JPS59162989A - Collection of metal ion - Google Patents

Collection of metal ion

Info

Publication number
JPS59162989A
JPS59162989A JP3576683A JP3576683A JPS59162989A JP S59162989 A JPS59162989 A JP S59162989A JP 3576683 A JP3576683 A JP 3576683A JP 3576683 A JP3576683 A JP 3576683A JP S59162989 A JPS59162989 A JP S59162989A
Authority
JP
Japan
Prior art keywords
metal ions
clay
reaction products
anionic surfactant
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3576683A
Other languages
Japanese (ja)
Other versions
JPS6223632B2 (en
Inventor
Katsunori Hiyoshi
勝則 日吉
Wataru Morimitsu
盛光 亘
Yoshinao Fundou
分銅 良直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWAKEN
Kanagawa Prefecture
Original Assignee
KANAGAWAKEN
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWAKEN, Kanagawa Prefecture filed Critical KANAGAWAKEN
Priority to JP3576683A priority Critical patent/JPS59162989A/en
Publication of JPS59162989A publication Critical patent/JPS59162989A/en
Publication of JPS6223632B2 publication Critical patent/JPS6223632B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To collect various kinds of metal ions over a wide range in a short time, by adding an anionic surfactant to an aqueous solution containing metal ions to form hydrophobic reaction products, and collecting said reaction products with the special colloidal complex body of organic substance with clay. CONSTITUTION:An anionic surfactant (Type-carboxyl such as the sodium salt of a higher fatty acid or the like) is added to an aqueous solution containing divalent or more multivalent metal ions such as Ca, Al and copper, to form hydrophobic reaction products. Then, the colloidal complex body of organic substance with clay obtd. by reacting an aliphatic amine (e.g. lauryl or dioctyl amine) with clay such as montmorillonite is added to collect said hydrophobic reaction products. Hereon, it is preferable to react the aliphatic amine in an amount of about 20-100m equivalent in terms of exchange capacity by 100g of clay.

Description

【発明の詳細な説明】 本発明は金属イオンの捕集法に関する。[Detailed description of the invention] The present invention relates to a method for collecting metal ions.

従来、水溶液中に含まれる金属イオンの捕集法としては
例えば、イオン交換樹脂による吸着が知られているが、
金属イオンの種類によっては吸着速度が著しく遅く捕集
効率が悪い不都合を有していた。
Conventionally, adsorption using ion exchange resin is known as a method for collecting metal ions contained in aqueous solutions.
Depending on the type of metal ion, the adsorption rate is extremely slow and the collection efficiency is poor.

本発明は上記不都合を除去し、特に2価以上の各種の広
範囲の金属イオンを短時間に捕集する方法を提供するこ
とを目的とし、金属イオンを含む水溶液中に陰イオン界
面活性剤を添加して得られる上記金属イオンと上記陰イ
オン界面活性剤との疎水性反応生成物を、脂肪族アミン
類とモンモリロナイト等の粘土とを反応させて得られる
コロイド状粘土有機棲合体で捕集することを特徴とする
The purpose of the present invention is to eliminate the above-mentioned disadvantages and provide a method for collecting a wide variety of metal ions, especially divalent or higher, in a short time, by adding an anionic surfactant to an aqueous solution containing metal ions Collecting the hydrophobic reaction product of the metal ion and the anionic surfactant obtained by using a colloidal clay organic biomass obtained by reacting aliphatic amines with clay such as montmorillonite. It is characterized by

次に本発明の実施例につき詳述する。Next, examples of the present invention will be described in detail.

捕集の対象とされる水溶液中の金属イオンはカルシウム
、アルミニウム層銅、亜鉛箋クロム等の2価以上の金属
イオンを含むものに適用される。
The metal ions in the aqueous solution to be collected are those containing divalent or higher valence metal ions, such as calcium, aluminum layer copper, and zinc chrome.

