JPS59193431A - Light source device - Google Patents

Light source device

Info

Publication number
JPS59193431A
JPS59193431A JP58067713A JP6771383A JPS59193431A JP S59193431 A JPS59193431 A JP S59193431A JP 58067713 A JP58067713 A JP 58067713A JP 6771383 A JP6771383 A JP 6771383A JP S59193431 A JPS59193431 A JP S59193431A
Authority
JP
Japan
Prior art keywords
medium
heater
light source
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58067713A
Other languages
Japanese (ja)
Other versions
JPH0521215B2 (en
Inventor
Masayuki Suzuki
雅之 鈴木
Takeshi Baba
健 馬場
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Kazuo Minoura
一雄 箕浦
Atsushi Someya
染谷 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58067713A priority Critical patent/JPS59193431A/en
Publication of JPS59193431A publication Critical patent/JPS59193431A/en
Priority to US07/144,643 priority patent/US4872743A/en
Publication of JPH0521215B2 publication Critical patent/JPH0521215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/028Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by thermal printers
    • G06K15/029Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by thermal printers using optical beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1238Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point
    • G06K15/1242Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line
    • G06K15/1252Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line using an array of light modulators, e.g. a linear array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To make a refractive index of a medium ununiform, and to control a divergenece angle of a light by forming a heating element in a transparent medium whose refractive index has a temperature dependability, irradiating a light of a light source to this medium, and controlling heating of the heating element. CONSTITUTION:When a voltage is applied to a heater 4 by driving only a power source Va, the heater 4 is heated, and a continuous temperature gradient extending from its center to the outside circumference, is obtained in a medium 2a. On the other hand, when voltage is applied to a heater 5 by driving only a power source Vb, the heater 5 is heated, and a refractive index of the medium 2a increases gradually toward the center from the vicinity of the heater 5. That is to say, this heat optical element 2 has a function of a convex lens for converging a luminous flux of a point light source 1 as shown by a dashed line L2. Also, when the heater of the heat optical element 2 is formed in various shapes, various temperature distributions are obtained in the medium 2a, and the divergence and convergence of the luminous flux of the point light source 1 can be controlled optionally.

Description

【発明の詳細な説明】 光源装置に関する。[Detailed description of the invention] This invention relates to a light source device.

光情報記録装置、レーザプリンタ等の光装置には光源と
して半導体レーザが用いられている。しかしながら一般
に半導体レーザのビーム径が惰円形一〇あったり、また
ビームの広がりにバラつきがあるので、高解像度を要求
される前記光装置に使用するのに容易でない。
Semiconductor lasers are used as light sources in optical devices such as optical information recording devices and laser printers. However, since the beam diameter of a semiconductor laser is generally 10 mm, and the spread of the beam varies, it is not easy to use it in the above-mentioned optical devices that require high resolution.

一方、発光り゛イオード・アレイを光源とする電子写真
プリンタが研究されているが、この場合、発光ダイオー
ドは感光ドラム等の像担持体上に、該像担持体の移動方
向の直角方向にミクロン単位の間隔で多数配置される。
On the other hand, electrophotographic printers that use a light emitting diode array as a light source are being researched, but in this case, the light emitting diodes are placed on an image bearing member such as a photosensitive drum in a direction perpendicular to the moving direction of the image bearing member. Arranged in large numbers at unit intervals.

しかしながらこのように発光ダイオードアレイば、多数
のダイオードにより構成さハ4るので、光量のバラつき
、発散角の不均一という問題がある。更にこの発光ダイ
オード・プリンタに、短焦点の小径集束性伝送素子(商
品名:セルフォック)列(以下、小径結像素子ア,レイ
という。)より成る結像光学系を用いた場合、発光ダイ
オードの発散角が太きいために、この結像光学系の集光
効率が悪いという欠点があり、捷だ非発光部からの光漏
話により光源部の発光強度、発光光量がバラつくという
欠点がある。
However, since such a light emitting diode array is composed of a large number of diodes, there are problems such as variations in the amount of light and non-uniform divergence angles. Furthermore, when using this light-emitting diode printer with an imaging optical system consisting of a short-focus small-diameter focusing transmission element (trade name: SELFOC) array (hereinafter referred to as a small-diameter imaging element A, RAY), the light-emitting diode Due to the large divergence angle, the imaging optical system has the drawback of poor light collection efficiency, and has the drawback that the light emission intensity and amount of light emitted from the light source section vary due to optical crosstalk from the shunted non-light emitting section.

