JPS59164531A - Photoscanner - Google Patents

Photoscanner

Info

Publication number
JPS59164531A
JPS59164531A JP3728183A JP3728183A JPS59164531A JP S59164531 A JPS59164531 A JP S59164531A JP 3728183 A JP3728183 A JP 3728183A JP 3728183 A JP3728183 A JP 3728183A JP S59164531 A JPS59164531 A JP S59164531A
Authority
JP
Japan
Prior art keywords
medium
deflection
light source
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3728183A
Other languages
Japanese (ja)
Inventor
Takeshi Baba
健 馬場
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Kazuo Minoura
一雄 箕浦
Atsushi Someya
染谷 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3728183A priority Critical patent/JPS59164531A/en
Publication of JPS59164531A publication Critical patent/JPS59164531A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To make a scan with high density by providing a light source part which supplies plural pieces of luminous flux and a deflector which has plural deflection parts for deflecting selectively the pieces of luminous flux from said light source part. CONSTITUTION:Luminous flux li emitted from a light emission point 1i is deflected by a deflection part 2i to form an image on a medium 4 to be checked through a lens 3i. The image-formation point scans in an area 4i on the medium 4 to be scanned by the deflection of the deflection part 2i. The luminous flux li is deflected by the deflection part 2i simultaneously with and in the same direction against the image-formation point, so the modulated luminous flux li makes a high-density scan over the entire area of the medium 4 to be scanned.

Description

【発明の詳細な説明】 本発明は、光走査装置、特に複数本の光束を同時に供給
可能な光源を使用した光走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scanning device, and particularly to an optical scanning device using a light source capable of simultaneously supplying a plurality of beams of light.

従来の光走査装置としては、単一の発光点より光をポリ
ゴンミラーに照射、反射させて光走査を行なう装置や、
液晶(LED)アレイのごとく複数個の発光点を有する
光源部の各発光点の独立した変調と被走査媒体の移動に
より光走査を行なう装置が知られている。しかしながら
、後者の装置においては、複眼レンズ系により、光源部
を被走査媒体上に等倍結像させているため、光源部の各
発光点の密度を高めないと高密度な走査は不可能である
。これらの改良として、光源部と複眼レンズ系を2組用
い、被走査媒体上にこれらの2組の光源部のそれぞれの
発光点の像をずらして結像させる方法が知られているが
、これらの部材の配置、調整が非常に困難であり、実用
性に欠如している。
Conventional optical scanning devices include devices that perform optical scanning by irradiating light from a single light emitting point onto a polygon mirror and reflecting it;
2. Description of the Related Art A device is known that performs optical scanning by independently modulating each light emitting point of a light source section having a plurality of light emitting points, such as a liquid crystal (LED) array, and by moving a medium to be scanned. However, in the latter device, the light source unit is imaged at the same magnification on the scanned medium using a compound eye lens system, so high-density scanning is not possible unless the density of each light emitting point of the light source unit is increased. be. As an improvement on these, a method is known in which two sets of light source units and compound lens systems are used, and images of the respective light emitting points of these two sets of light source units are shifted and imaged on the scanned medium. It is very difficult to arrange and adjust the components, and it lacks practicality.

最近、物質に熱を加えると屈折率が変化し、この熱せら
れた物質に光を入射すると出射光は偏向することが発見
され、例えば日経エレクトロニクス 1982年8月1
8日号、第185頁〜第183頁には、直流電圧を印加
したルチル(Ti07. )結晶にHe−Neレーザを
照射し、印加する電圧を変化すると出射光の偏向角が変
化することが報告されている。本発明者は、このように
熱による光偏向現象に着目して、物質の屈折率の温度依
存性を利用し、熱変化による屈折率の不均一な変化を見
いだし、この知見に基づいて本発明をなすに至った。
Recently, it has been discovered that when heat is applied to a substance, the refractive index changes, and when light is incident on this heated substance, the emitted light is deflected.For example, Nikkei Electronics August 1, 1982
8th issue, pages 185 to 183, it is reported that a He-Ne laser is irradiated onto a rutile (Ti07.) crystal to which a DC voltage is applied, and that the deflection angle of the emitted light changes when the applied voltage is changed. It has been reported. The present inventor focused on the phenomenon of light deflection caused by heat, utilized the temperature dependence of the refractive index of a substance, discovered non-uniform changes in the refractive index due to thermal changes, and based on this knowledge, invented the present invention. I came to do this.

