JPS59166229A - Method and device for removing sulfur dioxide from hot flue gas - Google Patents

Method and device for removing sulfur dioxide from hot flue gas

Info

Publication number
JPS59166229A
JPS59166229A JP58243025A JP24302583A JPS59166229A JP S59166229 A JPS59166229 A JP S59166229A JP 58243025 A JP58243025 A JP 58243025A JP 24302583 A JP24302583 A JP 24302583A JP S59166229 A JPS59166229 A JP S59166229A
Authority
JP
Japan
Prior art keywords
flue gas
reaction zone
absorbent
hot flue
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58243025A
Other languages
Japanese (ja)
Other versions
JPH0653209B2 (en
Inventor
ビナイ・ケ−・ビハテイア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FLSmidth and Co AS
Original Assignee
FLSmidth and Co AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8144337&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS59166229(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FLSmidth and Co AS filed Critical FLSmidth and Co AS
Publication of JPS59166229A publication Critical patent/JPS59166229A/en
Publication of JPH0653209B2 publication Critical patent/JPH0653209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound

Abstract

Sulfur oxides and other acid gases are removed from hot flue gases by dispersing and suspending an absorption agent and water, preferably Ca(OH)<sub>2</sub> suspended in water, in a rising stream of hot gas at the lower part of a reaction chamber (1), where the hot gases are subjected to a rapid reduction in velocity. Sulfur oxides and other acid gases are absorbed on and reacted with the absorption agent in the presence of evaporating water producing a dry powder which is separated from the flue gas in a particle precipitator (6,6') and partially recirculated to the reaction chamber (1).

Description

【発明の詳細な説明】 本発明は二酸化硫黄およびその他の酸性ガスを熱煙道ガ
スから除去する方法に関するものであり、その場合、吸
収剤と液状の水を反応帯中で寮ト煙つ首ガス流の中に導
入および分散させ、その反応帯中において二酸化硫黄と
他の酸性ガスは蒸発する液状水の存在下で吸収剤によっ
て吸収されかつそ0と反応して煙道ガス中に懸濁した反
応生成物と未反応吸収剤とから成る乾燥粉末を生成し、
その後、この粉末を分離帯の中で煙道ガスから分離し、
そして一部は反応帯へ循環させる。本発明(ままたこの
方法を実施するための装置にも関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing sulfur dioxide and other acid gases from hot flue gases, in which an absorbent and liquid water are combined in a reaction zone with a flue gas. Introduced and dispersed into the gas stream, in the reaction zone sulfur dioxide and other acid gases are absorbed by the absorbent in the presence of evaporating liquid water and react with it to become suspended in the flue gas. producing a dry powder consisting of the reacted reaction product and unreacted absorbent;
This powder is then separated from the flue gas in a separator zone,
A portion is then circulated to the reaction zone. The invention also relates to an apparatus for carrying out the method.

二酸化硫黄さ他の酸性ガスを例えば電力プラントおよび
焼却炉力1らの煙道ガスから除去する各種の方法が知ら
れている。
Various methods are known for removing sulfur dioxide and other acid gases from the flue gases of, for example, power plants and incinerator plants.

このような方法の概観は米国特許第4,197,278
号に示されている。
An overview of such methods is provided in U.S. Pat. No. 4,197,278.
No.

これらの方法の大部分は次の主な群の一つに入る: 1)煙道ガスのスクラビングをアルガリまたはアルカリ
土類金属の水酸化物または炭酸塩の懸濁体重たは溶液で
以て実施し、その場合に反応混合物をスラツジとしてと
り出す、湿式法。
Most of these methods fall into one of the following main groups: 1) Scrubbing of the flue gas is carried out with suspended weights or solutions of argali or alkaline earth metal hydroxides or carbonates; A wet method in which the reaction mixture is taken out as a sludge.

この湿式法の主要利点は、熱煙道ガス中の二酸化硫黄濃
度が高い場合でも高度に二酸化硫黄を除去することと吸
収剤の高度利用とである。主な欠点は、重大な廃棄問題
を提示するスラツジ並びに大気中へ放出する前に刃口熱
しなければならない水で飽和した排出ガス、として生ず
る望ましくない最終生成物である。さらに、スクラバー
の詰まりと腐蝕は運転の困難さと湿式スクラバーの使用
不能に連がる。
The main advantages of this wet process are the high sulfur dioxide removal even at high sulfur dioxide concentrations in the hot flue gas and the high utilization of the absorbent. The main drawbacks are the undesirable end products produced as sludge, which presents significant disposal problems, as well as water-saturated exhaust gases that must be heated before being discharged to the atmosphere. Additionally, scrubber clogging and corrosion can lead to operational difficulties and the unusability of wet scrubbers.

11)煙道ガスを乾燥した吸収剤と接触させかつ反応さ
せそして反応生成物を乾燥粉末としてとり出す乾式法。
11) Dry process in which the flue gas is contacted and reacted with a dry absorbent and the reaction product is removed as a dry powder.

乾式法の主な利点は、詰りの危険性の除去、大気へ容易
に排出できる乾燥した固体と生成物並びに排出ガス、で
ある。しかし、気体・固体の反応は比較的おそいので二
酸化硫黄の除去率および吸収剤の利用率は低い。
The main advantages of the dry process are the elimination of the risk of clogging, dry solids and products as well as exhaust gases that can be easily vented to the atmosphere. However, since the reaction between gas and solid is relatively slow, the removal rate of sulfur dioxide and the utilization rate of the absorbent are low.

111)煙道ガスをアルカリ金属またはアルカリ土類金
属の水酸化物または炭酸塩の水性の懸濁体まだは溶液と
、水が蒸発しかつ反応生成物が乾燥粉末としてとり出さ
れるような条件の下で、接触させる半乾式法。
111) Combining the flue gas with an aqueous suspension or solution of an alkali metal or alkaline earth metal hydroxide or carbonate under conditions such that the water evaporates and the reaction products are removed as a dry powder. Below, a semi-dry method of contact.

半乾式法は、一般的には湿式によって得られるほどでは
ないが乾式法に比較してきわめて改善された二酸化硫黄
の除去率と吸収剤利用率を示し、最終生成物として容易
に排出し得る脱硫煙道ガスと乾燥した流動性の固体粉末
を提供する。
Semi-dry processes exhibit significantly improved sulfur dioxide removal and absorbent utilization compared to dry processes, although generally not as good as those obtained by wet processes, and provide desulfurization that can be easily discharged as a final product. Provides flue gas and dry flowable solid powder.

