JPH0261425B2 - - Google Patents

Info

Publication number
JPH0261425B2
JPH0261425B2 JP5740384A JP5740384A JPH0261425B2 JP H0261425 B2 JPH0261425 B2 JP H0261425B2 JP 5740384 A JP5740384 A JP 5740384A JP 5740384 A JP5740384 A JP 5740384A JP H0261425 B2 JPH0261425 B2 JP H0261425B2
Authority
JP
Japan
Prior art keywords
acid
glass
silica
phase
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5740384A
Other languages
Japanese (ja)
Other versions
JPS60200843A (en
Inventor
Shigeki Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP5740384A priority Critical patent/JPS60200843A/en
Publication of JPS60200843A publication Critical patent/JPS60200843A/en
Publication of JPH0261425B2 publication Critical patent/JPH0261425B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多孔質ガラスの製造法に関し、ことに
分相させたアルカリホウ珪酸ガラスの塊状体を酸
処理して多孔質ガラスを製造する方法に関する。 従来、アルカリホウ珪酸ガラスを熱処理により
シリカ相とホウ酸アルカリ相に分相させ、酸処理
によりホウ酸アルカリ相を溶出させて多孔質ガラ
スを得ること、および前記熱処理条件を調整して
分相状態をコントロールし、所望の細孔径の多孔
質ガラスを得るようにすることは公知であり、こ
の多孔質ガラスは触媒や酵素の担体、分子篩、ガ
ス分離等に利用されつつある。 しかし、多孔質ガラスは主に微粉状で実用に供
されており、そのため利用の範囲も極めて限定さ
れている。 これは塊状の多孔質ガラスの場合、酸処理工程
において著しく処理時間を要し、かつクラツクが
発生し易いため実操上極めて製造が困難とされて
いることが一因である。 さらに、多孔質ガラスの細孔径は通常電子顕微
鏡観察により測定されるものであるが、その表面
積(単位重量当りの表面積(m2/g)をいう。)実
測値はその細孔径から予測される値よりは著しく
高い値を示しており、かつ細孔容積(単位重量当
りの細孔容積(c.c./g)をいう。)実測値は同様
に予測される値より著しく低い値を示している。
これは酸に溶脱されるべきホウ酸アルカリ相中に
は数10%程度のシリカが含まれており、それが酸
に溶出されずにコロイド状に細孔内に残留するた
めであり、この状態を模式的に示せば第1図のご
とくである。このシリカコロイドは細孔内に散
在、沈積しているために実際の細孔径は個々にお
いて異なり、ことに酵素等の担体、分子篩、ガス
分離に利用するうえで重大な障害となつている。
なお、表面積値は吸着性能からみて単に高い程よ
いとされる風潮があるが、実測値は上述したシリ
カコロイドの表面積も包含されるため高い値とな
るので必ずしも適切でなく、むしろ上記の利用に
供する場合孔径が均一なことが必須である。 ところで、微粉状あるいは数100μ厚程度の極
薄板状のガラスであれば酸浸漬した後、さらに希
薄なアルカリ水溶液中に浸漬することによりシリ
カコロイドを溶解除去でき、本来の細孔径のもの
が得られることが知られているが、この方法を塊
状物に応用しようとする場合、シリカコロイドの
みならず骨格として残留するシリカ層をも表層よ
り順次溶解し崩壊するため問題とされてきた。 本発明はこれら従来技術を改良しその問題点を
解消した、ことに塊状の多孔質ガラスの好適な製
造方法を提供するものであり、すなわち分相させ
たアルカリホウ珪酸ガラスを酸処理して多孔質ガ
ラスを製造する方法において、まず0.1〜0.5Nの
強酸の水溶液により、次いで2〜5Nの強酸の水
溶液により前記酸処理することを特徴とする多孔
質ガラスの製造法を要旨とするものである。 本発明に適用される塊状ガラスとは厚さが1mm
以上の板状体やこれに類する方形体、角柱体等、
および径が1mm以上の球体やこれに類する楕球
体、円柱体等、およびこれらを組合せたものであ
る。 本発明においては、分相させたアルカリホウ珪
酸ガラスを1次に0.1〜0.5Nの強酸の水溶液に浸
漬しホウ酸アルカリ相を除去する。アルカリホウ
珪酸ガラスは通例使用される公知の組成のもので
よい。強酸とは硫酸、硝酸、塩酸、あるいはこれ
らの混酸であり、他の鉱酸あるいは有機酸では処
理コストが高価となるため好ましくない。酸の濃
度が0.1N未満の場合、アルカリホウ酸相の溶出
が著しく緩慢となる。酸の濃度が0.5Nを越えた
場合、アルカリホウ酸相の溶出が急激なため、残
留して骨格を形成するシリカ相の体積変化も急激
となり、未反応との間に応力を発生してクラツク
を生じ易い。さらに重要な理由は、希薄な酸であ
る程シリカを溶出し易いという事実にある。本発
明者はホウ酸アルカリ相中に少なからず存在する
シリカの酸に対する挙動を調査したところ、希薄
な酸である程そのシリカが徐々に溶解され、小滴
化することを見出した(第2図)。なお骨格とし
て残留する比較的緻密なシリカ相も若干溶解され
るが無視しうる程度のものである。一方濃厚な酸
の場合殆どシリカが溶解されず、それらが凝集し
てゆく。シリカの溶解量は0.5N以下の酸におい
て多くなり、ホウ酸アルカリ相の溶解と均衡して
溶解され、一方シリカの凝集は濃厚な酸、ことに
2N〜5Nの酸において著しい。なお、酸の濃度−
シリカの溶解の関係についてはT.H.Elmerら
(Journal of The American Ceramic Society、
53(1970))による低濃度の硝酸ほどシリカの溶解
量が多くなることの記載からも示唆される。 酸の量は少ないと溶出過程で酸溶液中のホウ酸
アルカリやシリカ濃度が高まつて溶解能力が減退
するのは化学平衡論からも至極当然である。した
がつて多量である程よいが実用面からみて酸の量
(c.c.)/ガラス重量(g)が200〜800が好ましい。 酸処理温度は通例使用され、反応も活発な温
度、すなわち100℃附近が妥当である。 酸処理時間は当初肉眼観察により設定する。す
なわち溶出過程において溶出相と未溶出相との境
界域を明瞭に目視することができ、該境界域が消
失した時点が完了時となる。以下同形状の塊状ガ
ラスに対しては同一処理条件で同一処理時間行え
ば再現性ある結果を得る。 通例1〜10mmの厚みの塊状ガラスの場合36時間
から420時間の範囲である。 このようにして得られた1次処理ガラスを、さ
らに2N〜5Nの強酸の水溶液で処理する。なお、
1次処理において殆どのホウ酸アルカリ相が溶出
しているので2次処理において急激に酸濃度を高
めてもガラスにクラツクが発生するようなことは
ない。この2次処理において1次処理ガラスの表
面積は減少し細孔容積が増加することが確認でき
る。これは既述したように、細孔内に残留し、散
在、沈積したコロイドシリカが酸に溶解したもの
ではなく相互に凝集することにより表面積を減じ
(第3図)、一方未だ充分溶解し尽されないホウ酸
アルカリ相が溶解することにより細孔容積が増加
したものである。なお5Nを越えた濃厚な酸を用
いた場合細孔容積は殆ど増加しないがこの理由に
ついては解明されていない。また2N未満では凝
集が緩慢となる。 酸の量は酸の容量(c.c.)/ガラスの重量(g)が
20〜80の範囲であつて、80を越えても既述した効
果が上らず、20未満では効果が少ない。 酸処理温度は通例使用され、反応も活発な温
度、すなわち100℃附近が妥当である。 酸処理時間はガラスの重量あるいは細孔容積あ
るいは表面積の経時変化から設定する。すなわち
処理過程においてガラスの重量、表面積は漸次減
少し、細孔容積は漸次増加するが、やがてこれら
の変動が極めて小さくなる。この時点を完了時と
すればよい。この完了時における細孔容積は、既
述するように別途微粉末ガラスを酸−アルカリ処
理することにより得た多孔体の細孔容積すなわち
目標値に対しほぼ80%に達しており、かつ細孔径
が均一であるので先に述べた酵素等の担体その他
に充分供しうる。通例処理時間は1〜10mmの厚み
の塊状ガラスの場合24時間から360時間である。 以上、アルカリホウ珪酸ガラスからの多孔質ガ
ラスの製造法について記述したが本製造法はアル
カリホウ珪酸ガラスに第4成分例えばチタニア、
ジルコニア、リン酸等を添加したガラスは勿論、
