JPS59163762A - Positive plate for alkaline battery - Google Patents

Positive plate for alkaline battery

Info

Publication number
JPS59163762A
JPS59163762A JP58037843A JP3784383A JPS59163762A JP S59163762 A JPS59163762 A JP S59163762A JP 58037843 A JP58037843 A JP 58037843A JP 3784383 A JP3784383 A JP 3784383A JP S59163762 A JPS59163762 A JP S59163762A
Authority
JP
Japan
Prior art keywords
powder
cobalt powder
cobalt
nickel
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58037843A
Other languages
Japanese (ja)
Other versions
JPH0326501B2 (en
Inventor
Kazuhiro Nakamitsu
中満 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP58037843A priority Critical patent/JPS59163762A/en
Publication of JPS59163762A publication Critical patent/JPS59163762A/en
Publication of JPH0326501B2 publication Critical patent/JPH0326501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the performance of a positive plate, in which a three- dimensionally-continuous porous spongy nickel body, a nickel net or the like is used as a supporter, remarkably by adding as an additive a small amount of cobalt powder obtained through partial sintering and having a continuous chain- like structure to make the positive plate. CONSTITUTION:An active material powder principally consisting of nickel hydroxide powder and a cobalt powder which is obtained through partial sintering and has a chain-like structure, is packed into an active-materal-holding body. The active-material-holding body consists of either a member enwrapped in a nickel net or a porous spongy nickel body having a three-dimensionally continuous structure for example. As to a method for the above partial sintering of cobalt powder, it is heated to 300-450 deg.C for example. In addition it is preferred that the mean grain diameter and the mean grain length of cobalt powder having chain-like structure be respectively 1-5mu and 5-30mu and that its content be 2-10wt% of the active material powder.

Description

【発明の詳細な説明】 本発明は支持体として三次元+rllに連続しtこスポ
ンジ状ニッケル多孔体やニッケル網等を用いろアルカリ
′電池用1F極板に関才ろもので、添加剤として部分的
に焼結して得1こ連続した鎮状構造を何才ろコバルト粉
末を柑いることによつそ少量の添加で極板のtri能を
者しく同上させろことを自回と才ろものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 1F electrode plate for an alkaline battery using a three-dimensional continuous nickel porous material, nickel mesh, etc. as a support, and as an additive. By adding a small amount of cobalt powder to the continuous silane structure obtained by partially sintering, it was discovered that the triability of the electrode plate could be significantly increased. It is something.

従来、アルカリ電池の正極板の基板としては、ニーノケ
ル粉末の焼結体が用いられているが、その多孔度は70
〜80%程度であり、これ以上に多孔度をとげろとその
機械的強1丈が著しく減少し、しt二がってその空隙内
に正FM活物質を充填しtコ場合、基板の変形、亀裂や
活物′6の剥離等を招米才ろ欠点があった。ま1コ、活
物質を充填する場合、通常Wi、田含浸法とよばれる方
法、すなわち硝酸ニッケルや硫酸ニッケル等のニッケル
塩の水溶液を基板に減圧含浸したのち、アルカリ水層液
で処理し、さらに湯洗、乾燥するという操作を繰り返す
方法がと61%でいろ、しかしながら、−回の操作によ
って充填さtする噴は少なく、しかも2回目から充填さ
れる量は次第に減少してくるので通常4〜IO回の操作
をくり返す必要がある。そのために製造工程が複雑で経
済的コストが高くなるという欠点があつjこ。
Conventionally, a sintered body of Nienokel powder has been used as a substrate for the positive electrode plate of alkaline batteries, but its porosity is 70%.
It is about ~80%, and if the porosity is increased beyond this, the mechanical strength will be significantly reduced, and if the positive FM active material is filled into the void, the substrate will be There were drawbacks such as deformation, cracking, and peeling of the active material. First, when filling the active material, the method is usually called Wi-field impregnation method, that is, the substrate is impregnated under reduced pressure with an aqueous solution of nickel salt such as nickel nitrate or nickel sulfate, and then treated with an alkaline aqueous solution. The method of repeating the operation of washing with hot water and drying is 61%, however, the number of sprays filled by the -times is small, and the amount filled gradually decreases from the second time, so it is usually 4 times. It is necessary to repeat the operation ~IO times. This has the disadvantage that the manufacturing process is complicated and the economic cost is high.