半乾式法は多数の特許および特許願に記載されている。Semi-dry methods are described in numerous patents and patent applications.

米国特許第98’2587号は熱煙道ガスからフライア
ッシュを除去したのちにスプレードライヤー中において
アルカリ金属炭酸塩および/または重炭酸塩の水溶液ま
たは水性スラリーで以て熱煙道ガスを処理することによ
るso2除去を記載している。
U.S. Pat. No. 98'2587 discloses the treatment of hot flue gases with an aqueous solution or slurry of alkali metal carbonates and/or bicarbonates in a spray dryer after removing fly ash from the hot flue gases. Describes so2 removal by.

英国特許願第2201086号はより安価な吸収剤、す
なわち水中懸濁のCα(QH)2を利用する類似の方法
を記載している。改善された石灰利用率が、熱煙道ガス
からのフライアッシュの除去を行なわずかつスプレード
ライヤーへ向ける水性スラリーヘスプレードライヤーか
らの粉状最終生成物の一部を循還させることによって達
成される。
GB Patent Application No. 2,201,086 describes a similar method which utilizes a cheaper absorbent, namely Ca(QH)2 suspended in water. Improved lime utilization is achieved by removing fly ash from the hot flue gas and recycling a portion of the powdered end product from the spray dryer to an aqueous slurry directed to the spray dryer. .

吸収剤と循環粉末との水性スラリーの粘度は、しかし、
循環する粉末量に狭い制限を与える。
The viscosity of the aqueous slurry with absorbent and circulating powder, however,
Provides narrow limits on the amount of powder circulated.

Cの欠点を克服するために、乾燥粉末をスプレードライ
ヤーの中へ吹き込むことによって粉末を循還させること
がデンマーク特許願第8959/79号において提示さ
れている。
In order to overcome the drawbacks of C, recycling of the dry powder by blowing it into a spray dryer was proposed in Danish patent application no. 8959/79.

半乾式法の操作条件を述べる鍵となる要因はAS、T、
すなわち「飽和温度への近接」であり、反応帯排出ガス
温度からガス飽和温度を差引いたものと定義されること
、そして、スプレードライヤー中並びに関連する布フィ
ルター中における二酸化硫黄除去率がASTがゼロに近
づくときに劇的に増大すること、が知られている。
The key factors describing the operating conditions of the semi-dry method are AS, T,
That is, "near the saturation temperature," defined as the reaction zone exhaust gas temperature minus the gas saturation temperature, and that the sulfur dioxide removal rate in the spray dryer and associated fabric filter is near zero AST. It is known that it increases dramatically when approaching .

しかし、スプレードライヤーを低AST値で操作するこ
とは、「湿潤塔底物」の危険性、すなわちスプレードラ
イヤーの壁および底における湿った生成物または濡れた
生成物の堆積、のために実際的ではない。この棟の堆積
はスプレードライヤー中に沈降する固体物質の面倒な取
扱と排出に連がるのできわめて望ましくない。低AST
値はまた関連バック°フィルターにおける操作不能条件
に連がるので望ましくない。
However, operating spray dryers at low AST values is impractical due to the risk of "wet bottoms," i.e., the accumulation of wet or wet product on the walls and bottom of the spray dryer. do not have. This build-up of ridges is highly undesirable since it leads to tedious handling and evacuation of the solid material that settles in the spray dryer. Low AST
Values are also undesirable as they lead to inoperable conditions in the associated back-off filters.

スプレードライヤーを使用する半乾式煙道ガス脱硫法の
開発のために多大の努力がなされてきたが、そして、こ
の種の方法は低硫黄石炭の燃焼により生成されかつ反応
性のアルカリ性フライアッノユ、すなわちスプレードラ
イヤー中の二酸化硫黄および他の酸性ガスの吸収に貢献
するアルカリ含量を含むフライアッシュ、を含む煙道ガ
スについて操作して、完全規模で実現されてきたが、煙
道ガス特に電力プラントおよび焼却炉において生成する
煙道ガスから二酸化硫黄および他の酸性ガスを除去して
適切な二酸化硫黄の除去と吸収剤の有効利用を提供する
、効果的な商業性のある方法および単純な小型能率装置
を求める必要性が存在している。
Much effort has been made to develop a semi-dry flue gas desulphurization process using spray dryers, and this type of process is produced by the combustion of low sulfur coal and reactive alkaline fly-anoyl, i.e. spray Operating on flue gases containing fly ash, which has an alkali content that contributes to the absorption of sulfur dioxide and other acid gases in dryers, has been realized on a full scale, but flue gases especially power plants and incinerators seeks an effective commercially viable method and simple compact efficiency device for removing sulfur dioxide and other acid gases from flue gases produced in a The need exists.

ここにおいて、反応帯中の懸濁物質の大濃度を可能とし
合理的に気固接触を増加させ、その結果、スプレードラ
イヤの塔底物湿潤現象をおこす危険もなくかつ設計が複
雑でない小型能率装置の中で作業することができる、本
明細書の第−節において規定した通りの方法を行なうこ
とが可能であるということが発見されたのである。
Here, a small efficient device that enables a large concentration of suspended solids in the reaction zone and increases the gas-solid contact in a rational manner, and as a result, there is no risk of causing the bottom wetting phenomenon of the spray dryer and the design is not complicated. It has now been discovered that it is possible to carry out the method as defined in section 1 of this specification, which can work within the scope of the invention.

熱煙道ガスの軸方向に導入する上昇流に速度の急速低下
をおこさせて反応帯の下部において境界層分離をおこさ
せるようにし;吸収剤、水、および粉末を熱煙道ガスの
中で反応帯下部において導入、分散および懸濁させ;生
成乾燥粉末を反応帯上部から煙道ガス中に懸濁および随
伴させて除去し;そして、粉末を懸濁体から別の分離帯
の中で分離する:ことを本発明に従って特徴とする方法
によって、上記のことが達成される。
The axially introduced upward flow of hot flue gas is caused to rapidly decrease in velocity to cause boundary layer separation at the bottom of the reaction zone; absorbent, water, and powder are placed in the hot flue gas. Introduction, dispersion and suspension in the lower part of the reaction zone; removing the resulting dry powder from the upper part of the reaction zone by suspending and entraining it in the flue gas; and separating the powder from the suspension in a separate separation zone. The above is achieved by a method characterized according to the invention.

