JPS59164530A - Optical modulating element - Google Patents

Optical modulating element

Info

Publication number
JPS59164530A
JPS59164530A JP58037280A JP3728083A JPS59164530A JP S59164530 A JPS59164530 A JP S59164530A JP 58037280 A JP58037280 A JP 58037280A JP 3728083 A JP3728083 A JP 3728083A JP S59164530 A JPS59164530 A JP S59164530A
Authority
JP
Japan
Prior art keywords
resistor
voltage
electrodes
light
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58037280A
Other languages
Japanese (ja)
Inventor
Takeshi Baba
健 馬場
Kazuhiko Matsuoka
和彦 松岡
Masayuki Usui
臼井 正幸
Kazuo Minoura
一雄 箕浦
Atsushi Someya
染谷 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58037280A priority Critical patent/JPS59164530A/en
Publication of JPS59164530A publication Critical patent/JPS59164530A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction modulating the refractive index

Abstract

PURPOSE:To hold the inside of a resistor at a nonuniform temperature to increase the variable amount by providing the transparent resistor, electrodes formed opposite to the surface of the resistor, and a power source which impresses a voltage to said electrode to vary the voltage to be impressed. CONSTITUTION:An optical modulating element 1 consists of the transparent cubic resistor 10, transparent electrodes 21 and 22 provided on the incidence side and projection side of the resistor 10 as to light A, and radiators 31 and 32 provided on the top and reverse surfaces of the resistor 10, and the electric power E which controls the voltage to be impressed is connected to the electrodes 21 and 22. Consequently, the voltage impressed between the electrodes 21 and 22 is varied to make the refractive index in this resistor nonuniform, increasing the variable amount of resistance.

Description

【発明の詳細な説明】 本発明は、光変調素子、特に電気的に光変調を行うこと
のできる光変調素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light modulation element, and particularly to a light modulation element that can electrically modulate light.

従来の光変調素子としては、液晶や電気光学結晶を利用
したものが知られているが、これらはいずれも屈折率の
変化量が小さいので、変調量が小さく、また一般的に入
射光の偏光状態に依存して変調しているため、用途が制
限されるという欠点がある。
Conventional light modulation elements that use liquid crystals and electro-optic crystals are known, but these all have small changes in refractive index, so the amount of modulation is small, and generally the polarization of incident light is small. Since it modulates depending on the state, it has the disadvantage that its applications are limited.

最近、物質に熱を加えると屈折率が変化し、この熱せら
れた物質に光を入射すると出射光が偏向することが発見
され、例えば日経エレクトロニクス1982年8月16
日号、第185頁〜第193頁には、直流電圧を印加し
たルチル(Ti02)結晶にHe −Neレーザを照射
し、印加する電圧を変化すると出射光の偏向角が変化す
ることが報告されている。本発明者は、このように熱に
よる光偏向現象に着目して、物質の屈折率の温度依存性
を利用し、熱変化による屈折率の不均一な変化を見いだ
し、この知見に基づいて本発明をなすに至った。
Recently, it has been discovered that when heat is applied to a substance, the refractive index changes, and when light is incident on this heated substance, the emitted light is deflected.For example, Nikkei Electronics August 16, 1982
185-193, it is reported that a He-Ne laser is irradiated onto a rutile (TiO2) crystal to which a DC voltage is applied, and that the deflection angle of the emitted light changes when the applied voltage is changed. ing. The present inventor focused on the phenomenon of light deflection caused by heat, utilized the temperature dependence of the refractive index of a substance, discovered non-uniform changes in the refractive index due to thermal changes, and based on this knowledge, invented the present invention. I came to do this.

本発明の目的は、上記の点に鑑み、媒体である透明な抵
抗体の表面に、対向する電極を形成し、該電極間に印加
する電圧を変化させて該抵抗体の発熱量を変化させるこ
とにより該抵抗体内の屈折率を不均一にし光変調を行う
新規な光変調素子を提供することにある。
In view of the above points, an object of the present invention is to form opposing electrodes on the surface of a transparent resistor as a medium, and change the amount of heat generated by the resistor by changing the voltage applied between the electrodes. The object of the present invention is to provide a novel light modulation element that modulates light by making the refractive index within the resistor nonuniform.