リン珪酸系ガラス、アルミノリン酸系ガラス等に
も適用しうるものである。 以下、具体例によつて本発明を詳述する。 SiO266.1wt%、Al2O31.6wt%、B2O324.1wt%、
Na2O8.2wt%、AS2O30.3wt%、NaNO30.5wt%
からなるソーダーホウ珪酸ガラスを製造し、それ
を640℃で48時間熱処理することにより分相させ
た後、巾40mm、長さ60mm、厚み3mmの塊状体を多
数製作して酸処理に供した。 なお予め本ガラスの細孔構造を知るために既述
した公知の方法により、細孔径、細孔容積、表面
積を測定した。すなわち本ガラスの一部を粉末
(0.8〜1.0mmφ)とし100℃、1Nの硫酸水溶液中に
72時間浸漬してホウ酸ソーダー相を除去し、次い
で室温で0.5N苛性カリ水溶液中に6時間浸漬し
て、細孔中のコロイドシリカを除去した。 細孔径は電子顕微鏡により観察し、細孔容積は
試料粉末の飽和吸水時の重量と乾燥時の重量との
差を測定し、表面積はいわゆるBET法に基づく
比表面積自動測定装置により測定し以下の目標値
を得た。 細孔径;平均500Å 細孔容積;0.6c.c./g 表面積;50m2/g 1次および2次の酸処理条件を適宜変化させ、
得られた多孔質ガラスについて既述した測定法に
より細孔径、細孔容積、表面積を測定した。結果
を第1表に示す。 本発明の実施例1〜4は、既述した目標値に対
し細孔容積が約80%、表面積が約150〜160%であ
つてほぼ満足しうる値であり、かつ細孔径が揃つ
ているので酵素等の担体、分子篩、ガス分離用と
して充分使用しうる。
The present invention relates to a method for producing porous glass, and more particularly to a method for producing porous glass by treating a lump of phase-separated alkali borosilicate glass with acid. Conventionally, alkali borosilicate glass is phase-separated into a silica phase and an alkali borate phase by heat treatment, and the alkali borate phase is eluted by acid treatment to obtain porous glass, and the heat treatment conditions are adjusted to obtain a phase-separated state. It is well known that porous glass having a desired pore size can be obtained by controlling the pore size, and this porous glass is being used as a carrier for catalysts and enzymes, molecular sieves, gas separation, and the like. However, porous glass is mainly used in the form of fine powder, and therefore its scope of use is extremely limited. One reason for this is that in the case of bulk porous glass, the acid treatment process requires a considerable amount of time and cracks are likely to occur, making it extremely difficult to manufacture in practice. Furthermore, the pore diameter of porous glass is usually measured by electron microscopy, but the actual value of its surface area (meaning the surface area per unit weight (m 2 /g)) can be predicted from the pore diameter. Similarly, the measured value of pore volume (pore volume per unit weight (cc/g)) is significantly lower than the predicted value.
This is because the alkali boric acid phase that should be leached out by the acid contains about 10% of silica, which remains in the pores in the form of a colloid without being leached out by the acid. This is schematically shown in Figure 1. Since this silica colloid is scattered and deposited within the pores, the actual pore diameter differs from one individual to another, which is a serious hindrance in its use as a carrier for enzymes, molecular sieves, and gas separation.
There is a trend that the higher the surface area value is, the better it is in terms of adsorption performance, but the actual measured value includes the surface area of the silica colloid mentioned above, so it is not necessarily appropriate, and is rather suitable for the above uses. In this case, it is essential that the pore diameter be uniform. By the way, if the glass is in the form of fine powder or an extremely thin plate with a thickness of several hundred microns, the silica colloid can be dissolved and removed by dipping it in an acid and then dipping it in a dilute alkaline aqueous solution, and the original pore size can be obtained. However, when this method is applied to lumps, it has been a problem because not only the silica colloid but also the silica layer remaining as a skeleton gradually dissolves and collapses from the surface layer. The present invention improves these conventional techniques and solves their problems, and provides a particularly suitable method for producing bulk porous glass. Specifically, the present invention provides a suitable method for producing bulk porous glass, in which phase-separated alkali borosilicate glass is acid-treated to form porous glass. The gist of the method is a method for producing porous glass, which is characterized in that it is first treated with an aqueous solution of a strong acid of 0.1 to 0.5N, and then treated with an aqueous solution of a strong acid of 2 to 5N. . The lump glass applied to the present invention has a thickness of 1 mm.
