JPS59164648A - Production of porous glass - Google Patents

Production of porous glass

Info

Publication number
JPS59164648A
JPS59164648A JP3867083A JP3867083A JPS59164648A JP S59164648 A JPS59164648 A JP S59164648A JP 3867083 A JP3867083 A JP 3867083A JP 3867083 A JP3867083 A JP 3867083A JP S59164648 A JPS59164648 A JP S59164648A
Authority
JP
Japan
Prior art keywords
phase
glass
silica
alkali metal
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3867083A
Other languages
Japanese (ja)
Other versions
JPS638052B2 (en
Inventor
Hiroshi Tanaka
博史 田中
Tetsuo Yazawa
哲夫 矢澤
Kiyohisa Eguchi
江口 清久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3867083A priority Critical patent/JPS59164648A/en
Publication of JPS59164648A publication Critical patent/JPS59164648A/en
Publication of JPS638052B2 publication Critical patent/JPS638052B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce porous glass having high SiO2 content and superior chemical and thermal stability by causing phase separation of raw materials consisting essentially of SiO2, B2O3, Na2O, and Li2O having specified proportion by heat treatment, followed by an acid treatment. CONSTITUTION:A mixture of raw materials for glass consisting of 41-64wt% SiO2, 28-51wt% B2O3, 4.5-13wt% Na2O, and <=3.5wt% Li2O, with <=0.5 ratio of Li2O/Na2O, as primary components; and 2-3wt% MoO3 and <=10wt% at least one kind among Al2O3, ZrO2, and MgO, both basing on the amt. of the primary component, as the adjustment component. The raw material for the glass is heat- treated in the temp. range causing no softening nor deformation, and an alkali metal borate phase is separated from a silica phase. Then, the alkali metal borate phase is eluted with H2SO4, etc. to obtain the porous glass. By this process, a porous glass having high SiO2 content and superior mechanical strength which contains no gelled silica, is obtd.

Description

【発明の詳細な説明】 本発明は多孔質ガラスの製造方法に関し、より詳細には
細孔構造内にゲル状シリカの沈殿を含まない高ケイ酸多
孔質ガラスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing porous glass, and more particularly to a method for producing a high-silicate porous glass that does not contain gel-like silica precipitates within the pore structure.

従来、高ケイ酸多孔質ガラスは、5i02 、 B20
BおよびNa2Oの3成分よりなる原料ガラスを、微細
にからみ合ったホウ酸ナトリウム相とシリカ相とに分相
させ、ホウ酸ナトリウム相を酸に溶出させて酸に不溶の
シリカ相から成る3次元網目状の多孔体を形成させる方
法によって製造されていた。
Conventionally, high silicate porous glass is 5i02, B20
A raw material glass consisting of three components, B and Na2O, is separated into a finely entangled sodium borate phase and a silica phase, and the sodium borate phase is eluted with acid to form a three-dimensional glass consisting of an acid-insoluble silica phase. It was manufactured by a method of forming a network-like porous body.

しかしながら、との製造方法では、分相にょつで生じた
ホウ酸ナトリウム相に少量含有されるシリカ成分が、酸
溶出の際にゲル状シリカとなって多孔体の孔中に沈殿す
る欠点があった。
However, the manufacturing method has the disadvantage that a small amount of silica contained in the sodium borate phase generated by phase separation becomes gel-like silica and precipitates in the pores of the porous body during acid elution. Ta.

ゲル状シリカは、分相構造に由来する多孔構造を乱し、
細孔容積を減少させ、流体の多孔体透過速度を低下させ
るので、多孔体を分離膜やf過材として使用するときの
ように、細孔特性の精密な制御が必要である場合や、流
体の透過速度が大きいことが必要である場合には、大き
な障害となった。
Gel-like silica disturbs the porous structure derived from the phase separation structure,
This reduces the pore volume and the rate of fluid permeation through the porous material, so it is used in cases where precise control of pore properties is required, such as when using the porous material as a separation membrane or filter material, and This became a major obstacle when a high permeation rate was required.

かかる欠点を回避するため、(イ)、 8102含有蓋
の低いホウケイ酸ナトリウムガラスを原料ガラスとして
用いる方法や、(O)、酸溶出抜の多孔質ガラスをアル
カリ液で洗浄してゲル状シリカを除去する方法が提案さ
れた。
In order to avoid such drawbacks, (a) a method of using sodium borosilicate glass with a low 8102 content as the raw material glass, and (o) a method of washing acid-leached porous glass with an alkaline solution to remove gel-like silica. A method was proposed to remove it.