最近、物質に熱を加えると屈折率か変化し、熱せられた
この物質に光を入射すると出射光は偏向することが発見
され、例えば日経エレクトロニクス1982年8月16
日号、第1. 8 5貞〜第193頁には、直流電圧を
印加したルチル(TlO2)結晶にHe N6レーザを
照射し、印加する電圧を変化すると出射光の偏向角が変
化することが報告されている。本発明者は、このように
熱による光偏向現象に着目して、物質の屈折率の温度依
存性を利用し、熱変化による屈折率の不均一な変化を見
いたし、この知見に基ついて本発明をなすに至った。
Recently, it has been discovered that when heat is applied to a substance, the refractive index changes, and when light enters this heated substance, the emitted light is deflected. For example, Nikkei Electronics August 16, 1982
Day number, 1st. 85-193, it is reported that when a HeN6 laser is irradiated onto a rutile (TlO2) crystal to which a DC voltage is applied, and the applied voltage is changed, the deflection angle of the emitted light changes. The inventors of the present invention focused on the phenomenon of light deflection caused by heat, utilized the temperature dependence of the refractive index of substances, observed non-uniform changes in the refractive index due to thermal changes, and based on this knowledge, developed the present invention. He came up with an invention.

本発明の目的は、上記の点に鑑み、屈折率が温度依存性
を有する透明な媒体に発熱体を形成し、この媒体に光源
の光を照射し、発熱体の発熱を制御することにより、該
媒体の屈折率を不均一にし、該光の発散角を制御するこ
とのできる光源装置を提供することにある。
In view of the above points, an object of the present invention is to form a heating element in a transparent medium whose refractive index is temperature dependent, irradiate this medium with light from a light source, and control the heat generation of the heating element. The object of the present invention is to provide a light source device that can make the refractive index of the medium non-uniform and control the divergence angle of the light.

以下、図面を参照して本発明の一実施例を説明する。第
1図(a)は、本発明の詳細な説明するための本発明の
一実施例の断面図、第1図(b)は、第1図(a)に用
いられる熱光学素子の一例の正面図である。図において
、1は点光源、2は、温度により屈折率が変化する透明
な媒体2aとそれぞれ電源va、vbに接続され、た点
ならびに円形リングのヒータ(発熱体)4,5とよりな
る熱光学素子である。点光源1ば、コリメータレンズ3
の焦点に配置さね、る。冑、媒体2aの加熱装置として
、光、レーザー等をヒータ4,5に照射したり、また媒
体2aに直接照射してもよい。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1(a) is a sectional view of an embodiment of the present invention for explaining the present invention in detail, and FIG. 1(b) is an example of the thermo-optic element used in FIG. 1(a). It is a front view. In the figure, 1 is a point light source, 2 is a transparent medium 2a whose refractive index changes depending on the temperature, and is connected to power sources va and vb, respectively. It is an optical element. Point light source 1, collimator lens 3
Place it in the focus of the image. As a heating device for the helmet and medium 2a, light, laser, etc. may be irradiated onto the heaters 4 and 5, or may be irradiated directly onto the medium 2a.

次に上記光源装置の作用を説明する。第1図(1))に
おいて、電源vaのみ全駆動し、ヒータ4に電圧を印加
すると、ヒータ4は発熱し、媒体2a内においてその中
心(ヒータ4の近傍)から外周に向って連続した温度匂
配が得られる。従って、媒体2aの温度Tにおける屈折
率nの変化(dn/d’l’ )(以下、屈折率の温度
係数という。)が負である場合、媒体2a内の屈折率は
、ヒータ4の近傍から外周部(ヒータ5の方向)に向っ
て漸増する。
Next, the operation of the light source device will be explained. In FIG. 1 (1)), when only the power source va is fully driven and a voltage is applied to the heater 4, the heater 4 generates heat, and the temperature within the medium 2a is continuous from the center (near the heater 4) to the outer periphery. You can get a hint. Therefore, if the change in the refractive index n (dn/d'l') at the temperature T of the medium 2a (hereinafter referred to as the temperature coefficient of refractive index) is negative, the refractive index in the medium 2a will change in the vicinity of the heater 4. It gradually increases from there toward the outer periphery (in the direction of the heater 5).

この屈折率の匂配は、近似的に一定となり、この熱光学
素子2ば、第1図(a)の破綻L1で示すように、点光
源1の光束を発散する凹レンズ作用を有することになる
The gradient of this refractive index becomes approximately constant, and this thermo-optical element 2 has a concave lens action that diverges the luminous flux of the point light source 1, as shown by failure L1 in FIG. 1(a). .