本発明は、上記の点に鑑み、複数本の独立した光束を供
給可能な光源部と、該光源部からの光束を偏向するため
に、屈折率の温度依存性を有する媒体と該媒体内の屈折
率分布を制御する手段とにより構成される複数個の偏向
部を有する偏向器とよりなり、前記媒体内の屈折率分布
を制御することにより前記偏向部に入射する光束を偏向
する光走査装置を提供することにある。
In view of the above points, the present invention provides a light source unit capable of supplying a plurality of independent light beams, a medium whose refractive index is temperature dependent, and a medium within the medium for deflecting the light beam from the light source unit. an optical scanning device comprising a deflector having a plurality of deflecting sections configured with means for controlling a refractive index distribution, and deflecting a light beam incident on the deflecting section by controlling the refractive index distribution within the medium. Our goal is to provide the following.

以下、図面を参照して本発明の一実施例を説明する。第
1図は、本発明の一実施例の原理断面図、第2図は、第
1図の偏向器2の詳細断面図である。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a principle sectional view of an embodiment of the present invention, and FIG. 2 is a detailed sectional view of the deflector 2 shown in FIG.

この光走査装置は、光源部14、偏向器2、複眼レンズ
3、被走査媒体4より成り、光源部l、偏向器2、複眼
レンズ3は、それぞれ複数個の発光点1i(i=1.2
.3・・・、以下同じ)、偏向部21、レンズ部31よ
りなる。光源部1は、液晶(LED)アレイのごとき公
知のものが使用できる。
This optical scanning device consists of a light source section 14, a deflector 2, a compound eye lens 3, and a scanned medium 4. The light source section 1, the deflector 2, and the compound eye lens 3 each have a plurality of light emitting points 1i (i=1. 2
.. 3..., the same applies hereinafter), a deflection section 21, and a lens section 31. As the light source section 1, a known one such as a liquid crystal (LED) array can be used.

偏向器2は、第2図に示すように、複数個のベルチェ素
子51により分割された、温度により屈折率が変化する
複数個の透明な媒体61より成る。ベルチェ素子51は
、それぞれ同方向に電流を印加する電源(図示せず)に
接続されており、電流を流すと、ベルチェ素子51の下
面5iaは発熱し、上面5ibは吸熱するように構成さ
れている。すなわち、偏向部21は、ベルチェ素子51
の下面5ib 、媒体61、ベルチェ素子5 (i+1
)の上面5 (i+1)aより成る。
As shown in FIG. 2, the deflector 2 is composed of a plurality of transparent media 61 whose refractive index changes depending on the temperature, which are divided by a plurality of Vertier elements 51. The Beltier elements 51 are each connected to a power source (not shown) that applies a current in the same direction, and when a current is applied, the lower surface 5ia of the Beltier element 51 generates heat, and the upper surface 5ib is configured to absorb heat. There is. That is, the deflection section 21 includes the Bertier element 51
lower surface 5ib, medium 61, Bertier element 5 (i+1
) consists of the upper surface 5 (i+1)a.

次に上記実施例の作用を説明する。ベルチェ素子51に
電源より電流を印加すると、素子51の上面5iaは吸
熱し、下面5ibは発熱する。従って偏向部21の媒体
81においては、下面5ibから上面5(i+1)aに
向って連続した温度勾配が形成される。
Next, the operation of the above embodiment will be explained. When a current is applied to the Bertier element 51 from a power source, the upper surface 5ia of the element 51 absorbs heat, and the lower surface 5ib generates heat. Therefore, in the medium 81 of the deflection section 21, a continuous temperature gradient is formed from the lower surface 5ib to the upper surface 5(i+1)a.

従って、媒体61の屈折率の温度係数(dn/dT)が
負である場合には、媒体61においては面5 (i+1
)aから面5ibに向って屈折率が漸減する。この屈折
率の勾配は、近似的に一定となり、媒体61は、第2図
に示す゛ように、入射光を下方向に偏向するプリズム作
用を有するようになる。
Therefore, when the temperature coefficient of refractive index (dn/dT) of the medium 61 is negative, the surface 5 (i+1
) The refractive index gradually decreases from a toward the surface 5ib. The gradient of this refractive index becomes approximately constant, and the medium 61 has a prismatic action that deflects the incident light downward, as shown in FIG.

