JPS59164613A - Manufacture of finely powdered silicon of high purity - Google Patents

Manufacture of finely powdered silicon of high purity

Info

Publication number
JPS59164613A
JPS59164613A JP3941183A JP3941183A JPS59164613A JP S59164613 A JPS59164613 A JP S59164613A JP 3941183 A JP3941183 A JP 3941183A JP 3941183 A JP3941183 A JP 3941183A JP S59164613 A JPS59164613 A JP S59164613A
Authority
JP
Japan
Prior art keywords
reaction
purity
reducing agent
silicon
nah
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3941183A
Other languages
Japanese (ja)
Other versions
JPH0317767B2 (en
Inventor
Hajime Kato
肇 加藤
Takao Ito
隆夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP3941183A priority Critical patent/JPS59164613A/en
Publication of JPS59164613A publication Critical patent/JPS59164613A/en
Publication of JPH0317767B2 publication Critical patent/JPH0317767B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture finely powdered Si of high purity at a low cost by mixing K2SiF6 or Na2SiF6 as an Si source with NaN3 or NaH as a reducing agent and by heating the mixture at a specified temp. to cause a reaction. CONSTITUTION:K2SiF6 or Na2SiF6 is mixed with NaN3 or NaH as a reducing agent in 1:6-1:1 molar ratio, and the mixture is heated in an inert gaseous atmosphere under ordinary pressure. The heating temp. is within the range of the decomposition temp. of NaN3 or NaH as a reducing agent to the m.p. of an alkali fluoride such as KF or NaF as a by-product. The K2SiF6 or Na2SiF6 is reduced with Na produced by the decomposition of the NaN3 or NaH to form Si. Since NaF or KF as a by-product and the unreacted starting material stick to the formed Si, and the Si is treated with an aqueous soln. of hydrofluoric acid, washed, and dried to obtain fine Si powder of high purity.

Description

【発明の詳細な説明】 本発明は高純度微粉末シリコンの製造方法に関する。[Detailed description of the invention] The present invention relates to a method for producing high purity fine powder silicon.

近年高純度微粉末シリコンは、半導体、太陽電池あるい
はエンジンなど構造用セラミック原料等として用途が拡
大されつつある。
In recent years, high-purity fine powder silicon has been increasingly used as a raw material for structural ceramics such as semiconductors, solar cells, and engines.

従来シリコンの製造方法としては、二酸化けい素をマグ
ネシウム、アルミニウム、炭素等を用いて還元する方法
があるが、これらの方法によっては高純度のものが得に
くく、コストが高くつく等の欠点があるため、けい素源
としてけい弗化アルカリを使用する方法が着目されてい
る。けい弗化アルカリ法に関する公知方法としては、次
の二つがある。その一つは、(イ)けい弗化アルカリを
金属アルミニウムと混合して加熱する方法であり、他の
一つは、(ロ)けい弗化アルカリを金属ナトリウムと混
合して加熱する方法である。
Conventional methods for producing silicon include reducing silicon dioxide using magnesium, aluminum, carbon, etc., but these methods have drawbacks such as difficulty in obtaining high purity and high cost. Therefore, attention is being focused on a method using alkali silicofluoride as a silicon source. There are two known methods related to the alkali silicofluoride method: One is (a) a method in which alkali silicofluoride is mixed with metallic aluminum and heated, and the other is (b) a method in which alkali silicofluoride is mixed with metallic sodium and heated. .

しかし、(イ)の方法には次の三つの欠点がある。すな
わち■生成物中に未反応の金属アルミニウムが残存する
おそれがあり、■シリコンと金属アルミニウムが合金を
つくり、若しくは■シリコン中に弗化アルミニウムが残
存するおそれがある。さらに金属アルミニウムは電力多
消費型原料でありコストが高くつく。
However, method (a) has the following three drawbacks. That is, (1) unreacted metal aluminum may remain in the product, (2) silicon and metal aluminum may form an alloy, or (2) aluminum fluoride may remain in silicon. Furthermore, metal aluminum is a power-intensive raw material and is expensive.

また、(ロ)の方法にも次の二つの欠点がある。すなわ
ち■プロセス的にみて金属ナトリウムの取扱いが困難で
あり、■微粉状の金属ナトリウムを準備することは殆ど
不可能であり、したがってけい弗化アルカリの金属ナト
リウムを用いた還元反応を円滑に進行させることは困難
である。
Furthermore, method (b) also has the following two drawbacks. In other words, ■ Handling of metallic sodium is difficult from a process standpoint, and ■ It is almost impossible to prepare finely powdered metallic sodium. Therefore, the reduction reaction of alkali silicofluoride using metallic sodium proceeds smoothly. That is difficult.