しかし、(イ)の方法は、シリカ相の網目構造が十分強
固なものとならないために、得られた多孔体の機械的強
度が小さく、分離、r過膜尋を成形して実用に供するこ
とは極めて困難であった。また(口)は、ゲル状シリカ
と多孔体との組成が近似するために1アル力リ洗浄時に
同時に多孔体そのものが侵食され、十分に大きな強度を
有する成形体を製造するのには不過当であった。
However, in method (a), since the network structure of the silica phase is not sufficiently strong, the mechanical strength of the obtained porous body is low, and it is difficult to separate and form a membrane for practical use. was extremely difficult. In addition, because the compositions of gel-like silica and the porous body are similar, the porous body itself is eroded at the same time during 1-alcohol cleaning, making it unreasonable to produce a molded body with sufficiently high strength. Met.

本発明者らは、かかる従来の欠点を解消するため、多孔
質ガラスの肯発原料となるホウケイ酸ナトリウムガラス
に酸化モリブデンを添加する方法を先に特願昭57−2
2994号として提案した。
In order to eliminate such conventional drawbacks, the present inventors first proposed a method of adding molybdenum oxide to sodium borosilicate glass, which is a promising raw material for porous glass, in Japanese Patent Application No. 57-2.
It was proposed as No. 2994.

この提案によれば、酸化モリブデンは分相の際にホウ酸
ナトリウム相に含まれるシリカの量を減少せしめ、さら
に酸溶出の際には、ホウ酸ナトリウム相中のシリカと反
応して可溶性のクイモリブデン細体を形成してゲル状シ
リカの沈殿を防止する。また酸化モリブデンは、分相状
態におけるシリカ相の体積分率を増加させ、網目構造を
強化する作用を有する。
According to this proposal, molybdenum oxide reduces the amount of silica contained in the sodium borate phase during phase separation, and furthermore, during acid elution, it reacts with the silica in the sodium borate phase to release soluble silica. Forms molybdenum particles to prevent precipitation of gel-like silica. Furthermore, molybdenum oxide has the effect of increasing the volume fraction of the silica phase in a phase-separated state and strengthening the network structure.

しかしながら、上記提案におりても、ゲル状シリカを含
まない多孔体を得るためには、ポウ酸ナトリウム相に含
まれるシリカの溶出を助けるために、酸溶出の際に分相
ガラスIIあたりに使用する酸の量を多くする必要があ
り、また肉厚ガラスの場合に#i完全にはゲル状シリカ
の沈殿を防止することができなかった。
However, even with the above proposal, in order to obtain a porous material that does not contain gel-like silica, it is necessary to use per phase split glass II during acid elution to help elute the silica contained in the sodium borate phase. It was necessary to increase the amount of acid used, and in the case of thick-walled glass, it was not possible to completely prevent the precipitation of gel-like silica.

そこで本発明は、かかる問題点を解消すべくなされたも
のであり、ゲル状シリカを含まず、十分な細孔容積と機
械的強度を有する肉厚高ケイ酸多孔質ガラスを製造する
ことができ、またこれら多孔質ガラスを製造する際に必
要な酸の量を減少させることができ、混合物からの物質
分離、濃縮、r退勢を目的とした多孔膜の製造方法とし
て好適であるなどの特長を有するものである。
The present invention was made to solve these problems, and it is possible to produce a thick, high-silicate porous glass that does not contain gel-like silica and has sufficient pore volume and mechanical strength. In addition, the amount of acid required when producing these porous glasses can be reduced, and the method is suitable as a method for producing porous membranes for the purpose of separating substances from mixtures, concentrating, and reversing. It has the following.

すなわち重鎖1の発明は、重量%で41〜64%の81
02.28〜51%のB2O3,4,5〜13%のNa
2Oおよび3.5%以下のL120からなり、がっLi
2O/Na2O比が0.5以下でおる組成を有する主成
分と、この主成分の2〜13重i%のMo O3とから
なる原料ガラスを製造し、この原料ガラスを軟化、変形
を生じさせない温度範囲で熱処理してホウ酸アルカリ金
属地相とシリカ相とに分(5) 和させ、該ホウ酸アルカリ金属地相を酸で溶出させるこ
とを特徴とするものである。
That is, the invention of heavy chain 1 is 81 to 64% by weight%.
02.28-51% B2O3, 4.5-13% Na
Consisting of 2O and 3.5% or less L120, Ga Li
Producing a raw material glass consisting of a main component having a composition with a 2O/Na2O ratio of 0.5 or less and MoO3 in an amount of 2 to 13% by weight of this main component, without softening or deforming the raw material glass. It is characterized in that it is heat treated in a temperature range to separate (5) the alkali metal borate phase and the silica phase, and the alkali metal borate phase is eluted with an acid.