上記の金属イオンを含む水溶液中に添加される陰イオン
界面活性剤は高級脂肪酸ソーダ等のカルボン酸型、ドデ
シルベンゼンスルホン酸ソーダ、ラウリルベンゼンスル
ホン酸ソーダ等のスルホン?!、アルキルエーテルリン
酸エステル塩、アルキルリン酸エステル塩等のリン酸エ
ステル型等の種々の陰イオン界面活性剤であるかかる陰
イオン界面活性剤を2価以上の金属イオンを含む水溶液
中に添加し攪拌することにより、該金属イオンと該陰イ
オン界面活性剤、例えばそのソーダ塩との複分解反応又
は交換反応により疎水性反応生成物を生成せしめる。こ
のようにして得た疎水性反応生成物を含む水溶液中に下
記詳述するコロイド状粘土有機複合体を添加する。かく
するとさけ、該コロイド状粘土有機複合体により、前記
の疎水性反応生成物が捕集され、その水溶液中の2価以
上の金属イオンが除かれる。かくしてその捕集物を口過
等により分離し、例えは有害な重金属イオン、放射性金
属イオンを含まない水溶液とすることかでさる。
The anionic surfactant added to the aqueous solution containing the above metal ions is a carboxylic acid type such as higher fatty acid sodium, a sulfone such as sodium dodecylbenzenesulfonate, sodium laurylbenzenesulfonate, etc. ! , alkyl ether phosphate ester salts, alkyl phosphate ester salts, and other phosphate ester type anionic surfactants are added to an aqueous solution containing divalent or higher metal ions. Stirring causes hydrophobic reaction products to be produced by metathesis or exchange reactions between the metal ions and the anionic surfactant, such as its soda salt. A colloidal clay-organic composite described in detail below is added to the aqueous solution containing the hydrophobic reaction product thus obtained. In this way, the above-mentioned hydrophobic reaction product is collected by the colloidal clay-organic composite, and metal ions of divalent or higher valence in the aqueous solution are removed. The collected material is then separated by filtration or the like to form an aqueous solution that does not contain harmful heavy metal ions or radioactive metal ions.

洗濯廃水等、既に洗剤として陰イオン界面活性剤が使用
され1その水溶液中の2価以上の金属イオンがこれと結
合して例えば金属石けんを生成しているものには、これ
に前記のコロイド状粘土有機複合体を添加するだけでよ
く有利である。
When an anionic surfactant has already been used as a detergent, such as laundry wastewater, and metal ions of divalent or higher valence in the aqueous solution combine with it to produce, for example, metal soap, the above-mentioned colloidal surfactant may be used. It is advantageous to simply add the clay-organic complex.

複数種類の金属イオン例えば 5r(II)と Y(至
)とを含有する水溶液中に、特に 5r(II)のみを
主に選択的に捕集する場合には、陰イオン界面活性剤と
してリン酸エステル型の界面活性剤を使用することによ
りその目的が達成される。
When mainly selectively collecting only 5r(II) in an aqueous solution containing multiple types of metal ions, such as 5r(II) and Y(to), phosphoric acid is used as an anionic surfactant. The purpose is achieved by using surfactants of the ester type.

又、該コロイド状粘土有機複合体は耐熱性に優れ、本発
明は原子力発電所の温廃水中に含まれる放射性金属イオ
ン等の捕集法として便利である。
Furthermore, the colloidal clay-organic composite has excellent heat resistance, and the present invention is convenient as a method for collecting radioactive metal ions, etc. contained in hot wastewater of nuclear power plants.

該コロイド状粘土有機複合体による該疎水性物質の捕集
効果は、その疎水性である脂肪族アミン類の多数のアル
キル基が水中に突出してアイスベルクを構築しているた
めであると考えられる。
The trapping effect of the hydrophobic substance by the colloidal clay-organic composite is thought to be due to the large number of alkyl groups of the hydrophobic aliphatic amines protruding into the water to form an iceberg. .