本発明者らは、けい弗化アルカリの還元による高純度微
粉末シリコンの製造方法として、前述の公知方法のよう
な欠点のない方法を発明すべく鋭意研究を行なった。そ
の結果、けい弗化ナトリウムおよびまたはけい弗化カリ
ウムよりなるけい素源原料と、アジ化ナトリウムおよび
または水素化ナトリウムよりなる還元剤とを、モル比で
1=6ないしl:1に混合した混合物を、還元剤の分解
温度以上ないし生成弗化アルカリの融点未満の温度に加
熱して反応させ、該反応物を酸処理すると、高純度微粉
末シリコンがプロセス的にも容易に得られることを知っ
て本発明を完成した。本発明に用いられるけい素源原料
および還元剤は、いづれも精製容易であるため高純度品
の使用ができ、コストも比較的安価である特長を有する
The present inventors have conducted extensive research in order to invent a method for producing high-purity fine powder silicon by reduction of alkali fluorosilicate, which does not have the drawbacks of the above-mentioned known methods. As a result, a mixture of a silicon source material consisting of sodium silifluoride and/or potassium silifluoride and a reducing agent consisting of sodium azide and/or sodium hydride in a molar ratio of 1=6 to 1:1 was obtained. It was discovered that high-purity fine powder silicon can be easily obtained in terms of process by heating and reacting to a temperature above the decomposition temperature of the reducing agent and below the melting point of the alkali fluoride produced, and then treating the reactant with an acid. The present invention was completed. The silicon source raw material and the reducing agent used in the present invention are both easy to purify, allowing the use of highly purified products, and have the advantage of being relatively inexpensive.

本発明の方法におけるシリコン生成の反応式は、けい素
源原料としてけい弗化カリウムを例にとると、下記(1
)式および(2)式で表わされる。
The reaction formula for silicon production in the method of the present invention is as follows (1
) and (2).

K2S1F6+4NaN3→ s、+ 2 KF+ 4 N、F  + 6 N2↑・
・・・・・(1)K2S、F6+ 4N H時 S、+ 2 KF+ 4 N、F + 2 N2↑・旧
・・(2)けい素源原料のけい弗化アルカリは市販品が
使用できるが、公知方法により純度99.5%以」二に
精製容易であり、本発明に使用するけい弗化アルカリの
純度は、本発明の目的上98.0%以上が望ましい。還
元剤としてのアジ化ナトリウムは市販品が使用できるが
、公知方法により純度98.9%以−ヒに精製容易であ
り、本発明に使用するアジ化ナトリウムの純度は、本発
明の目的上99.0%以上が望ましい。また還元剤とし
ての水素化ナトリウムは市販品が使用できるが、入手容
易な市販の水素(例えば純度99.99%以−L)およ
び金属ナトリウム(例えば純度89.8%以上)を使用
して公知方法で反応させることにより高純度の粉末状の
水素化ナトリウム(例えば純度99.9%以上)を収得
することができる。
K2S1F6+4NaN3→ s, + 2 KF+ 4 N, F + 6 N2↑・
...(1) K2S, F6+ 4N H time S, + 2 KF+ 4 N, F + 2 N2↑・Old... (2) Commercially available alkali silicofluorides can be used as the silicon source material. The alkali fluorosilicate used in the present invention preferably has a purity of 98.0% or higher for the purpose of the present invention. Commercially available sodium azide can be used as the reducing agent, but it can be easily purified to a purity of 98.9% or higher by a known method. .0% or more is desirable. Commercially available sodium hydride can be used as the reducing agent, but commercially available hydrogen (for example, purity 99.99% or higher) and metallic sodium (for example, purity 89.8% or higher) can be used. High purity powdered sodium hydride (for example, purity of 99.9% or more) can be obtained by reacting according to the method.

本発明の方法では、上述したけい素源原料と還元剤を一
定モル比で予め混合したのち後段の加熱反応に供する。
In the method of the present invention, the above-mentioned silicon source material and reducing agent are mixed in advance at a constant molar ratio and then subjected to the subsequent heating reaction.