また、重鎖2の発明は、電蓄%で41〜64%のS 1
02.28〜51%ノB2O3,4−5〜13 % (
’)Na20  および3.5%以下のL120からな
り、がっL’ 20/Na 20 比が0.5以下であ
る主成分と、この主成分の2〜13重i%のMoO3、
および10重重量法下のAlzOs、ZrO2オヨU 
MgO2>−ラtx ルiff。
In addition, the invention of heavy chain 2 has an S 1 of 41 to 64% in terms of electric storage%.
02.28-51% B2O3,4-5-13% (
') A main component consisting of Na20 and L120 of 3.5% or less and having a L'20/Na20 ratio of 0.5 or less, and MoO3 of 2 to 13 weight i% of this main component,
and AlzOs, ZrO2 under the 10 gravimetric method
MgO2>-lattx liff.

から選ばれた少なくとも一つの調整成分とからなる原料
ガラスを製造し、この原料ガラスを軟化、変形を生じさ
せない温度範囲で熱処理してホウ酸アルカリ金属地相と
シリカ相とに分相させ、紋ホウ酸アルカリ金輌塩相を酸
で溶出することを特徴とするものである。
At least one adjustment component selected from It is characterized by eluting the alkali metal boric acid salt phase with acid.

まず、奉納lの発明においては、原料ガラスを製造する
。この原料ガラスは、重i%で41〜64%08i02
.28〜51%(D B2O3,4,5〜13%のNm
2Q および3.5%以下のLizOからなり、かツL
1gO/Na2O比が0.5 Jl下f6.6組成を有
する主成分と、この主成分の2〜13 g1i%の(6
) MoO3との原料を調合し、通常の方法で溶融すること
により製造される。8102 il、1合量が41重量
%に満たない場合、またはB2O3が51重j#%を越
える場合には、シリカ相が十分に強固な網目構造を作る
ことができず、得られた多孔体の機械的強度が不十分と
なる。5iOs+の量が64重量%を越えたとき、ある
いはB2O3の墓が28重量%に満たない場合には、分
相速度が大きすぎて細孔径の精密な制御が困難になる。
First, in the invention of votive material, raw glass is manufactured. This raw material glass has a weight i% of 41 to 64%08i02
.. 28-51% (D B2O3, 4, 5-13% Nm
Consisting of 2Q and 3.5% or less LizO, KatsuL
1gO/Na2O ratio is 0.5 Jl under f6.6 composition, and 2-13 g1i% (6
) Manufactured by mixing raw materials with MoO3 and melting in a conventional manner. When the total amount of 8102 il, 1 is less than 41% by weight, or when B2O3 exceeds 51% by weight, the silica phase cannot form a sufficiently strong network structure, and the resulting porous body mechanical strength becomes insufficient. When the amount of 5iOs+ exceeds 64% by weight, or when the amount of B2O3 is less than 28% by weight, the phase separation rate is too high, making it difficult to precisely control the pore diameter.

また、Na2Oの量が4.5重i%に満たないと、酸に
よる溶出時に著xしい伸びが生じ、一方、NagOO量
が13重it%を越えると溶出時に著す゛ Aしい縮みが生じ、いIれも製品が破損する。
Furthermore, if the amount of Na2O is less than 4.5% by weight, significant elongation will occur during elution with acid, while if the amount of NagOO exceeds 13% by weight, significant shrinkage will occur during elution. Otherwise, the product will be damaged.

さらに、L120 の量が3.5重量%を越える場合、
あるいはL量20/N1120  比が0.5を越える
と、分相が過度に促進されるために細孔径の精密な制御
が困難になる。
Furthermore, if the amount of L120 exceeds 3.5% by weight,
Alternatively, if the L20/N1120 ratio exceeds 0.5, phase separation will be excessively promoted, making precise control of the pore diameter difficult.

特に上述した範囲の蓋のLi2Oを添加することによっ
て、原料ガラスの組成を、アルカリとしてNa2Oのみ
を含む場合に比較して低N120 側に拡大することが
できる。
In particular, by adding Li2O in the above-mentioned range, the composition of the raw glass can be expanded to a lower N120 side than when only Na2O is included as the alkali.