この方法(まいくつかの理由で極度に緊密な気固接触を
提供する:その理由は次の通り。
This method provides extremely close gas-solid contact for several reasons:

(1)、境界層分離は反応帯下部における吸収剤と循還
粉末との激しい分散に連がる激烈な乱流状ガス流を発生
する。
(1) Boundary layer separation generates a violently turbulent gas flow associated with a vigorous dispersion of absorbent and recycled powder in the lower part of the reaction zone.

(2)物質は、反応帯下部における境界層分離に基づG
)で、反応帯内で再循還されて、反応帯中心部中で上向
きでかつ反応帯をかこむ囲わ゛れた空間の壁の近くで下
向きの粒子運動を生ずる。
(2) The material is separated by boundary layer in the lower part of the reaction zone.
) and are recycled within the reaction zone to produce particle motion upward in the center of the reaction zone and downward near the walls of the enclosed space surrounding the reaction zone.

(3)懸濁粒子に働く重力とガスと懸濁粒子との間の摩
擦力との間の相互作用が反応帯内でさらに物質再循還の
原因になる。
(3) The interaction between the gravitational force acting on the suspended particles and the frictional force between the gas and the suspended particles causes further material recycling within the reaction zone.

(4)高度乱流のガス運動はガス相拡散抵抗の減少に連
がる、ガスと懸濁粒子の間の相対速度の増加をもたらす
(4) Highly turbulent gas motion results in an increase in the relative velocity between the gas and suspended particles, which is concomitant with a decrease in gas phase diffusion resistance.

本発明による方法は下向式または水平式の向流ガス・粒
子流で以て操作する方法によって達成される濃度よりも
著しく大きい懸濁物質濃度を可能にする。
The process according to the invention allows suspended solids concentrations that are significantly higher than those achieved by processes operating with downward or horizontal countercurrent gas/particle flows.

さらに、反応帯内の物質の大きい保有量と急速循還とは
AST値が低すぎるためにしよう孔度を減らす危険性を
提供する。
Furthermore, the large retention and rapid circulation of material in the reaction zone presents the risk of reducing porosity due to too low an AST value.

反応帯中へ導入される熱煙道ガスの温度は一般には20
℃以上である。熱煙道ガスが電力プラントからの煙道ガ
スであるときには、その温度は一般には110〜250
℃代表的には140〜180℃の範囲内にある。
The temperature of the hot flue gas introduced into the reaction zone is generally 20
℃ or higher. When the hot flue gas is flue gas from a power plant, its temperature is generally between 110 and 250°C.
°C is typically within the range of 140 to 180 °C.

所望の場合には、フライアッンユ○全部または一部を煙
道ガスを反応帯の中へ導入する前に除去してよい。
If desired, all or a portion of the fly chain may be removed prior to introducing the flue gas into the reaction zone.

反応帯に入る熱煙道ガスの速度は反応帯中て循還してい
る粒子の装填量と粒径に依存して変り得ろ。しかし、反
応帯中で粒子保有量を維持しかっ該帯域の底から粒子が
落下するのを妨げるために、速度は十分に大きくなけれ
ばならない。
The velocity of hot flue gases entering the reaction zone may vary depending on the particle loading and particle size circulating in the reaction zone. However, the velocity must be high enough to maintain particle loading in the reaction zone and prevent particles from falling from the bottom of the zone.

煙道ガスの速度は低下芒せても、それは反応帯上部か粒
子を運び出すことを保証するのに十分太きいものでなけ
ればないが、しかし、反応帯中での物質の適切な蓄積を
保証するよう十分に低いものでなければならない。
Although the velocity of the flue gas may be reduced, it must be sufficiently thick to ensure that it carries away particles from the top of the reaction zone, but does not ensure adequate accumulation of material in the reaction zone. must be low enough to

一つの好ましい具体化によると、熱煙道ガスの速度は1
0〜60m/秒、好ましくは25〜45m/秒、から2
〜20m/秒、好ましくは8〜6ηt/秒へ落さされ、
そしてこの速度低下は3〜20、好ましくは4〜9の範
囲にある速度比V初期/V低下に相当する・ 適切な境界層分離および対応する乱流は上述の速度低下
で以て、特にその速度低下が反応帯中でのガス滞留時間
の0.05〜0.2倍の範囲内の時間の間におこるとき
に、確保される。
According to one preferred embodiment, the velocity of the hot flue gas is 1
0 to 60 m/sec, preferably 25 to 45 m/sec, to 2
~20 m/s, preferably 8-6 ηt/s,
This velocity reduction then corresponds to a velocity ratio V initial/V reduction in the range of 3 to 20, preferably 4 to 9. Adequate boundary layer separation and corresponding turbulence are achieved with the above-mentioned velocity reduction, in particular the This is ensured when the rate reduction occurs for a time within the range of 0.05 to 0.2 times the gas residence time in the reaction zone.

このような境界層分離は反応帯の末広環状型の切截円錐
状底部、特に12°より太きく好ましくは2〜120°
、特に40〜90°の範囲内にある頂角をもつもの、の
中を貫通させることによって発生されるのが好才しい。
Such boundary layer separation is caused by the truncated conical bottom of the reaction zone having a diverging annular type, in particular wider than 12°, preferably between 2 and 120°.
, especially one with an apex angle in the range of 40 to 90°.

120°より大きい頂角は反応帯の切頭円錐状底部上に
望ましく1jい物質堆積がおこる危険性のために望まし
くISい。
Apex angles greater than 120° are undesirable due to the risk of undesirable material deposition on the truncated conical bottom of the reaction zone.

吸収剤は好ましくは、カル7ウムとマグネシウムの酸化
物と水酸化物並びにアルカリ金属の酸化物、水酸化物お
よび炭酸塩から成る群の各員から選択される。経済的理
由では、Ca (OH)2、好寸しくは滞留スレーカー
、磨細スレーカーあるいはボールミルの中で消和させた
もの、は好ましい吸収剤である。
The absorbent is preferably selected from each member of the group consisting of calcium and magnesium oxides and hydroxides and alkali metal oxides, hydroxides and carbonates. For economic reasons, Ca(OH)2, preferably slaked in a residence scraper, abrasive scraper or ball mill, is the preferred absorbent.