そこで近年、三次元的に連続した構造を有する二Iケル
金属よりなるスポンジ状多孔体に、ペース゛ト状にした
正rM7i!f物質を直接充填する方法が注目されてき
ているう 三次元的に連続しtこ構造を何才ろスボ゛ノン状ニッケ
ル多孔体は、その多孔度が90〜98%と高く、しかも
機械四強以が大きい。そのうえ孔径が大きいので、この
多孔体に活物質を充填オろと正極板の高%Net化をは
かることができろとともに充填方法が極めて1m便にな
り連続工程が可能で経済的にも有利とIfろ、しかしな
がら、多孔体の札所が大きいtこめに集電体であるニリ
ケル多孔体と活物質粉末との間および活物質粒子間の電
気的な接触性が充分に得られず、利用率が低いという欠
点がある。そこで二〜2ケル扮宋寺の導電材や種々の添
加剤を加えること番こよって利用率を向上する試みがお
こなわれている。この添加剤としてはコバルト粉末を用
いろことが提架されている。
Therefore, in recent years, positive rM7i! has been applied to a sponge-like porous body made of dikel metal with a three-dimensionally continuous structure in the form of a paste. The method of directly filling materials has been attracting attention because of its three-dimensionally continuous structure.Subnononal nickel porous materials have a high porosity of 90 to 98% and are easy to machine. The strength is great. Moreover, since the pore size is large, it is possible to fill the active material into this porous body and achieve a high net content of the positive electrode plate.The filling method can be extremely shortened to 1m, making it possible to perform a continuous process, which is economically advantageous. However, since the porous material has large areas, sufficient electrical contact between the Nykel porous material, which is the current collector, and the active material powder and between the active material particles cannot be obtained, resulting in a low utilization rate. It has the disadvantage of being low. Therefore, attempts have been made to improve the utilization rate by adding 2 to 2 liters of conductive material and various additives. It has been suggested that cobalt powder should be used as this additive.

コバルト粉末は製造方法によって粒子の形状が大きく異
なることが知られており、vs造方法の異なる、すなオ
)も粒子の形状が異なるコバルト粉末を用いて利用率の
向上をはかる試みがおこなわれているが光分な効果は得
られない。まfコ、その効果の機構は充電時にコバルト
が酸素発生過電匝を高める酸化物を形成し、水酸(ヒニ
ノケル正極板の光電効率を向とさせたり、水酸化ニッケ
ルの格子に入り込A、で格子間隔を広げ、光放電を容易
にすることなどが一般に言われているが、その根拠は明
確でない。
It is known that the particle shape of cobalt powder varies greatly depending on the manufacturing method, and attempts have been made to improve the utilization rate by using cobalt powder with different particle shapes. However, the effect of light cannot be obtained. The mechanism behind this effect is that during charging, cobalt forms an oxide that increases oxygen generation overvoltage, and hydroxide (which improves the photoelectric efficiency of the positive electrode plate and enters the lattice of nickel hydroxide) It is generally said that , increases the lattice spacing and facilitates photodischarge, but the basis for this is not clear.

本発明は添加剤としてコバルト微粉末を部分的に焼結し
て連続した鎖状構造を形成させたコバルト粉末を用いる
と極板のヰ能が著しく向上才ろことを見い出したことに
基くものである。
The present invention is based on the discovery that when cobalt fine powder is partially sintered to form a continuous chain structure as an additive, the efficiency of the electrode plate can be significantly improved. be.

以下、本発明の実施例ならびにその効果を詳述する。Examples of the present invention and its effects will be described in detail below.