上述した主成分に対するMoO3の添加量が2重蓋%に
満たないとMoO3添加の効果が不十分となり、ゲル状
シリカを含まない多孔質ガラスは得られない。またMo
O3の添加量が13重量%を越えると、分相速度が大き
すぎて細孔径の精密な制御ができなくなる。
If the amount of MoO3 added to the above-mentioned main components is less than 2%, the effect of MoO3 addition will be insufficient, and a porous glass that does not contain gelled silica will not be obtained. Also Mo
If the amount of O3 added exceeds 13% by weight, the phase separation rate will be too high, making it impossible to precisely control the pore diameter.

主成分に添加されるMoO3は、分相に際して酸に可溶
性のホウ酸アルカリ金属塩相中に含まれるシリカの濃度
を下げると共に、MoO3自身もホウ酸アルカリ金属塩
相中に移行し、酸溶出の際にはホウ酸アルカリ金属塩相
中のシリカと反応して可溶性のケイモリブデン量体を形
成し、シリカ成分を酸に溶解させることによりゲル状シ
リカとして沈殿することを防止する。同時にMoO3は
、分相の際にシリカ相の体積分率を増加させ、細目構造
を強化する作用をも有している。
MoO3 added to the main component reduces the concentration of silica contained in the acid-soluble alkali metal borate phase during phase separation, and MoO3 itself also moves into the alkali metal borate phase, reducing acid elution. In some cases, it reacts with the silica in the alkali metal borate salt phase to form a soluble silicon molybdenum polymer, and by dissolving the silica component in an acid, it is prevented from precipitating as gel-like silica. At the same time, MoO3 also has the effect of increasing the volume fraction of the silica phase during phase separation and strengthening the fine structure.

また、本第1の発明において主成分として加えられるL
120は、上記Mo0aの作用のうち、分相時に可溶相
に含まれるシリカの濃度を下げてゲル状シリカの沈殿を
防止する作用、および7リカ相の体積分率を増加させて
網目構造を強化する作用をさらに促進する。
Further, in the first invention, L added as a main component
Among the functions of Mo0a described above, 120 has the function of reducing the concentration of silica contained in the soluble phase during phase separation to prevent precipitation of gel-like silica, and the function of increasing the volume fraction of the 7-liquid phase to form a network structure. Further promotes reinforcing action.

したがって、本#11の発明によれば機械的強度が優れ
、ゲル状シリカを含まない多孔質ガラス成形体を容易に
製造することができる。
Therefore, according to the invention #11, it is possible to easily produce a porous glass molded body that has excellent mechanical strength and does not contain gelled silica.

次に本第1の発明においては、上述のようにして製造し
た原料ガラスを成形した後に、軟化、変形を生じさせな
い温度範囲で熱処理し、ホウ酸アルカリ金践地相とシリ
カ相に分相させる。
Next, in the first invention, after the raw glass produced as described above is molded, it is heat-treated in a temperature range that does not cause softening or deformation, and is separated into an alkali borate phase and a silica phase. .

通常では熱処理温度は450〜700℃であり、また熱
処理時間は目的とする多孔質ガラスの細孔径に応じて1
時間ないし数十日の範囲である。
Usually, the heat treatment temperature is 450 to 700℃, and the heat treatment time is 1 to 30℃ depending on the pore diameter of the porous glass.
It ranges from hours to several tens of days.

一般に熱処理時間が長くなるほど細孔径が増大するので
、細孔径を必要に応じて制御することができる。
Generally, the longer the heat treatment time, the larger the pore diameter, so the pore diameter can be controlled as necessary.

熱処理温度が高すぎると原料ガラス成形体が変形して形
状、寸法が狂い、またガラスの融着を生じるので好まし
くない。
If the heat treatment temperature is too high, the raw glass molded body will be deformed, its shape and dimensions will be distorted, and the glass will fuse, which is not preferable.

原料ガラス成形体の軟化、変形を避けながら(9) 分相構造を成長させるために熱処理温度を分相構造の発
達につれて徐々に上昇させたり、ホウ酸アルカリ金属地
相のシリカ含有量を減少させるために十分な徐冷、なま
しを行なうこと本行なわれ石。
While avoiding softening and deformation of the raw glass molded body (9) In order to grow a phase-separated structure, the heat treatment temperature is gradually increased as the phase-separated structure develops, and the silica content of the alkali metal borate phase is reduced. For this stone to be sufficiently slow cooled and annealed.