該コロイド状粘土有機複合体は、その構成する粘土はベ
ントナイトその他のモンモリロナイト系の粘土であり、
又、その構成する脂肪族アミン類は例えばラウリルアミ
ン等の第1アミンを始め、ジオクチルアミン、ジドデシ
ルアミン等の第2アミン、トリヘキシルアミン、トリオ
クチルアミン、ドデシルジメチルアミン等の第3アミン
、ドデシルトリメチルアンモニウムクロリド等の第4ア
ンモニウム塩等、あらゆる脂肪族アミンであり、そのア
ルキル基の少くとも1つの炭素鎖の炭素数が4〜20の
ものが好ましくは使用される。又、これら脂肪族アミン
は前記粘土100g当シ交換容量で20〜100meq
反応させるのが好ましい。
The colloidal clay organic composite is composed of bentonite and other montmorillonite clays, and
The constituent aliphatic amines include, for example, primary amines such as laurylamine, secondary amines such as dioctylamine and didodecylamine, tertiary amines such as trihexylamine, trioctylamine, and dodecyldimethylamine. All aliphatic amines such as quaternary ammonium salts such as dodecyltrimethylammonium chloride, and those in which at least one carbon chain of the alkyl group has 4 to 20 carbon atoms are preferably used. In addition, these aliphatic amines have an exchange capacity of 20 to 100 meq per 100 g of the clay.
It is preferable to react.

又、該コロイド状粘土有機複合体の製法の1例を示せば
、′まずベントナイトを水中に分散せしめ、これに炭素
数4〜20個の炭素鎖を少くとも1つ含むアルキル基を
有する脂肪族アミンの塩酸塩を添加して攪拌し、該ベン
トナイトと反応させてコロイド状粘土有機複合体を得る
In addition, an example of the method for producing the colloidal clay-organic composite is as follows: 'First, bentonite is dispersed in water, and an aliphatic group having an alkyl group having at least one carbon chain having 4 to 20 carbon atoms is dispersed in water. Amine hydrochloride is added and stirred to react with the bentonite to obtain a colloidal clay organic complex.

尚、疎水性反応生成物を吸着した該コロイド状粘土有機
複合体は沈降、口過、遠心分離等によって水と分離され
、アルコール等の溶剤による該疎水性物質の溶離等の手
段によって、該・疎水性物質を除失してコロイド状粘土
有機複合体を再生使用することができる。
The colloidal clay organic complex adsorbing the hydrophobic reaction product is separated from water by sedimentation, filtration, centrifugation, etc., and the hydrophobic substance is eluted with a solvent such as alcohol. The colloidal clay-organic composite can be recycled and used by removing the hydrophobic substances.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例1 10  MのFe04 ・6 H20を調整し為これに
ラウリルベンゼンスルホン酸ソーダ110M加3 えたが何ら変化は見られなかった。また10MのFe0
4・6H20を調整し、これにラウリルアミンとベント
ナイトから成る粘土有機複合体で51n9相当のコロイ
ド状粘土有機複合体を加えたがやはり何ら変化は見られ
なかった0そこでFe(2)を10 M1ラウリルベン
ゼンスルホン酸ソーダを10 M1該コUイド状粘土有
機複合体を粘土有機複合体で5 my相当とり全体を1
00m1として軽く攪拌したところ、Fe0IDは該コ
ロイド状粘土有機複合体に吸着して沈降した。これはF
e(2)とラウリルベンゼンスルホン酸ソーダがイオン
対を形成し、その疎水性の会合体が該コロイド状粘土有
機複合体に吸着された事を示す。またこのときのFeG
IDの捕集率は90%以上であった。
Example 1 10M of Fe04.6H20 was prepared and 110M of sodium laurylbenzenesulfonate was added thereto, but no change was observed. Also 10M Fe0
4.6H20 was prepared and a colloidal clay organic complex consisting of laurylamine and bentonite equivalent to 51n9 was added thereto, but no change was observed. Add 10 M of sodium laurylbenzenesulfonate to 5 my of the colloidal clay organic complex, and add 10 M of sodium laurylbenzenesulfonate to the clay organic complex.
When the mixture was stirred lightly, Fe0ID was adsorbed to the colloidal clay-organic composite and precipitated. This is F
This shows that e(2) and sodium laurylbenzenesulfonate formed an ion pair, and their hydrophobic association was adsorbed on the colloidal clay-organic composite. Also at this time FeG
The ID collection rate was over 90%.