ただし連続反応法を採る場合には、けい素源原料と還元
剤とを別々に一定モル比を維持しつつ混合機(註、なく
てもよい)および反応容器中に供給して混合と還元反応
を並行的に行なわせてもよい。
However, when using a continuous reaction method, the silicon source raw material and the reducing agent are separately supplied into a mixer (note: this is not necessary) and a reaction vessel while maintaining a constant molar ratio for mixing and reduction reaction. may be performed in parallel.

還元剤/けい素源原料のモル比は1〜6、好ましくは 
1.2〜2.5である。モル比が1未満の場合は収率が
微小のため、またモル比が6を越えても収率は殆ど変わ
らないため、不経済になるばかりでなく、反応混合物中
に過剰の金属ナトリウムが残留して後段の処理が厄介に
なる。
The molar ratio of reducing agent/silicon source material is 1 to 6, preferably
It is 1.2-2.5. If the molar ratio is less than 1, the yield will be very small, and even if the molar ratio exceeds 6, the yield will hardly change, which will not only be uneconomical, but also cause excessive sodium metal to remain in the reaction mixture. This makes subsequent processing complicated.

本発明においてけい素源原料および還元剤は粉末状で使
用するが、その粒度は通常取得できるもので十分であり
、前記(1)式および(2)式の反応が固相反応である
ことから微粉砕を伴う程、微粉化若しくは緊密な混合は
必要としない。
In the present invention, the silicon source raw material and the reducing agent are used in powder form, but the particle size normally available is sufficient, and since the reactions of formulas (1) and (2) above are solid phase reactions, No pulverization or intimate mixing is required to the extent that fine grinding is involved.

かくして得られた原料混合物は、次の加熱反応工程に供
される。原料混合物は還元剤の分解温度以上から、該加
熱反応によって生成する弗化アルカリの融点未満の温度
範囲で加熱、反応させる。
The raw material mixture thus obtained is subjected to the next heating reaction step. The raw material mixture is heated and reacted in a temperature range from above the decomposition temperature of the reducing agent to below the melting point of the alkali fluoride produced by the heating reaction.

(1)式の反応では、原料混合物中のアジ化アルカリは
300℃以上において窒素を発生しながら純粋な金属ナ
トリウムを分解生成すると同時に、この金属ナトリウム
はけい弗化アルカリを還元して弗化ナトリウムとなる。
In the reaction of equation (1), the alkali azide in the raw material mixture decomposes to produce pure metallic sodium while generating nitrogen at temperatures above 300°C, and at the same time, this metallic sodium reduces the alkali silicofluoride to produce sodium fluoride. becomes.

一方のけい弗化アルカリは予め必要かつ十分な純度、例
えば純度99.0%のものを使用すると、前述の還元反
応により純度89.9%の高純度微粉末シリコンを最終
的に得ることができる。
On the other hand, if the alkali silicofluoride has the necessary and sufficient purity, for example, 99.0% purity, it is possible to finally obtain high-purity fine powder silicon with a purity of 89.9% through the above-mentioned reduction reaction. .

(2)式の反応では、原料混合物中の水素化ナトリウム
は425℃以上において水素を発生しながら純粋な金属
ナトリウムを分解生成すると同時に、この金属ナトリウ
ムは前述(1)式の反応の場合と同様にして、けい弗化
アルカリを還元して高純度微粉末シリコンを最終的に得
ることができる。
In the reaction of equation (2), the sodium hydride in the raw material mixture decomposes to produce pure metallic sodium while generating hydrogen at temperatures above 425°C, and at the same time, this metallic sodium is produced in the same way as in the reaction of equation (1) above. By reducing the alkali fluorosilicate, high-purity fine powder silicon can be finally obtained.

(1)式および(2)式の反応において、加熱温度が還
元剤の分解温度未満では還元反応が円滑に進行しない。
In the reactions of formulas (1) and (2), the reduction reaction does not proceed smoothly if the heating temperature is lower than the decomposition temperature of the reducing agent.

また該反応における実質的加熱上限温度は、 (1)式
および (2)式の反応で副生ずる弗化アルカリが融解
しはじめる直前の温度である。
Further, the practical upper limit heating temperature in this reaction is the temperature immediately before the alkali fluoride produced as a by-product in the reactions of formulas (1) and (2) begins to melt.