The above plate-like bodies, similar rectangular bodies, prismatic bodies, etc.
and spheres with a diameter of 1 mm or more, similar elliptical bodies, cylindrical bodies, etc., and combinations thereof. In the present invention, phase-separated alkali borosilicate glass is first immersed in an aqueous solution of 0.1 to 0.5 N strong acid to remove the alkali boric acid phase. The alkali borosilicate glass may be of a commonly used and known composition. The strong acid is sulfuric acid, nitric acid, hydrochloric acid, or a mixed acid thereof; other mineral acids or organic acids are not preferred because they increase the processing cost. When the acid concentration is less than 0.1N, the elution of the alkali boric acid phase becomes extremely slow. When the acid concentration exceeds 0.5N, the elution of the alkali boric acid phase is rapid, and the volume of the remaining silica phase that forms the skeleton also changes rapidly, creating stress between it and the unreacted material, resulting in a crack. tends to occur. A more important reason lies in the fact that dilute acids are more likely to elute silica. The present inventor investigated the behavior of silica, which is present in a considerable amount in the alkali boric acid phase, toward acid and found that the dilute the acid, the more the silica gradually dissolves and becomes small droplets (Figure 2). ). Note that the relatively dense silica phase remaining as a skeleton is also slightly dissolved, but to a negligible extent. On the other hand, in the case of a concentrated acid, almost no silica is dissolved and the silica aggregates. The amount of silica dissolved increases in acids below 0.5N, and is dissolved in balance with the dissolution of the alkaline borate phase.
Significant in 2N to 5N acids. In addition, the concentration of acid −
Regarding the relationship between silica dissolution, THElmer et al. (Journal of The American Ceramic Society,
53 (1970)) that the lower the concentration of nitric acid, the greater the amount of silica dissolved. It is quite natural from chemical equilibrium theory that if the amount of acid is small, the concentration of alkali borate and silica in the acid solution will increase during the elution process and the dissolution ability will decrease. Therefore, the larger the amount, the better, but from a practical standpoint, the ratio of acid amount (cc)/glass weight (g) is preferably 200 to 800. The acid treatment temperature is usually used, and a temperature at which the reaction is active, that is, around 100°C, is appropriate. The acid treatment time is initially determined by visual observation. That is, during the elution process, the boundary area between the eluted phase and the uneluted phase can be clearly seen, and the time when the boundary area disappears is the completion time. Hereinafter, if glass lumps of the same shape are treated under the same processing conditions and for the same processing time, reproducible results will be obtained. Typically for glass blocks with a thickness of 1 to 10 mm, the time range is from 36 to 420 hours. The primary treated glass thus obtained is further treated with an aqueous solution of a 2N to 5N strong acid. In addition,
Since most of the alkali boric acid phase is eluted in the primary treatment, cracks will not occur in the glass even if the acid concentration is rapidly increased in the secondary treatment. It can be confirmed that in this secondary treatment, the surface area of the primary treated glass decreases and the pore volume increases. As mentioned above, this is because the colloidal silica remaining in the pores, scattered and deposited is not dissolved in the acid, but aggregates with each other, reducing the surface area (Figure 3), while the surface area is still not fully dissolved. The pore volume is increased due to the dissolution of the alkali boric acid phase that is not present. Note that when a concentrated acid exceeding 5N is used, the pore volume hardly increases, but the reason for this has not been elucidated. Moreover, if it is less than 2N, aggregation becomes slow. The amount of acid is the volume of acid (cc)/weight of glass (g).