吸収剤は乾燥粉末として、あるいは水中に懸濁または溶
解して導入してもよく、水は吸収剤と別にまたは混合し
て導入してよい。
The absorbent may be introduced as a dry powder or suspended or dissolved in water, and water may be introduced separately or mixed with the absorbent.

吸収剤の高利用an達成するには、吸収剤を水中に懸濁
捷たは溶解して導入するのが好ましい。
In order to achieve high utilization of the absorbent, it is preferable to introduce the absorbent as suspended or dissolved in water.

水または水中の吸収剤懸濁体捷たは吸収剤溶液は煙道ガ
ス速度が大きい位置において反応帯中に導入するのが好
ましい。
The water or absorbent suspension in water or absorbent solution is preferably introduced into the reaction zone at a location where the flue gas velocity is high.

好ましい操作条件は反応帯中のガス滞留時間が1〜5秒
、好ましくは2〜3秒であること、および反応室中の物
質滞留時間が1〜8分、好ましくは3〜5秒であること
、を特徴とし、ここに、物質滞留時間t1φは tM−HM/WM として定義され、式中、111.lは反応帯中の物質保
有量(Jcg)であり、Wヮは新しい吸収剤吉熱煙道ガ
ス中に存在する固体粒子との合計の物質注入量Ck、9
7分)である。
Preferred operating conditions are gas residence times in the reaction zone of 1 to 5 seconds, preferably 2 to 3 seconds, and material residence times in the reaction chamber of 1 to 8 minutes, preferably 3 to 5 seconds. , where the material residence time t1φ is defined as tM-HM/WM, where 111. l is the amount of material held in the reaction zone (Jcg), and W is the total amount of material injected with the solid particles present in the new absorbent flue gas Ck, 9
7 minutes).

上述の通り、粉末は反応生成物と未反応吸収剤とから成
る。しかし、反応帯に入る煙道ガスは一般にはフライア
ッシュを随伴し、これは分離帯中に沈降するものである
。フライアッシュは二酸化硫黄と他の酸性ガスと適切な
条件下で反応し得る反応性のアルカIJ ’fir含ん
でいてよく、吸収剤必要量の減少をもたらす。
As mentioned above, the powder consists of reaction products and unreacted absorbent. However, the flue gas entering the reaction zone is generally accompanied by fly ash, which settles into the separation zone. Fly ash may contain reactive alkali IJ'fir that can react with sulfur dioxide and other acid gases under appropriate conditions, resulting in reduced absorbent requirements.

一つの好ましい具体化によると、粉末循還速度は吸収剤
の注入速度と熱煙道ガス中に存在する固体粒子との10
〜70倍、好ましい15〜30倍に等しく、この場合、
吸収剤の注入速度は粉末と一緒に導入される未反応吸収
剤を含ますG)新しG)吸収剤の注入速度として定義さ
れる。
According to one preferred embodiment, the powder circulation rate is 10 times higher than the injection rate of the absorbent and the solid particles present in the hot flue gas.
~70 times, preferably equal to 15-30 times, in which case
The sorbent injection rate is defined as the sorbent injection rate including the unreacted sorbent introduced along with the powder.

反応帯中の物質滞留時間は粉末循還速度によって調節さ
れる。
The residence time of the substances in the reaction zone is controlled by the powder circulation rate.

再循還粉末の平均粒径は好ましくは50〜250ミクロ
ン(/、1範囲内にある。この好ましG)粒径(ま分離
帯中で分離された乾燥粉末を、反応帯へ円径)YAする
前に寸法調整、例えば篩分け、あるty )i′1fl
Jえげ・・ツマ−ミル中での微粉砕による寸法減少に7
11けることによって保証してよい。
The average particle size of the recycled powder is preferably in the range 50 to 250 microns (/, 1). Before YA, size adjustment, e.g. sieving, etc.)i'1fl
JEGE...Dimension reduction due to fine pulverization in Zuma mill 7
This can be guaranteed by subtracting 11.

適切rl A S Tは煙道ガスを断熱飽和温度へ冷去
口するのに必要とする量の50−100%にオ目当する
量で反応帯中に水を導入するときに得らIqる。
The appropriate rl A S T is obtained when water is introduced into the reaction zone in an amount intended to be 50-100% of the amount required to cool the flue gas to the adiabatic saturation temperature. .

ASTは一般的には0〜40℃の範囲、好捷しくは5〜
20℃、特に8〜16℃の範囲の中に入る。
AST is generally in the range of 0 to 40°C, preferably 5 to 40°C.
20°C, especially within the range of 8-16°C.

所望の場合には、例えば、きわめて低t、)A S T
で以て操作するときには、排出ガスは例えば反応帯の周
りに熱煙道ガスの一部をノぐイ/々スきせることによっ
て再加熱してもよい。
If desired, e.g. very low t)A S T
When operating with a reactor, the exhaust gas may be reheated, for example by blowing a portion of the hot flue gas around the reaction zone.

反応帯を出たのち、煙道ガスは脱塵され、その場合、未
反応吸収剤、反応生成物およびフライアッシュから成る
粉末が既知の分離!中で一段または二段で分離帯中にお
いて分離される。
After leaving the reaction zone, the flue gas is dedusted, in which case the powder consisting of unreacted absorbent, reaction products and fly ash is separated out as known! They are separated in one or two stages in a separation zone.

一つの好ましい具体化によると、分離体Gま二つの副帯
域から成り、その第一は粗粒沈降用の昌11帯域であり
第二は微粒沈降用の副帯域である。
According to one preferred embodiment, the separator G consists of two sub-zones, the first of which is a Sho 11 zone for coarse sedimentation and the second a sub-zone for fine sedimentation.

本発明はまたこの方法を実施する装置に関するものでも
あり、この装置は直立軸、下向き力1つ内向きに傾斜し
ている環状底部壁、この、底台μ壁中の熱煙道ガス用の
中央導入口、吸収剤、粉末および水を反応室の下部の中
へ供給するだめの導管、および、粉末供給導管と連通ず
る粉末出口導管をもつ粒子沈降器へ連結した反応室の頂
部における懸濁休出口、をもつ反応室から成ることを特
徴とする 反応室は管状であることが好ましG)。
The invention also relates to a device for carrying out this method, which device has an upright axis, a downward force, an inwardly sloping annular bottom wall, and an annular bottom wall for hot flue gases in the bottom μ wall. Suspension at the top of the reaction chamber connected to a particle settler having a central inlet, a reservoir conduit for supplying absorbent, powder and water into the lower part of the reaction chamber, and a powder outlet conduit communicating with the powder supply conduit. The reaction chamber is preferably tubular in shape.G).