かかる熱処理の結果、原料ガラスはホウ酸アルカリ金属
地相とシリカ相とに分相し、かつこれら両相は互に複雑
にからみ合った状態となる。
As a result of such heat treatment, the raw material glass is phase-separated into an alkali metal borate phase and a silica phase, and these two phases are in a state where they are intricately entangled with each other.

切削、研摩などの水を使用する加工は、加工面に生じた
変質層が熱処理によってガラス内部とは異なる構造をと
り、酸溶出を妨害する恐れがあるので、熱処理後に行な
うことが好ましい。
Processes using water such as cutting and polishing are preferably carried out after heat treatment, since the altered layer formed on the processed surface may take on a structure different from that of the interior of the glass due to heat treatment, thereby interfering with acid elution.

次いで、本第1の発明では酸溶出を行ない、ホウ酸アル
カリ金属地相を溶出させて多孔質ガラスを得る。酸溶出
は、好ましくは0.1〜2規定の酸、通常では硫酸、塩
酸などを用い、たとえば60〜100℃で行なう。分相
ガラスIIIあたりの酸の量は、通常30 m1以上で
ある。
Next, in the first invention, acid elution is performed to elute the alkali metal borate phase to obtain porous glass. Acid elution is preferably carried out using a 0.1-2N acid, usually sulfuric acid, hydrochloric acid, etc., at, for example, 60-100°C. The amount of acid per phase separation glass III is usually 30 ml or more.

酸溶出によって得られた多孔質ガラスは、一般的には水
洗、戦線し、または必要に応じて表(10) 面処理、熱処理、加工などを経て製品となる。
Porous glass obtained by acid elution is generally made into a product by washing with water, drying, or, if necessary, undergoing surface treatment, heat treatment, processing, etc.

得られた多孔質ガラスの細孔直径は、通常数十〜数千A
の広範囲に及ぶ。
The pore diameter of the obtained porous glass is usually several tens to several thousand A.
Covers a wide range of areas.

次に重鎖2の発明においては、前記第1の発明と同一組
成の主成分とMOOBに、AJ20a t ZrO2お
よびMgOからなる群から選ばれた少なくとも一つの調
整成分が主成分の10重it%以下添加される。
Next, in the invention of heavy chain 2, in addition to the main component having the same composition as in the first invention and MOOB, at least one adjustment component selected from the group consisting of AJ20a t ZrO2 and MgO is added in an amount of 10 weight % of the main component. The following are added.

かかる昶整成分は、前記第1の発明における原料ガラス
がMo0aおよびL120を含有するために、分相傾向
が過大になる場合があるので、これを制御し、また酸溶
出時における伸縮を抑えて破損を防止するために加えら
れる。
Since the raw material glass in the first invention contains Mo0a and L120, the phase separation tendency may become excessive, so such a conditioning component is used to control this and to suppress expansion and contraction during acid elution. Added to prevent damage.

&11成分の添加菫が主成分の10重蓋%を越えると、
原料ガラスの組成がそこなわれ、失透やtR浴tB時の
破損が起ったり、あるいは酸溶出ができなくなったりす
る。なお、重鎖2の発明の製造方法は、上記14%!成
分の添加を除いて前記第1の発明と同様に行なわれる。
&11 When the added violet exceeds 10% of the main ingredient,
The composition of the raw material glass may be damaged, causing devitrification or breakage during tR bath tB, or acid elution may become impossible. In addition, the manufacturing method of the invention of heavy chain 2 has the above 14%! The process is carried out in the same manner as in the first invention except for the addition of the ingredients.

以上述べたように、重鎖1の発明および第2の発明によ
れば、L120がMoO3の作用を促進して分相時にホ
ウ酸アルカリ金属地相に含まれるシリカの濃度を下げて
ゲル状シリカが多孔体の孔中に沈殿することを防止し、
同時にシリカ相の体積分率を増加させて網目構造を強化
する。
As described above, according to the invention of heavy chain 1 and the second invention, L120 promotes the action of MoO3 and reduces the concentration of silica contained in the alkali metal borate phase during phase separation, thereby producing gel-like silica. Prevents precipitation in the pores of the porous body,
At the same time, the volume fraction of the silica phase is increased to strengthen the network structure.

この結果、ゲル状シリカを含まず、機械的強度の優れた
肉厚烏ケイ酸多孔質ガラスが得られる。また、特に肉厚
でない場合には、少量の酸による溶出でゲル状シリカを
含まない高ケイ酸多孔質ガラスを得ることができる。
As a result, a thick-walled borosilicate glass that does not contain gel-like silica and has excellent mechanical strength is obtained. In addition, if the glass is not particularly thick, a high silicate porous glass that does not contain gelled silica can be obtained by elution with a small amount of acid.