It is in the range of 20 to 80, and even if it exceeds 80, the above-mentioned effect will not be achieved, and if it is less than 20, the effect will be small. The acid treatment temperature is usually used, and a temperature at which the reaction is active, that is, around 100°C, is appropriate. The acid treatment time is determined based on changes over time in the weight, pore volume, or surface area of the glass. That is, during the treatment process, the weight and surface area of the glass gradually decrease, and the pore volume gradually increases, but eventually these fluctuations become extremely small. This point may be considered as the completion time. Upon completion of this process, the pore volume reached approximately 80% of the pore volume of the porous body obtained by separately treating finely powdered glass with an acid-alkali treatment, that is, the target value, as described above, and the pore size Since it is uniform, it can be sufficiently used as a carrier for the enzymes and the like mentioned above. Typical processing times are from 24 hours to 360 hours for bulk glass with a thickness of 1 to 10 mm. The method for producing porous glass from alkali borosilicate glass has been described above, but this production method uses alkali borosilicate glass with a fourth component such as titania,
Of course, glass with added zirconia, phosphoric acid, etc.
It can also be applied to phosphosilicate glass, aluminophosphate glass, etc. Hereinafter, the present invention will be explained in detail with reference to specific examples. SiO2 66.1wt%, Al2O3 1.6wt %, B2O3 24.1wt %,
Na 2 O 8.2wt%, AS 2 O 3 0.3wt%, NaNO 3 0.5wt%
After producing soda borosilicate glass consisting of the following, it was heat-treated at 640°C for 48 hours to separate the phases, and then a large number of blocks with a width of 40 mm, a length of 60 mm, and a thickness of 3 mm were produced and subjected to acid treatment. In order to know the pore structure of this glass, the pore diameter, pore volume, and surface area were measured in advance by the known method described above. That is, a part of this glass was made into a powder (0.8 to 1.0 mmφ) and placed in a 1N sulfuric acid aqueous solution at 100℃.
The sodium borate phase was removed by immersion for 72 hours, and then the colloidal silica in the pores was removed by immersion in a 0.5N caustic potassium aqueous solution at room temperature for 6 hours. The pore diameter was observed using an electron microscope, the pore volume was determined by measuring the difference between the weight of the sample powder at saturated water absorption and its dry weight, and the surface area was measured using an automatic specific surface area measuring device based on the so-called BET method. Obtained target value. Pore diameter: average 500 Å Pore volume: 0.6 cc/g Surface area: 50 m 2 /g The primary and secondary acid treatment conditions were changed as appropriate,
The pore diameter, pore volume, and surface area of the obtained porous glass were measured using the measurement methods described above. The results are shown in Table 1. In Examples 1 to 4 of the present invention, the pore volume is about 80% and the surface area is about 150 to 160% of the target values described above, which are almost satisfactory values, and the pore diameters are uniform. Therefore, it can be fully used as a carrier for enzymes, molecular sieves, and gas separation.