不発明による連続しtこ鎖状t14造を何才ろコノ〈ル
ト粉宋はつぎのようにして製作できる。才なオつち例え
ばシュウ酸二lケルを水素還元することによって得tこ
平均粒径1,4μのコバルト粉末を、ル−スシンタ一式
二・フケル基板を製作する除に用いるカーボ゛)皿等の
容器に充填した曖、水素等の還元写囲気、@累等の不活
性雰囲気、あるいは真空中で加熱して、コバルト微粉末
同士を部分的に焼結させればよい。こ\で、加熱温度が
300”C以下の、場合には粒子間の焼結が充分に進ま
ないために鎖状構造が形成されず、まtこ、450℃以
上の場合に腎焼結が進みすぎて喘結体(こなろfこめ不
適当である。300〜450”Cの温度で焼結[7て得
tココバルト粉床は平均粒子径1〜5μ、平均粒子長5
〜30μの鎖状構造を何する。コバルト微粉末の製造方
法が異なる場合でも同様の鎖状構造を有するコバルト粉
末が得られた。
A continuous chain-like t-14 structure due to uninventiveness can be manufactured in the following manner at any age. For example, a cobalt powder with an average particle size of 1.4 microns obtained by reducing oxalic acid with hydrogen can be used to produce a loose sinter set of two carbon plates, etc. The fine cobalt powders may be partially sintered by heating in a reduced atmosphere such as hydrogen, an inert atmosphere such as a gas filled in a container, or in a vacuum. In this case, if the heating temperature is below 300"C, sintering between particles will not proceed sufficiently and a chain structure will not be formed, and if the heating temperature is above 450"C, kidney sintering will occur. The cobalt powder bed obtained by sintering at a temperature of 300 to 450"C has an average particle size of 1 to 5μ and an average particle length of 5.
What do you do with a ~30μ chain structure? Cobalt powders having similar chain structures were obtained even when the cobalt fine powders were produced using different methods.

つぎに、本発明による効果を調べるために上記のように
して得tこコバルト粉末を用いて正極板を製作した。ま
ず400℃で焼結して得たコノマルト粉床を水酸化二l
ケル粉末に添加しtこものにQ、(iwt%のカルボキ
シメチルセルロースボ溶液を加えて/ぐ一スト状にした
。このペーストを、平均孔径03M、多孔変96%、厚
さ12絹の三次元[りに連続しfこ構1造を何才ろスポ
′/ジ状ニッケル多孔体に充填し乾燥してから、フグ素
樹脂の分散液に浸漬して再び乾燥し、068朋の厚さに
加士して本発明による正極板(Nを得tこ。こ5で、比
咬のために焼結をおこなっていないコバルト微粉末を用
いた従来法水よる正僑板(均も製作しtコ、こnらの正
極板1枚と焼結式負極板2枚と電解故にH,G、 1.
250 (2o゛c)水酸化カリウム水溶液とを用いた
フラIデーlドタイブの電池を製作して、Q、1(3A
で20時間元重した後、U、 2 OAで酸4b第二水
銀を極に対してOvまで放電して活物質利用率を求めf
コ。コバルト粉末の添加量を変えた場合の活物質利用率
の変化を第1図に示す。図から本発明によるコバルト粉
末を用いるとコバルト添加量が2%程度から利用率が著
しく向上し、コバルト添加量が・10%の場合には利用
率が100%に達才ろことがわかる。さらにコバルト添
Il+量及び放電率を変えた場合の正極板の放電中間電
位の変化を第2図にホす。図からコバルトの添加量を増
加させると放電中間電位が高くなることがわかる。ま1
こ、本発明による場合と従来法の場合とを比較すると本
発明の場合の方が放電率が増加した時の放IEt位の低
下が小さいことがわかる。これらの実験に用いた極板を
調べtこ結果、利用率の毘い極板はど極板が硬く、活物
質の脱落が少なくなることが認めらjたっ つぎに、コバルト粉末の鎮状構造の長さの影響を商べろ
1こめに、400℃で焼結して得tこ鎖状構造二 葵−i葡才ろコバルト粉末をボールミルで粉砕し1こも
のを活物質全体に対して5wt%用いて正極板を製作し
た。粉砕時間と活物質利用率との関係を第3図に示す。
Next, in order to examine the effects of the present invention, a positive electrode plate was manufactured using the obtained cobalt powder as described above. First, the conomalt powder bed obtained by sintering at 400℃ is diluted with hydroxide.
A carboxymethyl cellulose solution of Q, (iwt%) was added to the powder and made into a paste. [Continuing the process, the structure was filled into a porous nickel material and dried, then immersed in a dispersion of fugitive resin and dried again to a thickness of 068 mm. Then, a positive electrode plate (N) according to the present invention was obtained. In this way, a conventional positive electrode plate (also manufactured by Hitoshi) using fine cobalt powder that was not sintered for the sake of contrast. H, G due to one positive electrode plate, two sintered negative electrode plates, and electrolysis.1.
250 (2oC) Potassium hydroxide aqueous solution was used.
After heating for 20 hours at
Ko. Figure 1 shows the changes in the active material utilization rate when the amount of cobalt powder added was changed. From the figure, it can be seen that when the cobalt powder according to the present invention is used, the utilization rate is significantly improved when the amount of cobalt added is about 2%, and when the amount of cobalt added is 10%, the utilization rate reaches 100%. Further, FIG. 2 shows the changes in the discharge midpoint potential of the positive electrode plate when the amount of cobalt added Il+ and the discharge rate were changed. It can be seen from the figure that the discharge intermediate potential increases as the amount of cobalt added increases. M1
Comparing the case according to the present invention and the case of the conventional method, it can be seen that the decrease in the discharge IEt level when the discharge rate increases is smaller in the case of the present invention. After examining the electrode plates used in these experiments, we found that the electrode plates with a high utilization rate were harder and less likely to shed the active material. Let's take a look at the effect of the length. First, the chain structure obtained by sintering at 400°C is pulverized using a ball mill to obtain 5 wt of cobalt powder for the entire active material. % was used to produce a positive electrode plate. FIG. 3 shows the relationship between grinding time and active material utilization rate.