得られた多孔質ガラスは高ケイ酸質であるために、特に
化学的および熱的安定性に優れ、有機液体中、腐食性雰
囲気中、高温、高圧などの苛酷な条件下での使用が可能
である。
Because the resulting porous glass is highly silicic, it has particularly excellent chemical and thermal stability and can be used under harsh conditions such as in organic liquids, corrosive atmospheres, high temperatures, and high pressures. It is.

また、数十〜数千Aの広い範囲で細孔直径を制御するこ
とができるので、物質の分離、濃縮、濾過叫を目的とし
た板状、管状、毛細管状の多孔膜の製造に好適である。
In addition, since the pore diameter can be controlled over a wide range of tens to thousands of amps, it is suitable for manufacturing plate-shaped, tubular, and capillary-shaped porous membranes for the purpose of separating, concentrating, and filtering substances. be.

更に重鎖2の発明では、N整成分が添加されるので、前
述した諸効果に加えて過大になりがちな分相傾向を制御
し、酸溶出時の伸縮をより抑制することができる。
Furthermore, in the invention of heavy chain 2, since an N alignment component is added, in addition to the above-mentioned effects, it is possible to control the tendency of phase separation, which tends to be excessive, and to further suppress expansion and contraction during acid elution.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

実施例 1 重量%で810255.8%、B2O334,5%、N
1208.4%、L1203 1.3%の主成分と、こ
の主成分の5.1重量%のMOOBとからなる組成のガ
ラスを500℃で48時間熱処理して分相させ、次いで
これを粉砕して149〜74μm(100〜200メツ
シユ)の部分を集めた。このガラス2gを、11の1規
定硫酸を用い95℃で2時間処理して多孔質カラスとし
た。この多孔質ガラスの平均細孔直径は380 A 、
細孔容積は0 、50 ml/iであった。また、比表
面積は39m”/11という小さな値であり、ゲル状シ
リカが含まれていないことを示している。
Example 1 810255.8% by weight, B2O334.5%, N
1208.4%, L1203 1.3% as a main component, and 5.1% by weight of this main component as MOOB was heat treated at 500°C for 48 hours to separate the phases, and then crushed. A portion of 149 to 74 μm (100 to 200 meshes) was collected. 2 g of this glass was treated with 11 1N sulfuric acid at 95° C. for 2 hours to form a porous glass. The average pore diameter of this porous glass is 380 A,
The pore volume was 0.50 ml/i. Further, the specific surface area was a small value of 39 m''/11, indicating that gel-like silica was not included.

一方、棒状試料について酸溶出時における伸縮を測定し
たところ、0.37%の伸びを示し、酸溶出中の破損は
なかった。
On the other hand, when the rod-shaped sample was measured for expansion and contraction during acid elution, it showed an elongation of 0.37%, and no breakage occurred during acid elution.

実施例 2 (13) 下記表に示す組成の2種類のガラス成分を調合し、夫々
を溶融した。
Example 2 (13) Two types of glass components having the compositions shown in the table below were prepared and each was melted.

を含んでおり、本発明の範囲外の比較例である。This is a comparative example outside the scope of the present invention.

これらのガラスを500℃で48時間熱処理して分相さ
せた後に粉砕し、  149〜74 μm (100〜
200メツシユ)の部分を集めた。
These glasses were heat-treated at 500°C for 48 hours to separate the phases, and then crushed to form 149-74 μm (100-
200 metsushiyu) was collected.

これら試料2gを、夫々、1ノの1規定硫酸を用いて9
5℃で2時間処理して多孔質ガラスを得た。これら多孔
質ガラスの細孔特性は表に示すとおりである。
2 g of these samples were each treated with 1 N sulfuric acid at 9%
A porous glass was obtained by processing at 5° C. for 2 hours. The pore characteristics of these porous glasses are shown in the table.

試料lは0.95 ml/J/という非常に大きい細孔
容積を有するほか、試料2に比較して細孔径も大きく、
Li2Oの効果を示している。
In addition to having a very large pore volume of 0.95 ml/J/, sample 1 also has a larger pore diameter than sample 2.
It shows the effect of Li2O.

また、試料1の酸処理時における伸縮を測定したところ
、0.34%の伸びを示し、十分な機械的強度を有する
多孔質ガラスが得られることがわかった。
Furthermore, when sample 1 was measured for expansion and contraction during acid treatment, it was found that the expansion and contraction was 0.34%, and that a porous glass having sufficient mechanical strength could be obtained.