(註、例えば弗化アルカリとして弗化ナトリウムのみが
副生ずる場合は実質的加熱上限温度は弗化ナトリウムの
融点892℃未満であり、また弗化アルカリとして弗化
ナトリウムと弗化カリウムが共に副生ずる場合は実質的
加熱上限温度は弗化カリウムの融点860℃未満である
。)弗化アルカリの融点以上に加熱した場合は、固相分
解還元反応が円滑に進行しなくなる。
(Note: For example, if only sodium fluoride is produced as a by-product as an alkali fluoride, the practical upper limit heating temperature is below the melting point of sodium fluoride, 892°C, and both sodium fluoride and potassium fluoride are produced as an alkali fluoride. In this case, the practical upper limit heating temperature is below the melting point of potassium fluoride, 860°C.) If heated above the melting point of the alkali fluoride, the solid phase decomposition and reduction reaction will not proceed smoothly.

上記反応は固相反応でかつ気体の発生を伴うから、常圧
で不活性ガス雰囲気中で行ない、さらに発生ガスを支障
なく反応系外に排出できることが好ましい。
Since the above reaction is a solid-phase reaction and involves the generation of gas, it is preferable to carry out the reaction in an inert gas atmosphere at normal pressure, and furthermore to be able to discharge the generated gas out of the reaction system without any problem.

」−記反応の反応時間は、5分ない1000分、好まし
くは20分ないし200分である。加熱温度条件に応じ
て適切な加熱時間を選択する。
The reaction time of the above reaction is from 5 minutes to 1000 minutes, preferably from 20 minutes to 200 minutes. Select an appropriate heating time depending on the heating temperature conditions.

(1)式および(2)式のいずれの反応の場合も、使用
する反応装置は電気炉、若しくはバーナー等で外部から
加熱して器内温度調節の可能ないわゆる反応炉を使用す
る。使用する炉材料は、反応原料の性質から強塩基性に
耐えられるものを必要とするが、反応温度が300〜9
00℃程度であるから、特殊な炉材料は必要でない。実
験室的には、たとえば石英管を炉とし、磁製ボードに原
料混合物を入れて、該炉内で所定温度に所定時間加熱す
る。
In both the reactions of formula (1) and formula (2), the reaction apparatus used is an electric furnace or a so-called reaction furnace in which internal temperature can be controlled by heating from the outside with a burner or the like. The furnace material used must be able to withstand strong basicity due to the nature of the reaction raw materials, but the reaction temperature must be between 300 and 90°C.
Since the temperature is about 00°C, no special furnace material is required. In a laboratory, for example, a quartz tube is used as a furnace, a raw material mixture is placed in a porcelain board, and heated in the furnace to a predetermined temperature for a predetermined period of time.

反応終了後の反応混合物は、室温近くまで冷却したのち
、反応器から取り出して、次の工程すなわち酸処理を行
う。この酸処理の目的は (1)式および (2)式か
ら理解できるように、反応終了後の反応混合物から副生
物(KF 、 NaF )および未反応の原料(NaN
3 、 NaHおよびけい弗化アルカリ)を酸水溶液に
より溶解除去しさらに必要ならば純水で洗滌後乾燥して
高純度の微粉末シリコンを収得するための工程である。
After the reaction is completed, the reaction mixture is cooled to near room temperature, then taken out from the reactor and subjected to the next step, that is, acid treatment. As can be understood from equations (1) and (2), the purpose of this acid treatment is to remove byproducts (KF, NaF) and unreacted raw materials (NaN) from the reaction mixture after the reaction is completed.
3. NaH and alkali fluorosilicate) are dissolved and removed using an acid aqueous solution, and if necessary, washed with pure water and dried to obtain high purity fine powder silicon.

水処理でなく酸処理するのは、酸水溶液を用いた方が溶
解除去が効果的に行なうことができるからである。該酸
処理に使用する酸は、上記の目的(註、微粉末シリコン
の単離)が可能であれば限定されないが、酸処理後の酸
自体の除去され易さを考慮すると、塩酸および弗酸が代
表的である。
The reason why acid treatment is used instead of water treatment is that dissolution and removal can be carried out more effectively by using an acid aqueous solution. The acid used for the acid treatment is not limited as long as the above purpose (isolation of fine silicon powder) can be achieved, but considering the ease with which the acid itself is removed after the acid treatment, hydrochloric acid and hydrofluoric acid are is typical.

