JP (1) JPS59166587A (en)
AU (1) AU558838B2 (en)
CA (1) CA1231906A (en)
DE (1) DE3406845A1 (en)
GB (1) GB2138839B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161796A (en) * 2004-07-08 2010-07-22 Hitech Parts Co Ltd Slider assembly for slidable cellular phone and slidable cellular phone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688815A (en) * 1979-12-17 1981-07-18 Mitsui Cokes Kogyo Kk Preparation of starting material for carbon material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB494834A (en) * 1937-02-01 1938-11-01 Ig Farbenindustrie Ag Improvements in or relating to the extraction of bituminous or brown coal and like solid carbonaceous materials with solvents at high temperatures
GB1481799A (en) * 1973-11-30 1977-08-03 Coal Ind Manufacture of coke
GB1481800A (en) * 1973-12-12 1977-08-03 Coal Ind Production of coke
ZA743325B (en) * 1974-05-24 1976-02-25 South African Coal Oil Gas Improvements relating to a carbonaceous material
ZA755048B (en) * 1974-08-26 1976-07-28 Lummus Co Coal-liquefaction
US4008054A (en) * 1975-01-10 1977-02-15 Consolidation Coal Company Process for making low-sulfur and low-ash fuels
US3997422A (en) * 1975-06-20 1976-12-14 Gulf Oil Corporation Combination coal deashing and coking process
US4030982A (en) * 1975-07-10 1977-06-21 Consolidation Coal Company Process of making formcoke from non-caking or weakly caking coals
AU517024B2 (en) * 1976-09-20 1981-07-02 Kobe Steel Limited Coking low ranking coals
ZA781029B (en) * 1977-02-28 1979-02-28 Exxon Research Engineering Co Coal liquification process
GB1603619A (en) * 1977-06-08 1981-11-25 Mobil Oil Corp Process for coal liquefaction
US4210517A (en) * 1977-10-31 1980-07-01 Mitsui Mining Co. Ltd. Preparation of carbonaceous products
GB1544556A (en) * 1978-01-10 1979-04-19 Coal Ind Manufacture of coal digests

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688815A (en) * 1979-12-17 1981-07-18 Mitsui Cokes Kogyo Kk Preparation of starting material for carbon material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161796A (en) * 2004-07-08 2010-07-22 Hitech Parts Co Ltd Slider assembly for slidable cellular phone and slidable cellular phone

Also Published As

Publication number Publication date
GB2138839B (en) 1987-06-24
JPH0579717B2 (en) 1993-11-04
AU558838B2 (en) 1987-02-12
DE3406845C2 (en) 1993-07-01
DE3406845A1 (en) 1984-08-30
GB2138839A (en) 1984-10-31
AU2482584A (en) 1984-09-06
GB8403482D0 (en) 1984-03-14
CA1231906A (en) 1988-01-26

Similar Documents

Publication Publication Date Title
US4081359A (en) Process for the liquefaction of coal and separation of solids from the liquid product
US4045187A (en) Carbonaceous material
US4466883A (en) Needle coke process and product
US4328088A (en) Controlled short residence time coal liquefaction process
US4427526A (en) Process for the production of hydrogenated aromatic compounds and their use
EP0072573B1 (en) Process for producing pitch for use as raw material for carbon fibers and carbon fibers produced from the pitch
JPH035435B2 (en)
US2118940A (en) Destructive hydrogenation of distillable carbonaceous material
JPS59166587A (en) Coal purification
AU7291881A (en) Short residence time coal liquefaction process including catalytic hydrogenation
US4737261A (en) Process for the production of premium grade needle coke from a hydrotreated SRC material
US4014781A (en) Method for producing pitch and coke
JPH0288414A (en) Production of elastic graphite body
US4596650A (en) Liquefaction of sub-bituminous coal
SU1055338A3 (en) Method for dissolving coal
US2070961A (en) Process of treating tar and pitch
US4376015A (en) Process for removing arsenic from green coke derived from shale oil
US1863670A (en) Production of viscous oils and hydrocarbon products of low boiling point
KR910004907B1 (en) Preparation for needle-like cokes
SU1450750A3 (en) Method of producing binder containing hydrocarbon for fuel briquettes
US4430194A (en) Method for the production of a highly aromatic pitch-like coal by-product
JPH0699692B2 (en) Cuttall processing method
JPS5952679B2 (en) Coal liquefaction method
JPH0617057A (en) Method for converting heavy oil into light oil
JPS5829990B2 (en) Method for manufacturing desulfurized pitch