(14) (15) 補正の内容 手続補正書(自発) 1、事件の表示 昭和58年特許願第38670号 2、発明の名称 多孔質ガラスの製造方法 3、補正をする者 事件との関係   特許出願人 住 所  東京都千代田区霞が関1丁目3番1号氏名 
(114)工業技術院長 用田裕部4、指定代理人 住 所  大阪府池田市緑丘1丁目8番31号6、補正
の対象 明細書中「発明の詳細な説明」の項 1、 明細書第13頁6行の  rL+203Jとある
  を rLi20J  と訂正する。
(14) (15) Contents of amendment Procedural amendment (voluntary) 1. Indication of the case Patent Application No. 38670 of 1988 2. Name of the invention Method for manufacturing porous glass 3. Person making the amendment Relationship to the case Patent Applicant Address: 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo Name
(114) Director of the Agency of Industrial Science and Technology Hirobe Yoda 4, Address of designated agent: 1-8-31-6 Midorigaoka, Ikeda City, Osaka Prefecture, Section 1 of “Detailed Description of the Invention” in the specification to be amended, page 13 of the specification Correct rL+203J in line 6 to rLi20J.

2、 明細書15頁、表の次に下記の記載を追加する。2. On page 15 of the specification, the following statement is added next to the table.

「実施例 3 重量テS i 02 46.0、B2O341,9、N
a2010.01Li202.1%の主成分と、主成分
の7重量%のMoO3,及び調整成分として主成分の2
%のM’goと4%のZr0tとを含むガラスを500
℃で48時間熱処理して分相させ、次いでこれを粉砕し
て149〜74μm(100〜200メツシユ)の部分
を集めた。このガラス2gをIQの1規定塩酸を用い、
95℃で2時間溶出して多孔質ガラスとした。この多孔
質ガラスの平均細孔半径は140人、細孔容積は0 、
66 m +lI/ g、比表面積は103m2/gで
あった。また、棒状試料について測定したところ、酸溶
出時に0.13%の伸びが観察され、破損は認められな
かった。」(以上)
"Example 3 Weight test S i 02 46.0, B2O341.9, N
a2010.01Li202.1% of the main component, 7% by weight of the main component of MoO3, and 2 of the main component as an adjustment component.
500% M'go and 4% Zr0t glass.
It was heat-treated at ℃ for 48 hours to separate the phases, and then it was crushed and a portion of 149 to 74 μm (100 to 200 meshes) was collected. 2g of this glass was mixed with IQ's 1N hydrochloric acid,
Porous glass was obtained by elution at 95° C. for 2 hours. The average pore radius of this porous glass is 140, and the pore volume is 0.
66 m + lI/g, and the specific surface area was 103 m2/g. Further, when a rod-shaped sample was measured, an elongation of 0.13% was observed during acid elution, and no damage was observed. "(that's all)

Claims (1)

【特許請求の範囲】 1 重量%で41〜64%の5102.2s〜51%の
B2O3,4,5〜13%のN120および3.5%以
下のL120からなり、かつLi2ω’NazO比が0
.5以下である組成を有する主成分と、この主成分の2
〜13重i%のMeO2とからなる原料ガラスを製造し
、この原料ガラスを軟化、変形を生じさせない温度範囲
で熱処理してホウ酸アルカリ金属塩相とシリカ相とに分
相させ、該ホウ酸アルカリ金属塩相を酸で溶出させるこ
とを特徴とする多孔質ガラスの製造方法。 2 重1%で41〜64%の8102.28〜51%の
B2O3,4,5〜13%のNa2Q  および3.5
%以下0LI20とからなり、かツLl 20/Na2
O比が0.5以下である主成分と、この主成分の2〜1
3重量外のMeO2、および10重量%以下のM2O3
、ZrO2およびMgOからなる群から選ばれた少なく
とも一つの調整成分とからなる原料ガラスを製造し、こ
の原料ガラスを軟化、変形を生じさせない温度範囲で熱
処理してホウ酸アルカリ金属塩相とシリカ相とに分相さ
せ、該ホウ酸アルカリ金属塩相を酸で溶出させることを
特徴とする多孔質ガラスの製造方法。
[Scope of Claims] 1 Consists of 41 to 64% 5102.2s to 51% B2O3, 4, 5 to 13% N120, and 3.5% or less L120, and has a Li2ω'NazO ratio of 0
.. A main component having a composition of 5 or less, and 2 of this main component.
A raw material glass consisting of ~13wt% MeO2 is produced, and this raw material glass is heat-treated in a temperature range that does not cause softening or deformation to separate into an alkali metal boric salt phase and a silica phase. A method for producing porous glass, comprising eluting an alkali metal salt phase with an acid. 2 41-64% 8102.28-51% B2O3, 4, 5-13% Na2Q and 3.5
It consists of 0LI20 or less, and Ll20/Na2
A main component whose O ratio is 0.5 or less, and 2 to 1 of this main component.
3% by weight of MeO2, and not more than 10% by weight of M2O3
, ZrO2, and at least one adjusting component selected from the group consisting of MgO, and the raw glass is heat-treated at a temperature range that does not cause softening or deformation to form an alkali metal borate phase and a silica phase. 1. A method for producing porous glass, which comprises separating the phases into two, and eluting the alkali metal borate phase with an acid.
JP3867083A 1983-03-08 1983-03-08 Production of porous glass Granted JPS59164648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3867083A JPS59164648A (en) 1983-03-08 1983-03-08 Production of porous glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3867083A JPS59164648A (en) 1983-03-08 1983-03-08 Production of porous glass