【表】 比較例1、2および3は、それぞれ希薄な酸、
濃厚な酸、きわめて濃厚な酸について実施例1と
対比して行つたものである。すなわち比較例1は
実施例1の1次処理条件と同一である。ただし処
理時間のみ実施例1のトータル処理時間と同一と
した。比較例2は実施例1の2次処理条件と同一
である。ただし処理時間のみ実施例1のトータル
処理時間と同一とした。比較例3は比較例2の酸
濃度に比べさらに濃厚にしたものである。 比較例1は本実施例ほどの効果がえられず、比
較例2、3にはクラツクの発生が認められた。 比較例4、5は希薄な酸による1次処理、濃厚
な酸による2次処理を実施例1と対比して行つた
ものであり、比較例4は2次処理における酸濃度
が高すぎる場合、比較例5は同じく酸濃度が低す
ぎる場合を示す。 比較例4、5とも本実施例ほどの効果がえられ
ていない。 以上詳述したように本発明は従来困難とされて
きた塊状の多孔質ガラスの製造を可能にし、かつ
細孔径が揃つているので酵素等の担体、分子篩、
ガス分離用等として充分実用に供しうるものであ
る。
[Table] Comparative Examples 1, 2 and 3 are dilute acid,
This experiment was carried out in comparison with Example 1 regarding concentrated acids and extremely concentrated acids. That is, Comparative Example 1 had the same primary treatment conditions as Example 1. However, only the processing time was the same as the total processing time of Example 1. Comparative Example 2 has the same secondary treatment conditions as Example 1. However, only the processing time was the same as the total processing time of Example 1. Comparative Example 3 has a higher acid concentration than Comparative Example 2. Comparative Example 1 did not have the same effect as the present example, and Comparative Examples 2 and 3 exhibited cracks. In Comparative Examples 4 and 5, a primary treatment with a dilute acid and a secondary treatment with a concentrated acid were performed in comparison with Example 1. In Comparative Example 4, when the acid concentration in the secondary treatment was too high, Comparative Example 5 also shows the case where the acid concentration is too low. Both Comparative Examples 4 and 5 did not have the same effect as the present example. As detailed above, the present invention enables the production of bulk porous glass, which has been considered difficult in the past, and since the pore diameters are uniform, it can be used as a carrier for enzymes, molecular sieves, etc.
It can be put to practical use for gas separation, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多孔質ガラスの細孔の状態を示
した模式的平面図、第2図は本発明の1次処理後
の多孔質ガラスの細孔の状態を示した模式的平面
図、第3図は本発明の多孔質ガラスの細孔の状態
を示した模式的平面図。 1…シリカ骨格、2…細孔、3…コロイドシリ
カ。
FIG. 1 is a schematic plan view showing the state of the pores in a conventional porous glass, FIG. 2 is a schematic plan view showing the state of the pores in the porous glass after the primary treatment of the present invention, FIG. 3 is a schematic plan view showing the state of pores in the porous glass of the present invention. 1... Silica skeleton, 2... Pore, 3... Colloidal silica.