一方、電源■bのみを駆動し、ヒータ5に電圧を印加す
ると、ヒータ5が発熱し、従って媒体2aの)1n折率
ば、ヒータ5の近傍から中心(ヒータ4の方向)に向っ
て漸増する。すなわち、との熱光学素子2は、第1図(
a)の一点鎖線(L2)K示すごとく、点光源1の光束
を収束する凸レンズ作用を有することになる。
On the other hand, when only the power supply b is driven and a voltage is applied to the heater 5, the heater 5 generates heat, and therefore the 1n refractive index of the medium 2a gradually increases from the vicinity of the heater 5 toward the center (in the direction of the heater 4). do. That is, the thermo-optic element 2 with is shown in FIG.
As shown by the dashed dotted line (L2)K in a), it has a convex lens action that converges the luminous flux of the point light source 1.

上記の熱光学素子2において、媒体2aの屈折率の温度
係数dn/d’s”が正である場合には、電源■aのみ
を、駆動したときに凸レンズ作用を有し、電源ybのみ
を駆動したときに凹レンズ作用を有することはいうまで
もない。また熱光学素子2のヒータを様々な形状にする
ことにより、媒体2a内において様々な温度分布が得ら
れ、点光源1の光束の発散、収束が任意に制御可能とな
る。
In the above thermo-optical element 2, if the temperature coefficient dn/d's of the refractive index of the medium 2a is positive, it has a convex lens effect when only the power source ``a'' is driven, and when only the power source yb is driven. Needless to say, it has a concave lens effect when driven.Furthermore, by forming the heater of the thermo-optic element 2 in various shapes, various temperature distributions can be obtained within the medium 2a, and the divergence of the luminous flux of the point light source 1 can be improved. , convergence can be controlled arbitrarily.

第2図(は、本発明の他の実施例である半導体レーザの
スポット径変換器を示す斜視図である。図において、半
導体レーザ6のビームBmの発生部分に、温度により屈
折率が変化する透明な媒体と、熱源(不図示)に接続さ
れ、媒体内に任意に形成された透明なヒータ(不図示)
とより成る熱光学素子7が配置されている。
FIG. 2 is a perspective view showing a spot diameter converter for a semiconductor laser according to another embodiment of the present invention. a transparent medium and a transparent heater (not shown) connected to a heat source (not shown) and optionally formed within the medium;
A thermo-optical element 7 consisting of the following is arranged.

この第2図の実施例において、ヒータを発熱させ、媒体
内の屈折率を不均一にすることにより、熱光学素子7ば
、所望のレンズ作用を有することになる。従って媒体内
にヒータを適宜形成することにより、半導体レーザ6の
ビームBmの広がりを制御して照射スポットの大きさを
変化したり、壕だ楕円形である半導体レーザのビームス
ポットを円形に補正することが容易に可能になる。
In the embodiment shown in FIG. 2, the thermo-optical element 7 has a desired lens effect by causing the heater to generate heat and making the refractive index in the medium non-uniform. Therefore, by appropriately forming a heater in the medium, the spread of the beam Bm of the semiconductor laser 6 can be controlled to change the size of the irradiation spot, and the elliptical beam spot of the semiconductor laser can be corrected to a circular shape. becomes easily possible.

第3図(a)は、本発明の他の実施例を適用した発光ダ
イオード・プリンタの概略断面図、第3図(b)は、第
3図(a)の光源装置の拡大断面図である。発光ダイオ
ード・アVイ8の各々の発光ダイオード11の光束は、
屈折率の温度依存性を有する透明な媒体(不図示)と、
熱源(不図示)に接続され、媒体内に任意に形成された
透明なヒータ(不図示)とにより構成された熱光学素子
42を介し、更に小径結像素子アレイよりなる結像光学
系9を介し、像担持体10に投影される。ここで、一般
的に、発散角の大きい発光ダイオードを収束するために
、熱光学素子12のヒータを加熱し、素子]2の媒体に
凸レンズ作用を有するように熱光学素子12を構成すれ
ばよい。従って、結像光学系9の集光効率を向上するこ
とができ、高解像度の発光ダイオード・プリンタが実現
可能となる。
FIG. 3(a) is a schematic sectional view of a light emitting diode printer to which another embodiment of the present invention is applied, and FIG. 3(b) is an enlarged sectional view of the light source device of FIG. 3(a). . The luminous flux of each light emitting diode 11 of the light emitting diode aVi8 is
a transparent medium (not shown) whose refractive index is temperature dependent;
An imaging optical system 9 consisting of a small-diameter imaging element array is connected to a heat source (not shown) through a thermo-optic element 42 configured with a transparent heater (not shown) optionally formed within the medium. The image is projected onto the image carrier 10 through the image carrier 10 . Generally, in order to converge a light emitting diode with a large divergence angle, the heater of the thermo-optic element 12 may be heated, and the thermo-optic element 12 may be configured to have a convex lens effect on the medium of the element 2. . Therefore, the light collection efficiency of the imaging optical system 9 can be improved, and a high resolution light emitting diode printer can be realized.