以下図面を参照して本発明の一実施例を説明する。第1
図には、本発明の一実施例である光変調素子1が図示さ
れている。光変調素子1は、透明な直方体の抵抗体lO
と、抵抗体100光Aの入射側と出射側にそれぞれ設け
られた透明な電極21゜22と、抵抗体10の上面と下
面にそれぞれ設けられた放熱器31,32とより成シ、
電極21゜22には、印加する電圧を制御することがで
きる電源Eが接続されている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a light modulation element 1 which is an embodiment of the present invention. The light modulation element 1 is a transparent rectangular parallelepiped resistor lO
The resistor 100 is made up of transparent electrodes 21 and 22 provided on the incident and exit sides of the light A, respectively, and radiators 31 and 32 provided on the upper and lower surfaces of the resistor 10, respectively.
A power source E that can control the applied voltage is connected to the electrodes 21 and 22.

次に上記実施例の作用を説明する。電源Eによシミ極2
1.22間に電圧を印加すると、抵抗体10の内部に流
れる電流により発熱が生じる。抵抗体10の光Aの方向
の中心をy軸とし、抵抗体10と電極21が接する面を
y軸にし、抵抗体10のX方向の厚さを2a、X方向の
長さをbとする。
Next, the operation of the above embodiment will be explained. Stained pole 2 by power supply E
When a voltage is applied between 1.22 and 1.22, heat is generated due to the current flowing inside the resistor 10. The center of the resistor 10 in the direction of light A is the y-axis, the surface where the resistor 10 and the electrode 21 are in contact is the y-axis, the thickness of the resistor 10 in the X direction is 2a, and the length in the X direction is b. .

ここで抵抗体10の電流密度と電気伝導度は均一である
とすると、抵抗体10の点(X、y)における発熱量は
x + Yに関係なく一定となる。また、bは2aに比
べて充分太きいとすると、抵抗体内部の温度はyだけの
関数になると考えられる。従って、熱伝導方程式より となる。ここでT(x、y)は、点(X、 y )にお
ける温度である。(1)の式よ、L T(x、y’)は
yの2次関数となるが、抵抗体10と放熱器31との境
界面(y=a)と、抵抗体10と放熱器32との境界面
(y=−a)の温度は一定であると仮定すると、T(X
、y)のyの1次の項は消滅する。すなわち、 T(x、y)=Cyy2+To   ・−−−(2)が
得られる。ここでToは、X軸上の温度、C1は定数で
ある。通常、屈折率は、温度変化に比例して変化するの
で、点(X、y)における抵抗体10の屈折率n (X
+ V )は、 n (x 、 y) = C2y” 十no   −−
−(3)となる。ここでnoは、抵抗体10のy軸の屈
折率、C2は、定数である。従って(3)の式により、
抵抗体10の屈折率n(x、y)はyの偶関数となシ、
少なくとも近似的にはシリンドリカルレンズ作用を有す
る。すなわち抵抗体10の屈折率の温度係数an/dT
が正の場合は、抵抗体10は凸レンズ作用を有し、dn
/dTが負の場合は、凹レンズ作用を有する。
Assuming that the current density and electrical conductivity of the resistor 10 are uniform, the amount of heat generated at the point (X, y) of the resistor 10 is constant regardless of x + Y. Further, assuming that b is sufficiently thicker than 2a, the temperature inside the resistor is considered to be a function only of y. Therefore, from the heat conduction equation. Here T(x, y) is the temperature at point (X, y). According to the equation (1), L T (x, y') is a quadratic function of y, but the interface between the resistor 10 and the heatsink 31 (y=a) and the interface between the resistor 10 and the heatsink 32 Assuming that the temperature at the interface (y=-a) with T(X
, y), the first-order term of y disappears. That is, T(x, y)=Cyy2+To ·---(2) is obtained. Here, To is the temperature on the X axis, and C1 is a constant. Usually, the refractive index changes in proportion to temperature change, so the refractive index n (X
+ V) is n (x, y) = C2y”
−(3). Here, no is the y-axis refractive index of the resistor 10, and C2 is a constant. Therefore, according to equation (3),
The refractive index n(x, y) of the resistor 10 is an even function of y,
At least approximately, it has a cylindrical lens effect. That is, the temperature coefficient an/dT of the refractive index of the resistor 10
is positive, the resistor 10 has a convex lens effect, and dn
When /dT is negative, it has a concave lens effect.