実施例2 4X10  Mの0o04溶液中のCo(If)を種々
のモル量のラウリン酸ナトリウムを用いてpHを11と
して実施例1と同様の粘土有機複合体で10■相当の該
コロイド状粘土有機複合体で捕集した。その結果ラウリ
ン酸ナトリウムと0oO12のモル比が2:1で最大捕
集率が得られた。これはラウリン酸ナトリウムと0o0
1zとの複分解反応における化学量論的なモル比に対応
する。かくして経済的な陰イオン界面活性剤の添加量が
決定できる。
Example 2 Co(If) in a 4×10 M 0o04 solution was adjusted to pH 11 using various molar amounts of sodium laurate and a clay-organic complex similar to that of Example 1 was used to prepare 10 μm of the colloidal clay-organic. Collected with a complex. As a result, the maximum collection rate was obtained when the molar ratio of sodium laurate and 0oO12 was 2:1. This is sodium laurate and 0o0
Corresponds to the stoichiometric molar ratio in the metathesis reaction with 1z. In this way, an economical amount of anionic surfactant to be added can be determined.

実施例3 4X10  MのOo O40の溶液中のC0(II)
を種々のpH値でラウリン酸ナトリウムを用いて実施例
1と同様の粘土有機複合体で1101n相当の該コロイ
ド状粘土有機複合体で捕集した。その結果第1図に示す
ように、アルカリ性側になるほど捕集率が向上し、pH
11では捕集率98%の値を示した。このようにpHの
調節によって捕集率を向上させることができる。
Example 3 C0(II) in a solution of 4X10 M OoO40
was collected on the same colloidal clay-organic complex as in Example 1 using sodium laurate at various pH values and equivalent to 1101n. As a result, as shown in Figure 1, the collection rate improves as the alkalinity increases, and the pH
No. 11 showed a collection rate of 98%. In this way, the collection rate can be improved by adjusting the pH.