第1図に示すように、発光点11を発した光束幻は、偏
向部21により偏向され、レンズ部31により被走査媒
体4上に結像される。この結像点は、偏向部21による
偏向により被走査媒体4上の領域41を走査する。発光
点11はそれぞれ独立して強度変調され、その光束剋は
、偏向部21により偏向されてその結像点に対して同時
にかつ同方向に行われるので、その結果、被走査媒体4
の全域を変調された光束幻により走査することができる
。ベルチェ素子61に印加する電流量を変化することに
より、媒体61の温度勾配が変化し、従って屈折率勾配
が変化するので、偏向角の大きな制御が可能になる。
As shown in FIG. 1, the light beam emitted from the light emitting point 11 is deflected by the deflection section 21 and focused onto the scanned medium 4 by the lens section 31. This imaged point scans an area 41 on the scanned medium 4 by being deflected by the deflection unit 21 . The light emitting points 11 are each independently intensity-modulated, and the light beams are deflected by the deflection unit 21 and directed simultaneously and in the same direction with respect to the image forming point.
can be scanned by a modulated light beam. By changing the amount of current applied to the Bertier element 61, the temperature gradient of the medium 61 changes, and therefore the refractive index gradient changes, making it possible to greatly control the deflection angle.

上記実施例において、偏向器2、複眼レンズ3を介して
湯部1の発光点11を被走査媒体4上に等倍結像しても
、被走査媒体4上の走査密度はは、発光点1iの密度に
比べて数倍に向上させることが可能であり、例えば光源
部1としてLEDアレイを用いた場合、このLEDアレ
イの発光点密度を高める必要がなく、安価で高輝度のも
のを使用することができる。したがって光学系による縮
小を行なわずとも高密度な走査が可能で複眼レンズによ
る等倍結像を利用することができ、光走査装置全体を小
型化することが可能になる。
In the above embodiment, even if the light-emitting point 11 of the hot water part 1 is imaged at the same magnification on the scanned medium 4 through the deflector 2 and the compound lens 3, the scanning density on the scanned medium 4 is It is possible to improve the density several times compared to 1i. For example, when an LED array is used as the light source part 1, there is no need to increase the light emitting point density of this LED array, and an inexpensive and high-brightness one can be used. can do. Therefore, it is possible to perform high-density scanning without performing reduction using an optical system, and it is possible to utilize equal-magnification imaging using a compound eye lens, making it possible to downsize the entire optical scanning device.

なお、上記実施例において、光源部1の発光点11、偏
向器2の偏向部21、複眼レンズ3のレンズ部3Xがそ
れぞれ相対応しているが、必ずしもこれは必要ではなく
、例えばレンズ部31が発光部11と12に、レンズ部
32が発光部13.14に対応してもよい。また、偏向
器2は、第1図において、光源部1と複眼レンズ3との
間に配置されているが、代りに、複眼レンズ3ど被走査
媒体4との間に配置してもよい。
In the above embodiment, the light emitting point 11 of the light source section 1, the deflection section 21 of the deflector 2, and the lens section 3X of the compound eye lens 3 correspond to each other, but this is not necessarily necessary. may correspond to the light emitting parts 11 and 12, and the lens part 32 may correspond to the light emitting parts 13 and 14. Further, although the deflector 2 is arranged between the light source section 1 and the compound eye lens 3 in FIG. 1, it may be arranged between the compound eye lens 3 and the scanned medium 4 instead.