反応帯における極度に均密な気固接触と固体物質の高濃
度は簡単p設計の従って低(7′1投資コストのきわめ
て小型能率的な装置の使用全可首比にする。
The extremely intimate gas-solid contact and the high concentration of solid material in the reaction zone make the use of a very compact and efficient apparatus with a simple design and therefore low (7'1) investment cost.

反応帯下部すなわち環状底部壁における適切な境界層分
離、従って相当する乱流発生は、環状底部壁の頂角fJ
512°より大きく好ましくは12〜120″X4?に
40〜9o°の範囲にあることが好ましく、かつ、環状
底部壁の上部面積と下部面積との間の比A上部/A−F
部が3〜2o好ましくは4〜9の範囲内にあるときに保
証される。
Adequate boundary layer separation in the lower part of the reaction zone, i.e. the annular bottom wall, and hence the corresponding turbulence generation, depends on the apex angle fJ of the annular bottom wall.
greater than 512°, preferably in the range from 40 to 9° to 12 to 120″
Guaranteed when the part is in the range from 3 to 2o, preferably from 4 to 9.

本発明による方法の好ましい具体化においては、吸収剤
は反応帯の中へ水中に懸濁または溶解して導入される。
In a preferred embodiment of the process according to the invention, the absorbent is introduced into the reaction zone suspended or dissolved in water.

この場合、水と吸収剤は同じ供給導管全通して供給され
る。
In this case, water and absorbent are fed through the same feed conduit.

水型たは水と吸収剤の供給導管はベンチュリー射出ノズ
ルを備えているのが好ましい。
Preferably, the water type or water and absorbent supply conduit is equipped with a Venturi injection nozzle.

好丑しい具体化によれば、装置は乾燥粉末を反応帯へ循
環させる前に寸法調整または微粉砕にかける手段を備え
ている。
According to a preferred embodiment, the apparatus is provided with means for sizing or comminution of the dry powder before it is circulated to the reaction zone.

粒子沈降器としては、既知装置のいずれも使用できる。Any known device can be used as a particle settler.

好ましい具体化によれば、粒子沈降器は微粒分離器例え
ば静電フィルターまたは布フィルターの上流に配置した
粗粒分離器例えばサイクロン分離器から成る。
According to a preferred embodiment, the particle settler consists of a coarse particle separator, such as a cyclone separator, placed upstream of a fine particle separator, such as an electrostatic filter or a cloth filter.

本発明をここでさらに図面を参照してさらに説明するが
、図は本発明による装置の線図である。
The invention will now be further explained with reference to the drawing, which is a diagrammatic representation of an apparatus according to the invention.

図面を参照すると、装置は環状底部壁2、熱煙道ガス用
導管3、水中に懸濁または溶解した吸収剤のための導管
4、および乾燥粉末循還用導管5全備えだ管状反応室1
を備えている。反応室の頂部は、粉末を二つの流れ、す
γjわち反応室1へ循還する流れと導管9として廃生成
物として廃棄されるもう一つの流、に粉末を分割する分
割ゲート8を備えた物質量ロアをもつ分離サイクロン8
から成る。分離サイクロン671)らの排出ガスはガス
導出導管10を経て物質導出導管7′およびガス導出導
管10’とを備えた静電フィルター6′へ向けられる。
With reference to the drawings, the apparatus comprises a tubular reaction chamber 1 complete with an annular bottom wall 2, a conduit 3 for hot flue gases, a conduit 4 for absorbent suspended or dissolved in water, and a conduit 5 for dry powder circulation.
It is equipped with The top of the reaction chamber is equipped with a dividing gate 8 which divides the powder into two streams, one that is recycled to the reaction chamber 1 and another that is disposed of as waste product as conduit 9. Separation cyclone 8 with a lower mass amount
Consists of. The exhaust gases of the separating cyclones 671) are directed via a gas outlet line 10 to an electrostatic filter 6' with a substance outlet line 7' and a gas outlet line 10'.

静電フィルター中に沈降した微粉は廃生成物として排出
してもよく、あるいは全部または一部を反応室へ循環し
てもよい。
The fines settled in the electrostatic filter may be discharged as waste product or may be recycled in whole or in part to the reaction chamber.

所望ならば、導入導管4は二つの導管、水用導管と吸収
剤用、によって置換してもよい。
If desired, the inlet conduit 4 may be replaced by two conduits, one for water and one for absorbent.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による装置のフローチャートである。 1 管状反応室   6 分離サイクロン2 管状底部
壁   7 、物質取出口3 熱煙道ガス用導管  8
 分割ゲート4 吸収剤用導管  6′ 静電フィルタ
ー5 乾燥粉末循還用導管  7′ 物質導出管特許出
願人  エフ・エル−スミス・アンド・カン/でニー・
ニー・ニス (外4名) 手続補正書 1.事件の表示 昭和!2年特許願第 2p、902ぶ号事件との関係 
 特許出願人 住所 多ポトヴフ・−f−+v、又ミスミスンp′、労ン/ 
e ニー ’ニー・工、<4、代理人
The drawing is a flowchart of the apparatus according to the invention. 1 Tubular reaction chamber 6 Separation cyclone 2 Tubular bottom wall 7 , material outlet 3 Conduit for hot flue gas 8
Dividing gate 4 Absorbent conduit 6' Electrostatic filter 5 Dry powder circulation conduit 7' Substance outlet tube Patent applicant F.L.Smith & Kan.
Nie Nis (4 others) Procedural amendment 1. Incident display Showa! Relationship with 2nd year patent application No. 2p, 902b case
Patent applicant's address: Potovov -f-+v, also Miss Smith p', Labor/
e nee 'nee・technical <4, agent

Claims (1)