第4図は、周辺端末機器の文字表示やグラフィック表示
、及び照明系に利用可能な本発明の別の実施例の一部慨
略断面図である。この第4図の実施例においては、青色
発光ダイオード13B1緑色発光ダイオード13G、赤
色発光ダイオード13Rに、屈折率の温度依存性を有す
る媒体14を直接配置している。発光ダイオードは、一
般的に光変換効率か悪く、印加されるエネルギの大部分
が熱に変換するので、各ダイオードを第1図、第2図。
FIG. 4 is a partially schematic cross-sectional view of another embodiment of the present invention that can be used in character displays, graphic displays, and lighting systems of peripheral terminal equipment. In the embodiment shown in FIG. 4, the medium 14 whose refractive index is temperature-dependent is placed directly between the blue light emitting diode 13B, the green light emitting diode 13G, and the red light emitting diode 13R. Light-emitting diodes generally have poor light conversion efficiency, and most of the applied energy is converted into heat.

第3図の実施例のヒータに兼用している。ここで、媒体
14の発光ダイオード13B、1.3G、13R近傍は
、ダイオード13の熱により温度上昇し、媒体14の屈
折率の温度係数d n / d ’l”が負の場合は、
各ダイオード13の光は発散され、輝度が一様な光源と
して照明系に利用可能である。1だ、d n / d 
’pが正の場合には、各ダイオード13の光は集光され
1、高M1$度を要求されるナイスプレイ装置に利用可
能である。
It also serves as the heater in the embodiment shown in FIG. Here, the temperature near the light emitting diodes 13B, 1.3G, and 13R of the medium 14 increases due to the heat of the diode 13, and if the temperature coefficient d n / d 'l'' of the refractive index of the medium 14 is negative,
The light from each diode 13 is diverged and can be used in the illumination system as a light source with uniform brightness. 1, d n / d
When 'p is positive, the light of each diode 13 is focused 1 and can be used for a nice play device that requires a high M1$ degree.

以上、説明したように、屈折率カニ温度依存柑ミを有す
る透明な媒体に発熱体を形成し、この元ms(本の発熱
を制御することにより、該媒体V旧の屈折孫くを不均一
に制御するようにしたので、光源のブ己1枚角を簡単に
制御することが可能になる効果カニある。
As explained above, a heating element is formed in a transparent medium having a temperature-dependent refractive index, and by controlling the heat generation of this source, the refraction of the medium V is made non-uniform. This has the advantage of making it possible to easily control the angle of the light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、本発明の一実施例の概略断面図、第1
図(b)は、第1図(a)の熱光学素子の正面図、第2
図は、本発明の他の実施例の斜視図、第3Iス(a)は
、本発明の他の実施例の概略断面図、第3図(b)は、
第3図(a)の一部拡大断面図、第4図は、本発明の他
の実施例の一部断面図である。 1・・点光源、2,7,12・・・熱光学素子、2a、
14・屈折率温度依存性の媒体、4,5・・・ヒータ、 6・・半導体レーザ、8・・・発光ダイオード・アVイ 11、 、13 B 、 13 G 、 1.3 R−
発光夕゛イオード 第3 図(a) 第4図 第3図(b) 162−
FIG. 1(a) is a schematic cross-sectional view of one embodiment of the present invention.
Figure (b) is a front view of the thermo-optic element in Figure 1 (a),
The figure is a perspective view of another embodiment of the present invention, FIG. 3I (a) is a schematic sectional view of another embodiment of the present invention, and FIG.
FIG. 3(a) is a partially enlarged sectional view, and FIG. 4 is a partially enlarged sectional view of another embodiment of the present invention. 1... Point light source, 2, 7, 12... Thermo-optic element, 2a,
14. Medium with refractive index temperature dependence, 4, 5... Heater, 6... Semiconductor laser, 8... Light emitting diode 11, , 13 B, 13 G, 1.3 R-
Light emitting diode Fig. 3 (a) Fig. 4 Fig. 3 (b) 162-