第31Zは、本発明の他の実施例の原理断面図、第4図
は、第3図の偏向結像系8の詳細断面図である。この光
走査装置は、複数個の発光点1iを有する光源部l、そ
れぞれ紙面と直交する断面内でパワー(屈折力)を有す
るシリンドカルレンズ7a、7b、後述する偏向結像部
81を有する偏向結像系8、被走査媒体4よりなる。偏
向結像系8の媒体91は、温度により屈折率が変化する
材料より成り、かつ光軸かも遠ざかるに従い屈折率が小
さくなるようにあらかじめ形成されている。すなわち、
媒体81は、それぞれ紙面を含む断面内でパワーを有す
るシリンドリカルレンズ作用を有する。媒体91は、更
に抵抗体10iと金属板11iにより交互に分割されて
いる。すなわち偏向結像部81は、抵抗体101、媒体
91、金属板111とよりなり、偏向結像部82は、金
属板111、媒体82、抵抗体102成る。抵抗体10
iは、それぞれ制御可能な電源に接続されており、金属
板+1iは放熱作用を有する。
31Z is a principle sectional view of another embodiment of the present invention, and FIG. 4 is a detailed sectional view of the deflection imaging system 8 of FIG. 3. This optical scanning device includes a light source part l having a plurality of light emitting points 1i, cylindrical lenses 7a and 7b each having power (refractive power) in a cross section perpendicular to the plane of the paper, and a deflection imaging part 81 to be described later. It consists of a deflection imaging system 8 and a scanned medium 4. The medium 91 of the deflection imaging system 8 is made of a material whose refractive index changes with temperature, and is formed in advance so that the refractive index decreases as the optical axis moves away from the medium. That is,
Each of the media 81 has a cylindrical lens effect that has power within a cross section that includes the plane of the paper. The medium 91 is further divided alternately by resistors 10i and metal plates 11i. That is, the deflection imaging section 81 includes a resistor 101, a medium 91, and a metal plate 111, and the deflection imaging section 82 includes a metal plate 111, a medium 82, and a resistor 102. Resistor 10
i are each connected to a controllable power source, and metal plate +1i has a heat dissipation function.

この第3図、第4図の実施例の作用を説明すると、抵抗
体10iに電源より電流を印加すると、抵抗体10iは
発熱し、金属板11iは放熱するので、偏向結像部81
の媒体81内では、抵抗体10i及び10(j+1)か
ら金属板11iに向って連続な温度勾配が形成され、従
って媒体91の屈折率の温度係数(dn /dT)が負
である場合には、媒体81.92においては屈折率の最
大値を有する部分は抵抗体111に偏より、第4図に示
すように入射光を偏向することができる。この場合、隣
接した媒体81と9(i+1)は、お互いに逆方向に偏
向作用を有するが、この不都合は発光部lの各発光点に
対する輝度変調信号の変換によって容易に除去できる。
To explain the operation of the embodiment shown in FIGS. 3 and 4, when a current is applied to the resistor 10i from the power source, the resistor 10i generates heat and the metal plate 11i radiates heat.
A continuous temperature gradient is formed in the medium 81 from the resistors 10i and 10(j+1) toward the metal plate 11i. Therefore, if the temperature coefficient of refractive index (dn/dT) of the medium 91 is negative, In the media 81 and 92, the portion having the maximum refractive index is deflected by the resistor 111, so that the incident light can be deflected as shown in FIG. In this case, the adjacent media 81 and 9(i+1) have deflection effects in opposite directions, but this inconvenience can be easily eliminated by converting the brightness modulation signal for each light emitting point of the light emitting section l.

本実施例においては、紙面と直交する断面内の結像作用
はシリンドリカル7δ、?bが、紙面を含む断面内にお
いては偏向結像部8自身が分担している。
In this example, the imaging effect in the cross section perpendicular to the plane of the paper is cylindrical 7δ, ? b is shared by the deflection imaging section 8 itself in the cross section including the plane of the paper.