以上のようにして本発明の目的物である高純度微粉末シ
リコンが得られる。このものの純度は公知方法、例えば
けい光X線法(註、純度H,99%程度まで測定できる
)、原子吸光法(註、純度99.998%程度まで測定
できる)等によって測定できるが、本発明の方法によっ
て得られるシリコンの純度は原料の純度によるが、88
.8%ないし99.99%程度である。また、このもの
の粒度は例えば透過式電子顕微鏡等によって容易に測定
できるが、本発明の方法によって得られるシリコンの粒
度は、平均粒径102〜lO4λで極めて細かい。 以
下、実施例によって本発明を説明する。
In the manner described above, high-purity fine powder silicon, which is the object of the present invention, is obtained. The purity of this product can be measured by known methods, such as fluorescent X-ray method (Note: Purity H can be measured up to about 99%), atomic absorption spectrometry (Note: Purity H can be measured up to about 99.998%), etc. The purity of silicon obtained by the method of the invention depends on the purity of the raw materials, but
.. It is about 8% to 99.99%. Further, the particle size of this material can be easily measured using, for example, a transmission electron microscope, and the particle size of silicon obtained by the method of the present invention is extremely fine with an average particle size of 102 to 104[lambda]. The present invention will be explained below with reference to Examples.

実施例1゜ 純度θ9.0%のけい弗化ナトリウムの粉末85g(0
,45モル)と純度89.8%のアジ化ナトリウムの粉
末87.2 g (1,o3モル)とを混合して磁製ボ
ートに入れ、該ポートを石英管炉中に入れ、窒素ガス雰
囲気下、400℃で60分加熱して反応させた。
Example 1 85g of sodium silifluoride powder with purity θ9.0% (0
, 45 moles) and 87.2 g (1,03 moles) of sodium azide powder with a purity of 89.8% were mixed and placed in a porcelain boat, and the port was placed in a quartz tube furnace and placed in a nitrogen gas atmosphere. The mixture was heated at 400° C. for 60 minutes to react.

室温まで冷却後、反応混合物を1000 mlの5%弗
酸水溶液で酸処理を施したのち水洗乾燥して、微粉末の
シリコン7.0gを得た。透過式電子顕微鏡で観察した
該微粉末の粒径は100〜l000人であった。また、
けい光X線法で測定した不純物量は0.1%未満であり
、該微粉末のシリコン純度は99.8%以上であること
が確認できた。
After cooling to room temperature, the reaction mixture was acid-treated with 1000 ml of 5% aqueous hydrofluoric acid solution, washed with water and dried to obtain 7.0 g of fine powder silicon. The particle size of the fine powder observed with a transmission electron microscope was 100 to 1,000 particles. Also,
The amount of impurities measured by fluorescence X-ray method was less than 0.1%, and it was confirmed that the silicon purity of the fine powder was 99.8% or more.

実施例2゜ 純度88.0%のけい弗化カリウムの粉末208g(0
,f34モル)と純度98.8%のアジ化ナトリウムの
粉末104g (1,80モル)を用い600℃で50
分反応させ、反応終了後の反応混合物の酸処理剤として
10%塩酸水溶液2000 +fLを用いた以外は実施
例1と同様に行ない、微粉末状のシリコン11.0gを
得た。このものの純度は98.9%以上であり、その平
均粒径は200Aであった。
Example 2゜208g of potassium silicofluoride powder with a purity of 88.0% (0
, f34 mol) and 104 g (1,80 mol) of sodium azide powder with a purity of 98.8% at 600°C.
11.0 g of finely powdered silicon was obtained in the same manner as in Example 1, except that 2000 + fL of a 10% aqueous hydrochloric acid solution was used as an acid treatment agent for the reaction mixture after the reaction was completed. The purity of this product was 98.9% or more, and the average particle size was 200A.

実施例3゜ 純度98.0%のけい弗化ナトリウムの粉末188g(
1モル)と純度99.0%の水素化ナトリウムの粉末4
8g(2モル)を用い、 600℃で60分反応させ、
反応後の反応混合物の酸処理剤として5%塩$2000
mMを用いた以外は実施例1と同様に行ない、微粉末状
のシリコン13gを得た。このものの純度は98.9%
以上であり、その平均粒径は150Aであった。
Example 3 188g of sodium silifluoride powder with a purity of 98.0% (
1 mol) and 99.0% purity sodium hydride powder 4
Using 8g (2 mol), react at 600℃ for 60 minutes,
5% salt as an acid treatment agent for the reaction mixture after the reaction $2000
The same procedure as in Example 1 was carried out except that mM was used, and 13 g of finely powdered silicon was obtained. The purity of this stuff is 98.9%
The average particle size was 150A.