【特許請求の範囲】 1、吸収剤と液状水とを反応帯中で熱煙道ガス流の中に
導入および分散させ、その中で二酸化硫黄および他の酸
性ガスは蒸発する液状水の存在下で吸収剤により吸収さ
れかつそれと反応して煙道ガス中に懸濁する反応生成物
と未反応吸収剤とから成る乾燥粉末を生成し、その後、
該粉末を分離帯中で煙道ガスから分離し反応帯へ一部循
環させる、熱煙道ガスから二酸化硫黄および他の酸性ガ
スを除去する方法であって; 熱煙道ガスの軸方向に導入した上昇流に反応帯下部にお
いて境界層分離をおこすように急速な速度低下おこさせ
、吸収剤、水および粉末を熱煙道ガス上昇流中に反応帯
下部において導入、分散および懸濁させ、得られる乾燥
粉末を煙道ガスに懸濁およびそれに随伴させて反応器上
部から除き、そして、その懸濁体から粉末を別の分離帯
において分離する、ことを特徴とする方法。 2、熱煙道ガスの速度を10〜60m/秒好ましくは2
5〜45m/秒から2〜20m/秒好ましくは3〜6m
1秒へ落し、かつその速度低下が3〜20好ましくは4
〜9の範囲内の速度比V初。/Vイよエ に相当するこ
とを特徴とする特許請求の範囲第1項に記載の方法。 3、速度低下が反応帯中のガス滞留時間の0.05〜0
,2倍の範囲内の時間の間におこることを特徴とする特
許請求の範囲第1〜2項に記載の方法。 4、熱煙道ガスの速度の急速低下が熱煙道ガスを反応帯
の末広環状型の截頭円錐状底部を貫通させることによっ
て提供されることを特徴とする特許請求の範囲第1〜3
項に記載の方法。 5、熱煙道ガスの、@、速速度低下が、12° より大
きく好ましくは12〜120°、特に40〜90゜の範
囲内にある頂角ケもつ末広環状型の截頭円錐状反応帯底
部の中に熱煙道ガスを通過させることによつ−3えられ
ることを特徴とする特許請求の範囲第4項に記載の方法
。 6.吸収剤がカルシウム吉マグネンウムの鹸化物および
水酸化物並びにアルカリ金属の酸化物、水酸化物および
炭酸塩から成る群の各員から選ばれることを特徴とする
特許請求の範囲第1〜5項に記載の方法。 7、吸収剤を水中に懸濁または溶解させて導入すること
を特徴とする特許請求の範囲第1〜6項に記載の方法。 8、反応帯中のガス滞留時間が1〜5秒、好捷しくは2
〜3秒であり、かつ反応室中の物質滞留時間が1〜8分
、好捷しくけ3〜5分であることを特徴とする特許請求
の範囲第1〜7項に記載の方法。 9、粉末循環速度が熱煙道ガス中に存在する吸収剤と固
体粒子の注入速度の10〜70倍、好ましくは15〜3
0倍に等しいことを特徴とする特許請求の範囲第1〜8
項に記載の方法。 10、 乾燥粉末を反応帯へ循環させる前に粒度調整に
かけることを特徴とする特許請求の範囲第1〜9項に記
載の方法。 几 乾燥粉末を反応帯へ循環させる前に微粉砕にかける
ことを特徴とする特許請求の範囲第10項に記載の方法
。 拐、煙道ガスを断熱飽和温度へ冷却するのに必要とする
量の50〜100%に相当する量で、水を反応帯中に導
入することを特徴とする特許請求の範囲第1〜11項に
記載の方法。 迅8分離帯が二つの副帯域、すなわち、粗粒沈降用の第
一副帯域および微粒沈降用の第二副帯域、から成る、特
許請求の範囲第1〜12項に記載の方法。 14、直立軸、下向きおよび内向きに傾斜がついている
環状底部壁、この底部壁における熱煙道ガス用の中央導
入口、吸収剤、粉末、および水を反応室の下方部の中へ
供給するための各導管、および粉末供給導と連通ずる粉
末導出導管を有する粒子沈降器へ連結した反応室頂部に
おける懸濁体導出口、をもつ反応室力)ら成ることを特
徴とする特許請求の範囲第1〜13項に記載の方法を実
施するだめの装置。 15、 ffl状底部壁の頂角が12℃より大きく、好
ましくは12〜12〇二特に40〜90°のii百囲内
。 にあることを特徴とする特許請求の範囲第14項に記載
の装置。 一0環状底部壁の上部面積と下部面積との間のLヒAj
:う/A□、が3〜20、好ましくは4〜9の範囲内に
あることを特徴とする特許請求の範囲第14〜15項に
記載の装置。 17、水と吸収剤を同じ供給導管を通して供給するこさ
を特徴とする特許請求の範囲]第14〜16項に記載の
装置。 侶、水または水と吸収剤との供給導管力≦ベンチュリー
射出ノズルを備えていることを特徴とする特許請求の範
囲第14〜IT項に記載の装置。 紛、乾燥粉末を反応帯へ循環させる前に粒度調整にかけ
る手段を備えていることを特徴とする特許請求の範囲第
14〜18項に記載の装置。 20、乾燥粉末を反応帯へ循環させる前に微粉砕にかけ
る手段を備えていることを特徴とする特許請求の範囲第
14〜19項に記載の装置。 21、粒子沈降器が微粒分離器の上流に配置した粗粒分
離器から成ることを特徴とする、第14〜20項に記載
の装置。 22、粗粒分離器がサイクロンであることを特徴とする
特許請求の範囲第21項に記載の装置。 2a 微粒分離器が静電フ仙レターまたは布フィルレタ
ーであることを特徴とする特許請求の範囲第21〜22
項に記載の装置。
[Claims] 1. Introducing and dispersing an absorbent and liquid water into a hot flue gas stream in a reaction zone, in the presence of liquid water in which sulfur dioxide and other acid gases are evaporated. adsorbed by and reacted with the absorbent to produce a dry powder consisting of reaction products and unreacted absorbent suspended in the flue gas;
A method for removing sulfur dioxide and other acid gases from a hot flue gas, wherein the powder is separated from the flue gas in a separation zone and partially recycled to a reaction zone; The upstream flow is subjected to a rapid velocity reduction to cause boundary layer separation in the lower part of the reaction zone, and the absorbent, water and powder are introduced, dispersed and suspended in the upstream hot flue gas at the lower part of the reaction zone, and the obtained A process characterized in that the dry powder is suspended in and entrained in the flue gas and removed from the top of the reactor, and the powder is separated from the suspension in a separate separation zone. 2. The velocity of the hot flue gas is 10-60 m/s, preferably 2.
5-45m/sec to 2-20m/sec preferably 3-6m
1 second, and the speed reduction is between 3 and 20, preferably 4
Speed ratio V first in the range of ~9. The method according to claim 1, characterized in that the method corresponds to /Viyoe. 3. The rate decrease is 0.05 to 0 of the gas residence time in the reaction zone.
3. A method according to claim 1, characterized in that the method takes place during a period of time within the range of . 4. Claims 1 to 3 characterized in that the rapid reduction in the velocity of the hot flue gas is provided by passing the hot flue gas through the frustoconical bottom of the diverging annular type of the reaction zone.