図から粉砕時間が長いほど利用率が低下することがオ)
かる。ここで、粉砕時間が長くなるほど粉末の平均粒子
長が短くなることを電子顕微鏡でi認している。また、
粉砕時間と正極板の放電中間電位との関係を第4図に示
す。図から、粉砕時間が長いほど、すなわち粒子長力5
短0(よど電4’L低下が大きいことがわかろう 以上の結果から、コバルト粉末は単独の微粒子として用
いろよりも長い鎖状構造を■才る粒子として用いる方が
その効果が太きt)こと力;わ力)ろ。
From the figure, the longer the grinding time, the lower the utilization rate.
Karu. Here, it has been confirmed by electron microscopy that the longer the grinding time, the shorter the average particle length of the powder. Also,
FIG. 4 shows the relationship between the pulverization time and the discharge midpoint potential of the positive electrode plate. From the figure, the longer the grinding time, the longer the particle length force 5
From the above results, the effect is greater when using cobalt powder as particles with a long chain structure than when using it as a single fine particle. ) koto power; wa power) ro.

このことは合鴨コバルトが導電材として極めて重要な役
割をしていることを怠味してし1ろ。
This neglects the fact that cobalt has an extremely important role as a conductive material.

その効果をつぎに詳述する。すなわち、コノ〈ルト粉床
は二Iケル粉床と異なり充電時に容易lこ酸化されて7
.KW化コバルトに、さらにはオキシ水酸イヒーバルト
に変化する。このオキシ水酸化コノ(ルート“)1導¥
It件が高く、水酸化コノ(ルートや水酸化ニッケルの
電導度が【0 Ω ・備 程度であるの番ζ比べて数Ω
−1・α−1程度の比較的高い電導度を有している。ま
Tこ、オキシ水酸化ニッケルは還元されて水酸化二lケ
ルに変化するが、オキシ水酸化コバルトはほとんど還元
されない。従って、充放電を縁り返しても電導度が高く
、かつ還元されな0オキシ水酸′化コバルトが常に存在
才ろtコめに極板内の導電性が良好に保たれ、そのjこ
め番こコノ〈ルI〜粉末の添加量を増加させると放電電
位の低下が小さくなり、利用率が向上するものと考えら
れる・Cの場合、従来の場合のように微細な粒子が単独
で存在するのでは粒子同士の接II!lF)みによって
導taを保証しているに才ぎf、Cいが、連続しtコ鎖
状構造を有する粉床を用いtコ場合には長い導電性経路
が存在し、そitによって導電性の網目構造が極板内に
形成さ几るために9臘の添加でも光分な効果が得られる
ものと考えられる。ま1こ、その網目構造が強固に形成
されろ1こめに活物質が強く保持されて、極板が硬化し
、活物゛6の脱落が職少才る化のと考えられろう 以上述べたように、本発明によれば添加剤としてコバル
ト粉末を部分的に焼結して得fこ連続した鎖状構造を百
才ろコバルト粉末を中いろことによって少臘の添加で正
極板の性能を著しく向りさせることができろ。また本発
明の詳細な説明では活物質支持体として三次元的なスポ
ンジ状二lケル多孔体を例にとりtこが、二Iケル網等
で包んjごいわゆろポケ゛?トを用いても同様な効果が
認められることはいうよでもない。
The effect will be explained in detail below. In other words, the powder bed is easily oxidized during charging, unlike the powder bed.
.. It changes to KW cobalt and further to ihibalt oxyhydroxide. This oxyhydroxide cono (root “) 1 lead¥
It has a high conductivity, and the conductivity of nickel hydroxide and nickel hydroxide is several Ω compared to 0 Ω.
It has a relatively high conductivity of about −1·α−1. Well, nickel oxyhydroxide is reduced and changed to dikel hydroxide, but cobalt oxyhydroxide is hardly reduced. Therefore, even after repeated charging and discharging cycles, cobalt 0-oxyhydroxide, which has high conductivity and is not reduced, is always present, and the conductivity inside the electrode plate is maintained well. Bankokonoru I ~ It is thought that increasing the amount of powder added reduces the drop in discharge potential and improves the utilization rate. In the case of C, fine particles exist alone as in the conventional case. Then, contact between particles II! However, if a powder bed with a continuous chain structure is used, there will be a long conductive path; It is thought that because a transparent network structure is formed within the electrode plate, a significant effect can be obtained even with the addition of 9 ml. First, once the network structure is formed firmly, the active material is strongly held, the electrode plate hardens, and the active material 6 is likely to fall off, resulting in a decline in the number of workers. According to the present invention, by partially sintering cobalt powder as an additive to obtain a continuous chain structure, the performance of the positive electrode plate can be improved by adding a small amount of cobalt powder. Be able to make a significant difference. In addition, in the detailed explanation of the present invention, a three-dimensional sponge-like porous material is used as an example of an active material support, and the active material is wrapped in a 2-layer mesh or the like. Needless to say, similar effects can be observed even when using