Publications (2)

Publication Number Publication Date
JPS59164648A true JPS59164648A (en) 1984-09-17
JPS638052B2 JPS638052B2 (en) 1988-02-19

Family

ID=12531702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3867083A Granted JPS59164648A (en) 1983-03-08 1983-03-08 Production of porous glass

Country Status (1)

Country Link
JP (1) JPS59164648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046400A1 (en) * 2010-10-04 2012-04-12 Canon Kabushiki Kaisha Porous glass, method for manufacturing porous glass, optical member, and image capture apparatus
WO2012117686A1 (en) 2011-02-28 2012-09-07 Canon Kabushiki Kaisha Method for manufacturing porous glass, and method for manufacturing optical element
GB2614363A (en) * 2021-12-28 2023-07-05 Korea New Ceram Co Ltd Porous glass filter and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046400A1 (en) * 2010-10-04 2012-04-12 Canon Kabushiki Kaisha Porous glass, method for manufacturing porous glass, optical member, and image capture apparatus
JP2012096982A (en) * 2010-10-04 2012-05-24 Canon Inc Porous glass, method for manufacturing porous glass, optical member, and image capture apparatus
US20130194483A1 (en) * 2010-10-04 2013-08-01 Canon Kabushiki Kaisha Porous glass, method for manufacturing porous glass, optical member, and image capture apparatus
WO2012117686A1 (en) 2011-02-28 2012-09-07 Canon Kabushiki Kaisha Method for manufacturing porous glass, and method for manufacturing optical element
US9162920B2 (en) 2011-02-28 2015-10-20 Canon Kabushiki Kaisha Method for manufacturing porous glass, and method for manufacturing optical element
GB2614363A (en) * 2021-12-28 2023-07-05 Korea New Ceram Co Ltd Porous glass filter and manufacturing method thereof

Also Published As

Publication number Publication date
JPS638052B2 (en) 1988-02-19

Similar Documents

Publication Publication Date Title
JP3153307B2 (en) Alkaline zinc halophosphate glass
JPS6366777B2 (en)
JPS61106437A (en) Glass composition for porosity and porous glass
JPS608985B2 (en) Crystallized glass and its manufacturing method
JP7356787B2 (en) Lithium-containing aluminosilicate glass
JPH0643246B2 (en) Silica purification method
WO2013010019A2 (en) Chemically durable porous glass with enhanced alkaline resistance
EP0220764B1 (en) Chemically durable porous glass and process for the manufacture thereof
US3630700A (en) Process for forming particles of microporous glass for tobacco smoke filters
JPS59164648A (en) Production of porous glass
JPS627132B2 (en)
EP0174851B1 (en) Porous titanate glass and a method of producing it
JPH0460936B2 (en)
EP1357099A1 (en) Porous material and method for preparation thereof
JPS61101433A (en) Glass composition for chemical reinforcing
US20080248942A1 (en) Porous phosphorous glass compositions
JP2012193067A (en) Borosilicate glass, porous glass, and method for producing the same
JPS62162649A (en) Glass composition for fiber
JPH01239039A (en) Glass composition for cellular body
JPS63166730A (en) Production of quartz glass
JPS63265837A (en) Production of porous glass
JPS62167239A (en) Glass composition for porous body
JPH0261425B2 (en)
JPS62148336A (en) Porous body comprising alumino phosphosilicate glass ceramic and its preparation
JPH0443861B2 (en)