Claims (1)

【特許請求の範囲】[Claims] 1 分相させたアルカリホウ珪酸ガラスを酸処理
して多孔質ガラスを製造する方法において、まず
0.1〜0.5Nの強酸の水溶液により、次いで2〜5N
の強酸の水溶液により前記酸処理することを特徴
とする多孔質ガラスの製造法。
1. In the method of producing porous glass by acid-treating phase-separated alkali borosilicate glass, first
with an aqueous solution of 0.1-0.5N strong acid, then 2-5N
A method for producing porous glass, characterized in that the acid treatment is carried out using an aqueous solution of a strong acid.
JP5740384A 1984-03-27 1984-03-27 Manufacture of porous glass Granted JPS60200843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5740384A JPS60200843A (en) 1984-03-27 1984-03-27 Manufacture of porous glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5740384A JPS60200843A (en) 1984-03-27 1984-03-27 Manufacture of porous glass

Publications (2)

Publication Number Publication Date
JPS60200843A JPS60200843A (en) 1985-10-11
JPH0261425B2 true JPH0261425B2 (en) 1990-12-20

Family

ID=13054670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5740384A Granted JPS60200843A (en) 1984-03-27 1984-03-27 Manufacture of porous glass

Country Status (1)

Country Link
JP (1) JPS60200843A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615763C2 (en) * 1996-04-20 1999-10-28 Heraeus Kulzer Gmbh & Co Kg Silica-based filler, process for its preparation and its use

Also Published As

Publication number Publication date
JPS60200843A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US4059658A (en) Low temperature production of high purity fused silica
JP3309983B2 (en) Mineral fibers that can be dissolved in physiological media
JPS6366777B2 (en)
US3804647A (en) Porous glass supports for automotive emissions control catalysts
JP5721348B2 (en) Glass manufacturing method
EP2731919B1 (en) Chemically durable porous glass with enhanced alkaline resistance
JPH0335245B2 (en)
JP4822576B2 (en) Inorganic hollow powder and method for producing the same
US3630700A (en) Process for forming particles of microporous glass for tobacco smoke filters
US2645619A (en) Manufacture of silica
EP0220764B1 (en) Chemically durable porous glass and process for the manufacture thereof
JPH11278875A (en) Surface treatment of glass
JPH0527574B2 (en)
RU2540754C1 (en) Method of producing high-silica porous glass with magnetic properties
JP2012091996A (en) Method for producing porous glass
JPH0261425B2 (en)
US4868147A (en) Alumina of high macroporosity and stability
JPS61101431A (en) Glass for tungsten-halogen lamp
JP7280547B2 (en) Method for manufacturing porous glass member
JP2002226283A (en) Porous compact and method for manufacturing the same
US3116991A (en) Desalkalinisation of glass
Gonzalez-Oliver et al. Porous silicate beads by gelation
US3375201A (en) Silica gel-asbestos compositions
JPS62148336A (en) Porous body comprising alumino phosphosilicate glass ceramic and its preparation
JPH07291770A (en) Coating solution for forming oxidation preventing film