The method described in section. 5. A frusto-conical reaction zone of the diverging annular type with an apex angle in which the velocity reduction of the hot flue gas is greater than 12°, preferably in the range from 12 to 120°, in particular from 40 to 90°. 5. A method according to claim 4, characterized in that -3 is obtained by passing hot flue gases into the bottom. 6. Claims 1 to 5 characterized in that the absorbent is selected from each member of the group consisting of saponified products and hydroxides of calcium chloride and oxides, hydroxides and carbonates of alkali metals. Method described. 7. The method according to claims 1 to 6, characterized in that the absorbent is introduced as suspended or dissolved in water. 8. Gas residence time in the reaction zone is 1 to 5 seconds, preferably 2 seconds.
8. Process according to claims 1 to 7, characterized in that the residence time of the substance in the reaction chamber is 1 to 8 minutes, and the retention time of the substance in the reaction chamber is 3 to 5 minutes. 9. The powder circulation rate is 10 to 70 times, preferably 15 to 3 times, the injection rate of the absorbent and solid particles present in the hot flue gas.
Claims 1 to 8 characterized in that they are equal to 0 times
The method described in section. 10. Process according to claims 1 to 9, characterized in that the dry powder is subjected to particle size adjustment before being circulated to the reaction zone. 11. A process according to claim 10, characterized in that the dry powder is subjected to pulverization before being circulated to the reaction zone. Claims 1 to 11 characterized in that water is introduced into the reaction zone in an amount corresponding to 50 to 100% of the amount required to cool the flue gas to an adiabatic saturation temperature. The method described in section. 13. A method as claimed in claims 1 to 12, in which the rapid separation zone consists of two sub-zones, a first sub-zone for coarse sedimentation and a second sub-zone for fine sedimentation. 14. An upright shaft, an annular bottom wall sloping downward and inward, a central inlet in this bottom wall for hot flue gases, feeding absorbent, powder and water into the lower part of the reaction chamber. and a suspension outlet at the top of the reaction chamber connected to a particle settler having a powder outlet conduit communicating with the powder supply conduit. An apparatus for carrying out the method according to items 1 to 13. 15. The apex angle of the ffl-shaped bottom wall is greater than 12°C, preferably within the range of 12-120°, especially 40-90°. 15. The device according to claim 14, characterized in that: 10 L h Aj between the upper area and lower area of the annular bottom wall
16. The device according to claim 14, wherein: U/A□ is in the range of 3 to 20, preferably 4 to 9. 17. Apparatus according to claims 14 to 16, characterized in that water and absorbent are supplied through the same supply conduit. 14. The device according to claim 14, characterized in that the supply conduit force of water or water and absorbent <= Venturi injection nozzle. 19. The apparatus according to claim 14, further comprising means for subjecting the dry powder to particle size adjustment before circulating it to the reaction zone. 20. Apparatus according to claims 14 to 19, characterized in that it is provided with means for pulverizing the dry powder before circulating it into the reaction zone. 21. The device according to items 14 to 20, characterized in that the particle settler consists of a coarse particle separator arranged upstream of a fine particle separator. 22. The apparatus according to claim 21, wherein the coarse particle separator is a cyclone. 2a Claims 21 to 22, characterized in that the fine particle separator is an electrostatic filler or a cloth filler.
Equipment described in Section.
JP58243025A 1982-12-22 1983-12-22 Method and device for removing sulfur dioxide from hot flue gas Expired - Fee Related JPH0653209B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK82/5666 1982-12-22
DK566682 1982-12-22