以上説明したように、それぞれ屈折率の温度依存性を有
する媒体と発熱部とより成る複数個の偏向部を有する偏
向器を形成し、例えば、前記発熱部の発熱量を制御する
ことにより前記媒体内の屈折率を不均一にし、前記偏向
部に入射する光束を変更するようしたので、高密度な走
査が可能になり、また装置の諸部材の配置、調整が容易
になる効果がある。
As explained above, by forming a deflector having a plurality of deflecting parts each consisting of a medium and a heat generating part, each of which has a temperature dependence of its refractive index, and controlling the amount of heat generated by the heat generating part, the medium Since the refractive index within the deflection section is made non-uniform and the light beam incident on the deflection section is changed, high-density scanning becomes possible, and the arrangement and adjustment of the various components of the apparatus are facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の断面図、第2図は、第1
図の偏向器の詳細断面図、第3図は、本発明の他の実施
例の断面図、第4図は、第3図の偏向結像系の詳細断面
図である。 1・・・光源部、  2・・・偏向器、 8・・・偏向
結像系、11.12.13〜・・・発光点(部)、21
.22.23〜・・・偏向部、 51.52.53〜・・・ペルチェ素子、61.62.
63〜.91.92.83〜・・・屈折率温度依存性媒
体、 101 、102〜・・・抵抗対。 III   図
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG. 2 is a cross-sectional view of one embodiment of the present invention.
FIG. 3 is a detailed cross-sectional view of the deflector shown in the figure, FIG. 3 is a cross-sectional view of another embodiment of the present invention, and FIG. 4 is a detailed cross-sectional view of the deflection imaging system of FIG. 3. DESCRIPTION OF SYMBOLS 1... Light source part, 2... Deflector, 8... Deflection imaging system, 11.12.13-... Light emitting point (part), 21
.. 22.23~... Deflection section, 51.52.53~... Peltier element, 61.62.
63~. 91.92.83~...Refractive index temperature dependent medium, 101, 102~...Resistance pair. III Figure

Claims (1)

【特許請求の範囲】 複数本の光束を供給可能な光源部と、前記光源部からの
光束を選択して偏向するための複数個の偏向部を有する
偏向器とを含み、 前記各偏向部は、それぞれ屈折率の温度依存性を有する
媒体と、前記媒体内の屈折率分布を制御する手段を有し
、該制御手段により前記媒体内の屈折率を不均一にし、
前記偏向部に入射する前記光源部からの光束を偏向する
ことを特徴とする光走査装置。
[Scope of Claims] A light source unit capable of supplying a plurality of light beams, and a deflector having a plurality of deflection units for selectively deflecting the light beams from the light source unit, each of the deflection units being , each having a medium having a temperature dependence of refractive index, and means for controlling the refractive index distribution within the medium, and making the refractive index within the medium non-uniform by the control means,
An optical scanning device characterized in that a light beam from the light source unit that enters the deflection unit is deflected.
JP3728183A 1983-03-09 1983-03-09 Photoscanner Pending JPS59164531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3728183A JPS59164531A (en) 1983-03-09 1983-03-09 Photoscanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3728183A JPS59164531A (en) 1983-03-09 1983-03-09 Photoscanner

Publications (1)

Publication Number Publication Date
JPS59164531A true JPS59164531A (en) 1984-09-17

Family

ID=12493308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3728183A Pending JPS59164531A (en) 1983-03-09 1983-03-09 Photoscanner

Country Status (1)

Country Link
JP (1) JPS59164531A (en)

Similar Documents

Publication Publication Date Title
JP4767380B2 (en) Optical apparatus and method for increasing the intensity of a multimode laser beam, and printer for printing a lens image using the electric field of the laser beam of the present invention
US6542178B2 (en) Image recording apparatus
US6121996A (en) Laser recording method
JP3369101B2 (en) Laser recording device
US6696681B2 (en) F-θ lens, beam scanning device, and imaging apparatus
JPS59164531A (en) Photoscanner
EP0277081A1 (en) Device for stabilization of beam intensity distribution in laser scanners
JPH05221013A (en) Multibeam laser printer
JPH03180359A (en) Optical recorder
KR100538250B1 (en) Multi-beam emitting device and light scanning unit employing the same
JPS59193431A (en) Light source device
JPH04101485A (en) Beam spreading angle variable semiconductor laser and information processor using the same
JP2934694B2 (en) Image reading device
JPH08318640A (en) Lensless printing machine equipped with optical bar print head
JPH04277714A (en) Optical scanner and scanning method
JPH04194813A (en) Picture element density changing optical device
JP5021011B2 (en) Printing lenticular images
US20030095317A1 (en) Multi-channel image recording apparatus
JPH0519190A (en) Optical scanning device
JP2902002B2 (en) Laser recording device
JPS6079334A (en) Optical modulating element
JPH03136075A (en) Image forming device
JP2002273939A (en) Exposure device
JPH0365863A (en) Optical scanner
JPS58207019A (en) Light source device of laser printer