【図面の簡単な説明】[Brief explanation of the drawing]

8g1図および第2図はそれぞれコノマルト添加量を変
え1こ場合の活物質利用率および放電中間を位の変化を
小し1こ図、第3図およ、び第4図はそれぞれコバルト
粉末の粉砕時間を夏えtこ場合の活物′d利用率および
放電中間電位の変化をホし13図である。 奔 1  図 丼 Z 画 コノ\ルト 滞加f (鱈Z) 弄 4 図 相 砕 け 書 帥)
Figures 1 and 2 show the changes in the active material utilization rate and discharge midpoint when the amount of conomalt added is changed, and Figures 3 and 4 show the changes in cobalt powder. Figure 13 shows the changes in the utilization rate of active materials and the discharge midpoint potential when the grinding time is increased.奔 1 Zudon Z Picture Conor \\\ZZ (鈱ZZZ) |ヤヤ^Zイ^^

Claims (1)

【特許請求の範囲】 1、 水酸1tZニツケル粉末と部分的に焼結して得1
こ鎖状構造を有才ろコバルト扮禾とを壬体と才ろ粘物質
粉末を活物質支持体、例えばニッケル網で包んだあるい
は三次元的に連続した構造を呵するスポンジ状ニーIケ
ル多孔体等に充填することを特徴とするアルカリ電池用
正極板。 2、 前記コバルト粉末を部分げ9に焼結する手段が、
コバルト粉末を300〜450”Cに加熱して焼結する
ものである特許請求の範囲第1項記載のアルカリ電池用
正極板。 8、前記連続した鎖状構造を何するコバルト粉末が平均
粒子径1〜5ミクロン、平均粒子長5〜30ミクロソで
ある特許請求の範囲第1項記載のアルカリ′rlt/l
iI用正極板。 4、na記′F5物質粉末中の連続I7た鎖状構造を何
するコバルト粉末の含有量が2〜IO重量%である待f
fF jθ求の・厄囲距1項記載のアルカリ亀l也用市
極板。
[Claims] 1. Obtained by partially sintering 1tZ hydroxide nickel powder.
This chain-like structure is formed by wrapping the cobalt powder in an active material support, such as a nickel mesh, or by wrapping the cobalt powder in an active material support, or by using a sponge-like needle porous structure having a three-dimensionally continuous structure. A positive electrode plate for an alkaline battery, which is characterized by being filled into a body, etc. 2. The means for sintering the cobalt powder into the partial ribs 9,
A positive electrode plate for an alkaline battery according to claim 1, wherein cobalt powder is heated to 300 to 450"C and sintered. 8. What is the average particle diameter of the cobalt powder forming the continuous chain structure? The alkali 'rlt/l according to claim 1, which has an average particle length of 1 to 5 microns and an average particle length of 5 to 30 microns.
Positive electrode plate for iI. 4. What is the continuous I7 chain structure in the F5 material powder?
fF jθ-calculated / Yakusei distance Ichi pole plate for the alkali turtle Iya described in item 1.
JP58037843A 1983-03-07 1983-03-07 Positive plate for alkaline battery Granted JPS59163762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037843A JPS59163762A (en) 1983-03-07 1983-03-07 Positive plate for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037843A JPS59163762A (en) 1983-03-07 1983-03-07 Positive plate for alkaline battery