実施例4 3μOi/mLの” 5r(II)−”YQII) (
これは5r(n)で1.0X10  M、 YOII)
T3X10  Mに相当)ヲ2mlとり、pHを3とし
てこれにリン酸エステル系界面活性剤(東邦化学工業株
式会社製GAFAOR8−40)を500咽、実施例1
と同様の粘土有機複合体で200mg相当の該コロイド
状粘土有機複合体を加え5〜10分間攪拌して該コロイ
ド状粘土有機複合体に吸着した。o s r (B)と
ガIの濃度を測定した。その結果” Sr(損を100
%、”Y([10を20%捕集した。第2図は水中に残
っている″。5r(n)、YQ[I)のイオン濃度を〔
s r (n)〕、−Y(ト)〕としζ;該コロ千ド状
粘土有機複合体に吸着さレテイル” Sr (II)、
hlのイオン濃度を〔5r(II几〔Y@)〕。とじて
、[″5r(If)] o / 〔” 5r(II):
]及び〔″Y 011))。/[oOy([[I)]ト
、pH7!: Q:) 関係ヲ示1.fcもので、pH
によってその比率が異なることを示す。これから明らか
なようにpH値を適当に設定することによって、2以上
の金属イオンを選択的に捕集することができることがわ
かる0実施例5 200屏の洗剤(三井金属株式会社製 アブラトーレホ
ワイト)に100pplNのN1LOtを加えた溶液中
に10〜10 μO1/mtの8″5r(II)を加え
、これを模擬排水とした0これに実施例1と同様のコロ
イド状粘土有機複合体を120卿加え5〜10分間攪拌
し該コロイド状粘土有機複合体への”5r(If)の吸
着を調べた。その結果該コロイド状粘土有機複合体によ
る”5r(If)の除染率は83%から91%であった
。また平衡に至る時間も約30分であり、同様の条件で
の活性炭の場合の約20時間、イオン交換樹脂の約5時
間に比較して非常に短い時間で平衡吸着量に達した。
Example 4 3 μOi/mL of “5r(II)-”YQII) (
This is 5r(n) and 1.0X10 M, YOII)
Example 1: Take 2 ml of T3
200 mg of the same colloidal clay-organic composite was added and stirred for 5 to 10 minutes to be adsorbed onto the colloidal clay-organic composite. The concentrations of o s r (B) and moth I were measured. As a result, “Sr (loss 100
%, "Y([20% of 10 was collected. Figure 2 shows what remains in the water". 5r(n), the ion concentration of YQ[I) is [
s r (n)], -Y (t)] and ζ;
The ion concentration of hl is [5r (II 几 [Y@)]. Thus, [″5r(If)] o / [”5r(II):
] and [″Y 011))./[oOy([[I)]t, pH 7!: Q:)” shows the relationship 1. fc, pH
This shows that the ratio differs depending on the As is clear from this, it can be seen that two or more metal ions can be selectively collected by appropriately setting the pH value.Example 5: 200-fold detergent (Abratore White, manufactured by Mitsui Kinzoku Co., Ltd.) 10 to 10 μO1/mt of 8"5r(II) was added to a solution of 100 pplN of N1LOt, and this was used as a simulated wastewater. To this, the same colloidal clay organic complex as in Example 1 was added to The mixture was stirred for 5 to 10 minutes, and the adsorption of "5r(If)" to the colloidal clay-organic composite was examined. As a result, the decontamination rate of "5r(If)" by the colloidal clay-organic composite was 83% to 91%. Also, the time to reach equilibrium was about 30 minutes, compared to the case of activated carbon under similar conditions. Equilibrium adsorption was reached in a very short time of about 20 hours, compared to about 5 hours for ion exchange resins.

以上説明したように、本発明によるときは、2価以上の
金属イオンと陰イオン界面活性剤との疎水性反応生成物
を、脂肪族アミン類とモンモリロナイト等の粘土とを反
応させて得られるコロイド状粘土有機複合体で捕集する
ために広範囲の、金属イオンを迅速に捕集できる効果を
有する。
As explained above, according to the present invention, a colloid obtained by reacting a hydrophobic reaction product of a divalent or higher valent metal ion and an anionic surfactant with an aliphatic amine and clay such as montmorillonite It has the effect of quickly collecting a wide range of metal ions because it is collected using a clay-like organic complex.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属イオンの捕集率と、pHとの関係を示す特
性図、第2図は該コロイド状粘土有機複合体に吸着され
た金属のイオン濃度と、水中に残っている金属のイオン
濃度との比とpHとの関係を示す特性図である。
Figure 1 is a characteristic diagram showing the relationship between the collection rate of metal ions and pH, and Figure 2 is a graph showing the concentration of metal ions adsorbed on the colloidal clay organic complex and the metal ions remaining in the water. FIG. 2 is a characteristic diagram showing the relationship between the ratio of concentration and pH.

Claims (1)

【特許請求の範囲】[Claims] 金属イオンを含む水溶液中に陰イオン界面活性剤を添加
して得られる上記金属イオンと上記陰イオン界面活性剤
との疎水性反応生成物を、脂肪族アミン類とモンモリロ
ナイト等の粘土とを反応させて得られるコロイド状粘土
有機複合体で捕集することを特徴とする金属イオンの捕
集法。
A hydrophobic reaction product of the metal ions and the anionic surfactant obtained by adding an anionic surfactant to an aqueous solution containing metal ions is reacted with an aliphatic amine and a clay such as montmorillonite. A method for collecting metal ions, which is characterized by collecting metal ions using a colloidal clay-organic composite obtained by
JP3576683A 1983-03-07 1983-03-07 Collection of metal ion Granted JPS59162989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3576683A JPS59162989A (en) 1983-03-07 1983-03-07 Collection of metal ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3576683A JPS59162989A (en) 1983-03-07 1983-03-07 Collection of metal ion

Publications (2)

Publication Number Publication Date
JPS59162989A true JPS59162989A (en) 1984-09-13
JPS6223632B2 JPS6223632B2 (en) 1987-05-25

Family

ID=12450980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3576683A Granted JPS59162989A (en) 1983-03-07 1983-03-07 Collection of metal ion

Country Status (1)

Country Link
JP (1) JPS59162989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501349A (en) * 2006-08-25 2010-01-21 アプライド マテリアルズ インコーポレイテッド Method and system for use point treatment of substrate polishing liquid
CN102531118A (en) * 2011-10-20 2012-07-04 常州亚环环保科技有限公司 Remover for treating copper-containing wastewater and application method for remover

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501349A (en) * 2006-08-25 2010-01-21 アプライド マテリアルズ インコーポレイテッド Method and system for use point treatment of substrate polishing liquid
CN102531118A (en) * 2011-10-20 2012-07-04 常州亚环环保科技有限公司 Remover for treating copper-containing wastewater and application method for remover

Also Published As

Publication number Publication date
JPS6223632B2 (en) 1987-05-25

Similar Documents

Publication Publication Date Title
US4116858A (en) Recovery of lithium from brines
US4461714A (en) Method of making crystalline 2-layer lithium aluminates in ion exchange resins
US4329328A (en) Method of synthesizing zincosilicate or stannosilicate or titanosilicate material
US4477367A (en) Crystalline 2-layer lithium-hydroxy aluminates
JP5352853B1 (en) Method of treating radioactive Cs contaminated water
JPH1176807A (en) Manufacture of cesium separation material
JP5744940B2 (en) Method for treating radioactive Cs-contaminated water, radioactive Cs adsorbent and method for producing the same
JP5653408B2 (en) Radioactive Cs adsorbent and method for producing the same
CN110721654A (en) Magnetic crystal/amorphous lanthanum zirconium iron oxide phosphorus removal adsorbent and synthesis method thereof
JP4015520B2 (en) Magnetic adsorbent, method for producing the same, and water treatment method
DE60029320T2 (en) NONCOMBUMPOSING SODIUM CHLORIDE CRYSTALS, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN AN ELECTROLYSIS PROCESS
JPS59162989A (en) Collection of metal ion
JP3227517B2 (en) Treatment method for phosphorus-containing wastewater
JP4566463B2 (en) Treatment method of electroless nickel plating aging solution
US2831885A (en) Hydroxyethyl polycarboxymethyl polyamines
KR102225373B1 (en) Method for preparing a composition for adsorbing cesium using chitin
JP5694593B2 (en) Radioactive Cs adsorbent and method for producing the same
JP2015108606A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER
JP4041202B2 (en) Sr ion adsorbent, method for producing the same, and method for treating Sr ion-containing water using the same
JPH0724764B2 (en) Composite adsorbent and method for producing the same
RU2021009C1 (en) Method for producing composite sorbents and composite sorbent
KR102204227B1 (en) Prussian blue immobilized porous polymer resin for removal of cesium ion and manufacturing method thereof
JPH0218906B2 (en)
JP4000370B2 (en) Method for removing nitrate ions from various anion-containing aqueous solutions and method for recovering nitrate ions
JPS5918365B2 (en) Red tide treatment agent and its manufacturing method