上記の例では、放熱器31.32の放熱条件を一定にし
ていだが、この条件を異なるものにすれば、X方向の温
度と、−X方向の温度が異なるので、光への出射光は、
抵抗体10の不均一性に従い偏向することが可能である
In the above example, the heat radiation conditions of the heat sinks 31 and 32 are kept constant, but if these conditions are changed, the temperature in the X direction and the temperature in the -X direction will be different, so the emitted light will be
It is possible to deflect according to the non-uniformity of the resistor 10.

なお、上述の実施例では、直方体の透明抵抗体を用いた
ので、この抵抗体はシリンドリカルレンズ作用を有する
が、第2図に示すごとく、円筒形の透明な抵抗体16の
左サイドと右サイド、すなわち光入射側と出射側に透明
な電極21.22を設ければ、この光変調素子32ば、
球面レンズ作用を有する。
In the above-mentioned embodiment, a rectangular parallelepiped transparent resistor is used, so this resistor has a cylindrical lens effect, but as shown in FIG. That is, if transparent electrodes 21 and 22 are provided on the light incident side and the light output side, this light modulation element 32
It has a spherical lens effect.

第3図は、第1図の実施例を変形した光変調素子3の斜
視図である。透明な直方体の抵抗体10の相対する側面
に電極21.22を備え、他の相対する側面に放熱器3
1.32を備えている。この光変調素子3では、光Aを
図示矢印のごとく入射させるので、電極21.22は、
透明である必要はないが、第1図の光変調素子1と同様
シリンドリカルレンズ作用を有することは明白である。
FIG. 3 is a perspective view of the light modulation element 3 which is a modification of the embodiment shown in FIG. Electrodes 21 and 22 are provided on opposite sides of the transparent rectangular parallelepiped resistor 10, and a heat sink 3 is provided on the other opposite side.
1.32. In this light modulation element 3, since the light A is made incident as shown by the arrow in the figure, the electrodes 21 and 22 are
Although it does not need to be transparent, it is clear that it has a cylindrical lens effect like the light modulation element 1 in FIG.

前記第1図、第2図、第3図の光変調素子1゜2.3の
光Aの入射面にあらかじめ曲率を設けたり、若しくは屈
折率の不均一性を有する部材を備えれば、電圧を印加し
ない状態においても結像作用をもだせることが可能であ
シ、また放熱器31゜32は、ベルチェ素子を用いるこ
とができるが、素子の用途によシ自然空冷でもよい。要
は、抵抗体10の内部に屈折率の不均一を生じせしめる
ことが肝要である。本発明においては、光の通過する媒
体自身の内部で発熱を生じせしめるため、熱の有効な第
1用が可能であり、第1実施例において説明したような
条件では、結像作用に有害なプリズム作用が発生せず、
可変焦点レンズとして使用できる。また、本発明の本質
は入射光の波面の変換を生じせしめることにあり、これ
は良く知られたシュリーレン光学系によって光の強度の
変調を行なうこともできることを示している。
If the incident surface of the light A of the light modulation element 1°2.3 in FIGS. 1, 2, and 3 is provided with a curvature in advance, or a member having nonuniform refractive index is provided, the voltage It is possible to produce an imaging effect even in a state where no energy is applied, and the heat sinks 31 and 32 can be made of Vertier elements, but may be naturally air-cooled depending on the purpose of the element. In short, it is important to create non-uniformity in the refractive index inside the resistor 10. In the present invention, since heat is generated within the medium itself through which the light passes, an effective first use of heat is possible. No prismatic action occurs,
Can be used as a variable focus lens. Moreover, the essence of the present invention is to cause a transformation of the wavefront of the incident light, which indicates that the intensity of the light can also be modulated by the well-known Schlieren optical system.