Publications (2)

Publication Number Publication Date
JPS59163762A true JPS59163762A (en) 1984-09-14
JPH0326501B2 JPH0326501B2 (en) 1991-04-11

Family

ID=12508808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037843A Granted JPS59163762A (en) 1983-03-07 1983-03-07 Positive plate for alkaline battery

Country Status (1)

Country Link
JP (1) JPS59163762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581275A2 (en) * 1992-07-28 1994-02-02 Furukawa Denchi Kabushiki Kaisha A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
US8397510B2 (en) 2003-12-16 2013-03-19 Hitachi, Ltd. Combustor for gas turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274842A (en) * 1975-12-17 1977-06-23 Matsushita Electric Ind Co Ltd Nickel electrode
JPS52150526A (en) * 1976-06-10 1977-12-14 Matsushita Electric Ind Co Ltd Nickel electrode
JPS57165967A (en) * 1981-04-07 1982-10-13 Matsushita Electric Ind Co Ltd Manufacture of paste type electrode for battery
JPS57194458A (en) * 1981-05-22 1982-11-30 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274842A (en) * 1975-12-17 1977-06-23 Matsushita Electric Ind Co Ltd Nickel electrode
JPS52150526A (en) * 1976-06-10 1977-12-14 Matsushita Electric Ind Co Ltd Nickel electrode
JPS57165967A (en) * 1981-04-07 1982-10-13 Matsushita Electric Ind Co Ltd Manufacture of paste type electrode for battery
JPS57194458A (en) * 1981-05-22 1982-11-30 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for alkaline storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581275A2 (en) * 1992-07-28 1994-02-02 Furukawa Denchi Kabushiki Kaisha A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
EP0581275A3 (en) * 1992-07-28 1994-08-17 Furukawa Battery Co Ltd A pasted type nickel electrode for an alkaline storage battery and an alkaline storage battery
US5395712A (en) * 1992-07-28 1995-03-07 Furukawa Denchi Kabushiki Kaisha Paste-type nickel electrode for an alkaline storage battery and an alkaline storage battery containing the electrode
US8397510B2 (en) 2003-12-16 2013-03-19 Hitachi, Ltd. Combustor for gas turbine

Also Published As

Publication number Publication date
JPH0326501B2 (en) 1991-04-11

Similar Documents

Publication Publication Date Title
Wang et al. Hollow nanocage with skeleton Ni-Fe sulfides modified by N-doped carbon quantum dots for enhancing mass transfer for oxygen electrocatalysis in zinc-air battery
JP2988479B1 (en) Alkaline storage battery, hydrogen storage alloy electrode and method for producing the same
CN116889884A (en) Preparation method and application of CS-CSS/NHC heterogeneous nanocube
JPS59163762A (en) Positive plate for alkaline battery
CN111009423B (en) Carbon nano tube/basic nickel cobalt carbonate composite electrode material and preparation method thereof
JPH0221098B2 (en)
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JPS62234867A (en) Nickel electrode for alkaline cell
JPS5916269A (en) Manufacture of positive plate for alkaline battery
JPH0630248B2 (en) Nickel electrode for alkaline batteries
JPS62222566A (en) Nickel electrode for alkaline battery
CN109449396B (en) Self-supporting ammonium vanadate-copper vanadate hydrate-copper foam composite material and preparation method and application thereof
KR100337807B1 (en) Process of the preparation of lead powder for use in a lead storage battery by cementation reaction
JPS5832744B2 (en) Manufacturing method of cadmium cathode for sealed alkaline storage battery
JP3384109B2 (en) Nickel plate
JPS60143569A (en) Positive plate for alkaline battery
JP3643673B2 (en) Nickel electrode active material for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
CN116111058A (en) Silicon-carbon composite material and preparation method and application thereof
JPH04109557A (en) Non-sintered type positive electrode plate for alkaline storage battery
JPH0326903B2 (en)
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2000017302A (en) Hydrogen storage alloy sintered compact and hydrogen storage alloy sintered compact porous negative electrode
CN115472801A (en) Preparation method and application of porous ferroferric oxide and nickel oxide with hydrogenated titanium dioxide modified core-shell structure