Claims (1)

【特許請求の範囲】 光源と、屈折率が温度依存性を有する透明な媒体と、前
記媒体の所定の位置に形成される発熱体とを含み、 前記発熱体の発熱を制御することにより、前記光源の光
束の発散角を制量することを特徴とする光源装置。
[Scope of Claims] A light source, a transparent medium whose refractive index is temperature-dependent, and a heating element formed at a predetermined position of the medium, and by controlling heat generation of the heating element, the A light source device characterized by controlling the divergence angle of a light beam from a light source.
JP58067713A 1983-04-18 1983-04-19 Light source device Granted JPS59193431A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58067713A JPS59193431A (en) 1983-04-19 1983-04-19 Light source device
US07/144,643 US4872743A (en) 1983-04-18 1988-01-11 Varifocal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067713A JPS59193431A (en) 1983-04-19 1983-04-19 Light source device

Publications (2)

Publication Number Publication Date
JPS59193431A true JPS59193431A (en) 1984-11-02
JPH0521215B2 JPH0521215B2 (en) 1993-03-23

Family

ID=13352871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067713A Granted JPS59193431A (en) 1983-04-18 1983-04-19 Light source device

Country Status (1)

Country Link
JP (1) JPS59193431A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171108A (en) * 1984-09-14 1986-04-12 Kobe Steel Ltd Aluminum and aluminum alloy sheet used for chemical etching
WO1986003601A1 (en) * 1984-12-03 1986-06-19 Hughes Aircraft Company Variable lens and birefringence compensator for continuous operation
JPS62501315A (en) * 1984-12-03 1987-05-21 ヒユ−ズ・エアクラフト・カンパニ− Improved variable lens and birefringence compensator for continuous operation
US4848881A (en) * 1984-12-03 1989-07-18 Hughes Aircraft Company Variable lens and birefringence compensator
EP3722843A1 (en) * 2019-04-11 2020-10-14 Fundació Institut de Ciències Fotòniques A computer-implemented method of generating an optimized design of a thermally modulated optical device, and thermally modulated optical devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171108A (en) * 1984-09-14 1986-04-12 Kobe Steel Ltd Aluminum and aluminum alloy sheet used for chemical etching
WO1986003601A1 (en) * 1984-12-03 1986-06-19 Hughes Aircraft Company Variable lens and birefringence compensator for continuous operation
JPS62501315A (en) * 1984-12-03 1987-05-21 ヒユ−ズ・エアクラフト・カンパニ− Improved variable lens and birefringence compensator for continuous operation
US4848881A (en) * 1984-12-03 1989-07-18 Hughes Aircraft Company Variable lens and birefringence compensator
EP3722843A1 (en) * 2019-04-11 2020-10-14 Fundació Institut de Ciències Fotòniques A computer-implemented method of generating an optimized design of a thermally modulated optical device, and thermally modulated optical devices

Also Published As

Publication number Publication date
JPH0521215B2 (en) 1993-03-23

Similar Documents

Publication Publication Date Title
US5967653A (en) Light projector with parabolic transition format coupler
EP1258743B1 (en) Imaging optical instrument
US20070091281A1 (en) Projection light source having multiple light emitting diodes
JP5955548B2 (en) Dental treatment light fixture
KR19980027760A (en) Survey system
JP2013541172A (en) Light emitting diode projector
TWI459122B (en) Optical system
KR20180097131A (en) Light emitting diode lamp
JPS59193431A (en) Light source device
JP6447881B2 (en) Light source device and projection device
JP2001500630A (en) Optical system for line scanner or line printer
CN210601177U (en) Illumination source based on non-rotating wavelength conversion material
US6700598B1 (en) Digital imaging system employing non-coherent light source
JP2003035883A (en) Optical output device, pointer and image projection device
WO2023083337A1 (en) Structured light projection module and three-dimensional scanning device
JPH07199117A (en) Device that converges plurality of light rays to common optical point
JPS63271301A (en) Light source for optical shutter array
JPH09171958A (en) Illuminating-light emitter or photolithography system and illuminating-light emitting method
JPH07199377A (en) Device and method for electronic optical printer and image forming system used therein
JP2004191735A (en) Illumination optical system and exposure device
CN211086819U (en) Laser homogenizing device
JP2019514212A (en) Method and system for narrow radiation emission and curing thereof
JPS589110A (en) Manufacture of optical focusing device for light emitting diode array
US3524052A (en) Fan-forming reflective optical system
JP2021020249A (en) Laser unit, laser marker and laser printing system