以上説明したように、透明な抵抗体の表面に相対向する
電極を形成し、この電極間に印加する電圧を変化するこ
とによりこの抵抗体の内部の屈折率を不均一にしたので
可変量の大きな光変調素子を提供することができその用
途は犬なるものである。
As explained above, by forming opposing electrodes on the surface of a transparent resistor and changing the voltage applied between these electrodes, the refractive index inside this resistor was made non-uniform. It is possible to provide a large light modulation element and its applications are unique.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の断面図、第2図は、本発
明の他の実施例の斜視図、第3図は、本発明の他の実施
例の斜視図である。 1.2.3・光変調素子 10・・・透明抵抗体 21.22・電極 111r!lJ 第  2  図 !3rl!:I
FIG. 1 is a sectional view of one embodiment of the invention, FIG. 2 is a perspective view of another embodiment of the invention, and FIG. 3 is a perspective view of another embodiment of the invention. 1.2.3・Light modulation element 10...Transparent resistor 21.22・Electrode 111r! lJ Figure 2! 3rl! :I

Claims (1)

【特許請求の範囲】 透明な抵抗体と、前記抵抗体の表面に相対抗して形成さ
れた電極と、前記電極に電圧を印加する電源とを含み、 前記印加する電圧を変化することにより、前記抵抗体の
内部の温度を不均一にし、屈折率を不均一にしたことを
特徴とする光変調素子。
[Scope of Claims] A transparent resistor, electrodes formed opposite to each other on the surface of the resistor, and a power source for applying a voltage to the electrode, and by changing the applied voltage, A light modulation element characterized in that the temperature inside the resistor is made non-uniform and the refractive index is made non-uniform.
JP58037280A 1983-03-09 1983-03-09 Optical modulating element Pending JPS59164530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037280A JPS59164530A (en) 1983-03-09 1983-03-09 Optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037280A JPS59164530A (en) 1983-03-09 1983-03-09 Optical modulating element

Publications (1)

Publication Number Publication Date
JPS59164530A true JPS59164530A (en) 1984-09-17

Family

ID=12493278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037280A Pending JPS59164530A (en) 1983-03-09 1983-03-09 Optical modulating element

Country Status (1)

Country Link
JP (1) JPS59164530A (en)

Similar Documents

Publication Publication Date Title
US6046837A (en) Optical modulator
US3705758A (en) Apparatus for controlling a beam of coherent electro-magnetic waves
JPH05188336A (en) Total-internal-reflection type electrooptical modulator
US3787888A (en) Recording apparatus with beam intensity control means
US7830594B2 (en) Method and apparatus for electro-optical and all-optical beam steering, self-deflection and electro-optic routing
JPS59164530A (en) Optical modulating element
US4830448A (en) Light modulator and wave guide device
US6211997B1 (en) Modulator for optical printing
JPH01230017A (en) Optical element
US3704935A (en) Light beam deflection method and apparatus
US4669831A (en) Total internal reflection modulator/deflector
JPH0616141B2 (en) Device for changing the focus position
JPS60242434A (en) Optical deflector
JPH03200936A (en) Optical element having heat radiating means and optical element controllable in temperature
CN220340507U (en) Photoelectric waveguide device integrated with heating element and photoelectric device
JPS59154427A (en) Light controlling device
JPS59193430A (en) Optical modulating element
SU440630A1 (en) Power aspherical lens
JPS593424A (en) Optical deflector
JPS63231313A (en) Acoustooptic element
JPS6187127A (en) Lens for varying focal distance
JPS5897026A (en) Optical deflector
JPH01142716A (en) Thermooptical deflecting element
JP3390337B2 (en) Light modulation device and driving method thereof
JPS6111728A (en) Light modulator