実施例4゜ 純度99.0%のけい弗化カリウムの粉末138g(0
,30モル)と純度88.0%の水素化ナトリウムの粉
末14.4 g (o、eoモル)を用い、650℃で
50分反応させた以外は実施例1と同様に行ない微粉末
状のシリコン4.0gを得た。このものの純度は99.
9%以上であり、その平均粒径は200 ′Aであった
Example 4 138g of potassium silicofluoride powder with a purity of 99.0% (0
, 30 mol) and 14.4 g (o, eo mol) of sodium hydride powder with a purity of 88.0% were used in the same manner as in Example 1, except that the reaction was carried out at 650°C for 50 minutes to form a fine powder. 4.0 g of silicon was obtained. The purity of this product is 99.
9% or more, and the average particle size was 200'A.

以   上 1 82−that's all 1 82-

Claims (1)

【特許請求の範囲】[Claims] けい弗化ナトリウムおよびまたはけい弗化カリウムより
なるけい素源原料と、アジ化ナトリウムおよびまたは水
素化ナトリウムよりなる還元剤とを、モル比でに6ない
し1:1に混合した混合物を、還元剤の分解温度以上な
いし生成弗化アルカリの融点未満の温度に加熱して反応
させ、該反応生成物を酸処理することを特徴とする高純
度微粉末シリコンの製造方法。
A mixture of a silicon source material consisting of sodium silifluoride and/or potassium silifluoride and a reducing agent consisting of sodium azide and/or sodium hydride in a molar ratio of 6 to 1:1 is used as a reducing agent. A method for producing high-purity fine powder silicon, which comprises heating to a temperature above the decomposition temperature of and below the melting point of the alkali fluoride produced to cause a reaction, and treating the reaction product with an acid.
JP3941183A 1983-03-10 1983-03-10 Manufacture of finely powdered silicon of high purity Granted JPS59164613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3941183A JPS59164613A (en) 1983-03-10 1983-03-10 Manufacture of finely powdered silicon of high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3941183A JPS59164613A (en) 1983-03-10 1983-03-10 Manufacture of finely powdered silicon of high purity

Publications (2)

Publication Number Publication Date
JPS59164613A true JPS59164613A (en) 1984-09-17
JPH0317767B2 JPH0317767B2 (en) 1991-03-08

Family

ID=12552246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3941183A Granted JPS59164613A (en) 1983-03-10 1983-03-10 Manufacture of finely powdered silicon of high purity

Country Status (1)

Country Link
JP (1) JPS59164613A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112023017551A2 (en) 2021-03-01 2023-10-10 Jfe Steel Corp ABNORMALITY DETERMINATION DEVICE, METHOD AND SYSTEM AND BLAST FURNACE OPERATION METHOD, ABNORMALITY DETERMINATION SERVER DEVICE, DISPLAY TERMINAL DEVICE AND MEMORIES READ BY A COMPUTER
JP7031912B1 (en) 2021-03-31 2022-03-08 株式会社マツモト交商 Composite powder and cosmetics containing it

Also Published As

Publication number Publication date
JPH0317767B2 (en) 1991-03-08

Similar Documents

Publication Publication Date Title
US7964172B2 (en) Method of manufacturing high-surface-area silicon
US4241037A (en) Process for purifying silicon
US4543242A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
JPS6112844B2 (en)
EP1437326B1 (en) Method for producing silicon
US5032370A (en) Method of preparing silicon nitride with a high alpha-phase content
JPS59164613A (en) Manufacture of finely powdered silicon of high purity
JPS60186407A (en) Preparation of finely powdered zirconium nitride
JPS6111886B2 (en)
JPS623098A (en) Production of silicon carbide whisker
JPS62289230A (en) Manufacture of cubic system boron nitride using fusing agentand cubic system boron nitride manufactured through said method
JPS58181707A (en) Manufacture of boron nitride
JPS58115016A (en) Preparation of fine powdery silicon carbide
JPH01203205A (en) Production of boron nitride powder
US4704264A (en) Process for production of silane
JPH0375209A (en) Method of manufacturing raw material of ceramics
RU2519460C1 (en) Production of silicon with the use of aluminium subchloride
US656353A (en) Alkaline-earth silicid.
JPH03218917A (en) Production of boron trichloride
US3482941A (en) Direct production of monotungsten carbide from ores
JPS6332725B2 (en)
JP2856636B2 (en) Production method of ammonium cryolite
JPS602244B2 (en) Manufacturing method of rhombohedral boron nitride
JPH0575694B2 (en)
JPS58176109A (en) Production of alpha-type silicon nitride