Publications (2)

Publication Number Publication Date
JPS59166229A true JPS59166229A (en) 1984-09-19
JPH0653209B2 JPH0653209B2 (en) 1994-07-20

Family

ID=8144337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243025A Expired - Fee Related JPH0653209B2 (en) 1982-12-22 1983-12-22 Method and device for removing sulfur dioxide from hot flue gas

Country Status (10)

Country Link
US (1) US4555390A (en)
EP (1) EP0114477B2 (en)
JP (1) JPH0653209B2 (en)
AT (1) ATE26545T1 (en)
CA (1) CA1212220A (en)
CS (1) CS252468B2 (en)
DD (1) DD215573A5 (en)
DE (1) DE3370942D1 (en)
DK (1) DK154118C (en)
PL (1) PL143667B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532734A (en) * 2005-02-04 2008-08-21 フューエル テック インコーポレーテッド Duct injection with targets for SO3 control

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH671523A5 (en) * 1985-03-13 1989-09-15 Von Roll Ag
FI78401B (en) * 1985-04-24 1989-04-28 Tampella Oy Ab FOERFARANDE OCH ANORDNING FOER ATT BRINGA ROEKGASERNAS GASFORMIGA SVAVELFOERENINGAR SAOSOM SVAVELDIOXID ATT REAGERA TILL FASTA FOERENINGAR SOM SEPARERAS FRAON ROEKGASERNA.
DE3536893C1 (en) * 1985-10-16 1986-10-09 L. & C. Steinmüller GmbH, 5270 Gummersbach Process for purifying flue gases of a furnace and apparatus for carrying out the process
US5100633A (en) * 1985-11-07 1992-03-31 Passamaquoddy Technology Limited Partnership Method for scrubbing pollutants from an exhaust gas stream
US5499587A (en) * 1986-06-17 1996-03-19 Intevep, S.A. Sulfur-sorbent promoter for use in a process for the in-situ production of a sorbent-oxide aerosol used for removing effluents from a gaseous combustion stream
GB2225257A (en) * 1988-11-22 1990-05-30 Atomic Energy Authority Uk Separation of gas
CS206990A2 (en) * 1989-05-02 1991-09-15 Chiyoda Chem Eng Construct Co Method of waste gas cleaning that contains dust and chemical impurities and equipment for this method realization
FI84435C (en) * 1990-02-23 1995-02-22 Ahlstroem Oy Method and apparatus for cleaning contaminants containing gases
EP0637988A1 (en) * 1991-08-22 1995-02-15 Foster Wheeler Energia Oy Method for purification of waste gases
DE4206602C2 (en) * 1992-03-03 1995-10-26 Metallgesellschaft Ag Process for removing pollutants from combustion exhaust gases and fluidized bed reactor therefor
US5470556A (en) * 1993-12-22 1995-11-28 Shell Oil Company Method for reduction of sulfur trioxide in flue gases
US5723099A (en) * 1996-05-17 1998-03-03 Steinke; Richard A. Method and apparatus for remediation of toxic flue gases
DE19709095A1 (en) * 1997-03-06 1998-09-17 Metallgesellschaft Ag Process for the separation of pollutants from combustion exhaust gases
US5997823A (en) * 1997-08-18 1999-12-07 Noxso Corporation Processes and apparatus for removing acid gases from flue gas
US8695516B2 (en) * 2009-04-21 2014-04-15 Industrial Accessories Company Pollution abatement process for fossil fuel-fired boilers
US20100263577A1 (en) * 2009-04-21 2010-10-21 Industrial Accessories Company Pollution abatement process for fossil fuel-fired boilers
WO2013075719A1 (en) 2011-11-23 2013-05-30 Flsmidth A/S Method and plant for manufacturing cement clinker
US9751043B1 (en) * 2014-09-05 2017-09-05 Mississippi Lime Company Systems and method for removal of acid gas in a circulating dry scrubber
US10155227B2 (en) 2012-08-24 2018-12-18 Mississippi Lime Company Systems and method for removal of acid gas in a circulating dry scrubber
US10668480B1 (en) 2014-09-05 2020-06-02 Mississippi Lime Company Systems and method for removal of acid gas in a circulating dry scrubber
US11365150B1 (en) 2018-07-18 2022-06-21 Mississippi Lime Company Lime hydrate with improved reactivity via additives
CN114226066B (en) * 2021-12-20 2024-04-12 中国建筑材料科学研究总院有限公司 SiO recovered from tail gas 2 Method and device for powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498459A (en) * 1972-05-24 1974-01-25
JPS499471A (en) * 1972-05-24 1974-01-28
JPS5239382A (en) * 1975-09-23 1977-03-26 Meidensha Electric Mfg Co Ltd Gate control semiconductor element

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932587A (en) 1971-12-09 1976-01-13 Rockwell International Corporation Absorption of sulfur oxides from flue gas
JPS5239382B2 (en) * 1972-05-24 1977-10-05
US3989465A (en) * 1973-03-07 1976-11-02 American Air Filter Company, Inc. Apparatus for controlling reaction conditions in a sulfur dioxide scrubber
DE2739509C2 (en) * 1977-09-02 1982-09-16 Babcock-BSH AG vormals Büttner-Schilde-Haas AG, 4150 Krefeld Method and device for cleaning an exhaust gas stream
US4150096A (en) * 1977-10-31 1979-04-17 Nelms William M Process for treating combustion gases
US4197278B1 (en) 1978-02-24 1996-04-02 Abb Flakt Inc Sequential removal of sulfur oxides from hot gases
GR75064B (en) 1978-05-19 1984-07-13 Niro Atomizer As
US4293524A (en) * 1978-09-20 1981-10-06 Teller Environmental Systems, Inc. Method and apparatus for cooling and neutralizing acid gases
DE2901637A1 (en) * 1979-01-17 1980-07-24 Steag Ag Dechlorination and defluorination of waste gas with sulphite - in powdered, granular or suspended form from later desulphurisation stage
DK147999C (en) 1979-09-21 1985-07-01 Anhydro As PROCEDURE FOR SEGAGE GASES TO SEPARATE AGGRESSIVE AND ENVIRONMENTALLY DANGEROUS GAS AND PLACES FOR EXERCISING THE PROCEDURE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498459A (en) * 1972-05-24 1974-01-25
JPS499471A (en) * 1972-05-24 1974-01-28
JPS5239382A (en) * 1975-09-23 1977-03-26 Meidensha Electric Mfg Co Ltd Gate control semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532734A (en) * 2005-02-04 2008-08-21 フューエル テック インコーポレーテッド Duct injection with targets for SO3 control

Also Published As

Publication number Publication date
CS252468B2 (en) 1987-09-17
DK154118B (en) 1988-10-17
PL245276A1 (en) 1984-07-16
DK588883D0 (en) 1983-12-21
CS980183A2 (en) 1987-02-12
EP0114477B1 (en) 1987-04-15
DK588883A (en) 1984-06-23
JPH0653209B2 (en) 1994-07-20
EP0114477B2 (en) 1991-04-10
DE3370942D1 (en) 1987-05-21
CA1212220A (en) 1986-10-07
US4555390A (en) 1985-11-26
EP0114477A1 (en) 1984-08-01
ATE26545T1 (en) 1987-05-15
DD215573A5 (en) 1984-11-14
DK154118C (en) 1989-03-20
PL143667B1 (en) 1988-03-31

Similar Documents

Publication Publication Date Title
JPS59166229A (en) Method and device for removing sulfur dioxide from hot flue gas
US4562054A (en) Treatment of flue gas
JPH0318923B2 (en)
SE448522B (en) SET FOR COMBUSTION GAS SULFURATION
US3708266A (en) Apparatus for cleaning sulphur dioxide-containing flue gases
US4324770A (en) Process for dry scrubbing of flue gas
EP0074258A1 (en) Improved process for flue gas desulfurization
JPH03101812A (en) Method for dry-purifying waste gas
AU680975B2 (en) Process and apparatus for drying liquid-borne solid material
US4560543A (en) Process for desulfurization of hot waste gas
US4446109A (en) System for dry scrubbing of flue gas
JPH0722673B2 (en) Method and device for purifying waste gas
US3745207A (en) Process for the recovery of waste pickle liquor
US3758668A (en) So2 absorption system with regeneration of absorbent
EP0139352B1 (en) Treatment of flue gas
JPH05500024A (en) Method for reducing wear of nozzles or other delivery means
JP2695988B2 (en) Waste gas purification method
JPS6340129B2 (en)
JPS5851974A (en) Recovery of cacl2 from exhaust gas-desulfurizing waste liquid
JPH05502617A (en) Combustion gas cleaning method and device
EP0095459A1 (en) Process and system for dry scrubbing of flue gas.
AU545580B2 (en) Process and system for dry scrubbing of flue gas
CA1168026A (en) Process and system for dry scrubbing of flue gas
JPS61133122A (en) Method and device for neutralizing and separating injurious material in flue gas and exhaust gas
Abrams et al. SO 2 removal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees