KR102225373B1 - Method for preparing a composition for adsorbing cesium using chitin - Google Patents

Method for preparing a composition for adsorbing cesium using chitin Download PDF

Info

Publication number
KR102225373B1
KR102225373B1 KR1020190009185A KR20190009185A KR102225373B1 KR 102225373 B1 KR102225373 B1 KR 102225373B1 KR 1020190009185 A KR1020190009185 A KR 1020190009185A KR 20190009185 A KR20190009185 A KR 20190009185A KR 102225373 B1 KR102225373 B1 KR 102225373B1
Authority
KR
South Korea
Prior art keywords
adsorption
chitin
cesium
composition
solid content
Prior art date
Application number
KR1020190009185A
Other languages
Korean (ko)
Other versions
KR20200092080A (en
Inventor
이승목
김무늬
티와리 디와카
Original Assignee
주식회사 대양환경기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대양환경기술 filed Critical 주식회사 대양환경기술
Priority to KR1020190009185A priority Critical patent/KR102225373B1/en
Publication of KR20200092080A publication Critical patent/KR20200092080A/en
Application granted granted Critical
Publication of KR102225373B1 publication Critical patent/KR102225373B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

개시된 내용은 키틴을 이용한 세슘 흡착용 조성물의 제조방법에 관한 것으로, 더욱 상세하게는 금속염화물 수용액에 키틴을 혼합하고 교반하는 키틴혼합단계, 상기 키틴혼합단계를 통해 제조된 고형분을 분리하는 고형분분리단계, 상기 고형분분리단계를 통해 분리된 고형분을 헥사시아노철산칼륨 수용액에 투입하는 헥사시아노철산칼륨반응단계, 상기 헥사시아노철산칼륨반응단계를 거친 고형분을 분리하고 세척하는 분리세척단계 및 상기 분리세척단계를 통해 세척된 고형분을 건조하는 건조단계로 이루어진다.
상기의 과정을 통해 제조되는 세슘 흡착용 조성물은 수중에 함유된 세슘이온에 대해 우수한 흡착력을 나타낸다.
The disclosed content relates to a method of preparing a composition for adsorption of cesium using chitin, and more particularly, a chitin mixing step of mixing and stirring chitin in an aqueous metal chloride solution, a solid content separation step of separating the solid content prepared through the chitin mixing step , Separation washing step of separating and washing the solids subjected to the reaction step of potassium hexacyanoferrate in which the solid content separated through the solid content separation step is added to an aqueous solution of potassium hexacyanoferrate, and the separation It consists of a drying step of drying the solids washed through the washing step.
The composition for adsorption of cesium prepared through the above process exhibits excellent adsorption power for cesium ions contained in water.

Description

키틴을 이용한 세슘 흡착용 조성물의 제조방법 {METHOD FOR PREPARING A COMPOSITION FOR ADSORBING CESIUM USING CHITIN}Method for preparing a composition for adsorption of cesium using chitin {METHOD FOR PREPARING A COMPOSITION FOR ADSORBING CESIUM USING CHITIN}

개시된 내용은 키틴을 이용한 세슘 흡착용 조성물의 제조방법에 관한 것으로, 더욱 상세하게는 수중에 함유된 세슘이온에 대해 우수한 흡착력을 나타내는 키틴을 이용한 세슘 흡착용 조성물의 제조방법에 관한 것이다.The disclosed content relates to a method of preparing a composition for adsorption of cesium using chitin, and more particularly, to a method of preparing a composition for adsorption of cesium using chitin, which exhibits excellent adsorption power for cesium ions contained in water.

원자력은 발전소뿐만 아니라 의료, 농업, 공업 분야 등 다양한 분야에서 사용되고 있는데, 이 과정에서 발생하는 방사성 폐수는 일반 산업 폐수나 생활 폐수와는 그 성격이 달라 처리에 신중을 기해야 한다.Nuclear power is used not only in power plants, but also in various fields such as medicine, agriculture, and industrial fields, and radioactive wastewater generated in this process is different from general industrial wastewater and household wastewater, so care must be taken in treatment.

2011년 일본 후쿠시마에서 원자력 사고가 발생하여 많은 양의 방사성 물질이 바다, 토양 및 대기로 누출되어 세슘, 스트론튬 및 셀레늄과 같은 방사성 원소 제거에 대한 우려가 급격히 증가하였으며, 전 세계적으로 방사능 오염물의 처리에 대한 관심이 높아지고 있다. 원자력 발전소에서 발생하는 폐수 내 방사성 물질들은 체내에 유입 시 피부병, 백혈병 등과 같은 질병을 일으킬 수 있기 때문에, 수중의 방사성 이온을 제거하기 위한 효과적인 처리 기술이 필요하다.In 2011, a nuclear accident occurred in Fukushima, Japan, and a large amount of radioactive material leaked into the sea, soil and atmosphere, and concerns about the removal of radioactive elements such as cesium, strontium and selenium have rapidly increased. Interest in this is increasing. Since radioactive substances in wastewater generated from nuclear power plants can cause diseases such as skin disease and leukemia when introduced into the body, an effective treatment technology is required to remove radioactive ions in water.

특히 세슘 137은 높은 핵분열 수율과 반감기가 길어 가장 위험한 핵분열 생성물로 많은 연구자들이 독성 금속의 제거에 대해 연구하였으며, 침전, 막 여과, 역삼투, 용매 추출 및 전기 분해, 생물학적 처리, 이온 교환 공정 및 흡착 등의 다양한 방법이 물 및 폐수 처리 시스템에 성공적으로 적용하였다. 그 중에서도 흡착 공정은 다른 기술에 비해 고효율, 흡착 특성 및 비용 효율성과 같은 장점을 가지고 있고 매우 낮은 농도에서의 적용 가능성, 배치 및 연속 공정 사용에 대한 적합성, 조작 용이성, 적은 슬러지 생성, 재생 및 재사용 가능성 등의 장점이 있다.In particular, cesium 137 is the most dangerous fission product due to its high fission yield and long half-life, and many researchers have studied the removal of toxic metals, precipitation, membrane filtration, reverse osmosis, solvent extraction and electrolysis, biological treatment, ion exchange processes and adsorption. And other methods have been successfully applied to water and wastewater treatment systems. Among them, the adsorption process has advantages such as high efficiency, adsorption properties and cost efficiency compared to other technologies, and its applicability at very low concentrations, suitability for batch and continuous process use, ease of operation, less sludge generation, possibility of regeneration and reuse. There are such advantages.

일반적으로 방사성 폐액을 처리하기 위한 방법으로는 흡착/이온교환(adsorption/ion exchange), 화학적 침전(chemical precipitation), 응집침전(coagulation flocculation), 막 분리(membrane separation) 등 다양한 처리방법이 있으며, 이를 바탕으로 방사성 폐액의 효과적인 처리를 위한 연구가 현재까지도 활발히 수행되고 있는데, 고방사성 폐액의 방사능이 높다고는 하나 방사성 핵종의 실제 화학적인 농도는 극미량이므로 흡착 및 이온교환 등의 처리방법이 가장 효과적이다. In general, there are various treatment methods such as adsorption/ion exchange, chemical precipitation, coagulation flocculation, and membrane separation as methods for treating radioactive waste liquid. Based on this, researches for effective treatment of radioactive waste solutions are still being actively conducted.However, although the radioactivity of highly radioactive waste solutions is high, the actual chemical concentration of radionuclides is very small, so treatment methods such as adsorption and ion exchange are the most effective.

수중의 방사능 이온 제거에 사용되는 흡착제로는 일반적으로 활성탄, 바이오매스, 플라이애시, 벤토나이트 및 제올라이트 등이 많이 사용되고 있다. 이와 같은 많은 종류의 흡착제가 유해 금속의 제거에 사용되어 왔으며, 게 껍질, 톱밥, 커피 찌꺼기, 산업 폐기물 등의 각종 폐기물이 최근 폐기물의 재활용 측면에서 경제적인 흡착제로 사용되고 있다. 또한, 사체조류(non-living algal biomass)를 이용하는 방안이 연구되었다. 특히 게, 새우, 가재 등과 같은 동물의 갑각에 풍부하게 존재하는 천연자원이며, 여러 분야에 응용이 가능한 소재로서 각광받고 있는 물질인 키틴(Chitin)을 예로 들 수 있다. 키틴은 구조가 셀룰로오스와 흡사하고 비교적 안정된 상태로 존재하며 물, 묽은 산, 알칼리 및 대부분의 유기용매에 불용성을 나타내며, 냉 안정제, 회복촉진제, 습강도 향상제 및 수처리 응집제 등에 광범위하게 이용되고 있다. 이와 같은 키틴은 질소를 약 7% 함유하는 아미노 다당류로 여러 분야에서 응용 가능하고, 또한 새우, 게 껍질 등을 이용한 수산폐기물의 재활용 측면에서 그 이용가치가 높다.As adsorbents used to remove radioactive ions in water, activated carbon, biomass, fly ash, bentonite, and zeolite are generally used. Many types of adsorbents such as these have been used to remove harmful metals, and various wastes such as crab shells, sawdust, coffee grounds, and industrial wastes are recently used as economical adsorbents in terms of recycling of wastes. In addition, a method of using non-living algal biomass was studied. In particular, for example, chitin, a material that is abundantly present in the shells of animals such as crabs, shrimp, and crayfish, has been in the spotlight as a material that can be applied to various fields. Chitin has a structure similar to that of cellulose, exists in a relatively stable state, and is insoluble in water, dilute acids, alkalis and most organic solvents, and is widely used in cold stabilizers, recovery accelerators, wet strength improvers and water treatment coagulants. Such chitin is an amino polysaccharide containing about 7% nitrogen and can be applied in various fields, and has high utility value in terms of recycling aquatic waste using shrimp and crab shells.

또한, 전이금속을 포함하는 헥사시아노철산염(hexacyanoferrate, HCF)도 세슘의 효과적인 흡착제로 연구되고 있으며, 헥사시아노철산염과 기타 화합물의 합성은 세슘흡착의 효율을 증가시킬 수 있다.In addition, hexacyanoferrate (HCF) containing a transition metal is also being studied as an effective adsorbent for cesium, and the synthesis of hexacyanoferrate and other compounds can increase the efficiency of cesium adsorption.

한국특허등록 제10-1708708호(2017.02.15)Korean Patent Registration No. 10-1708708 (2017.02.15) 한국특허등록 제10-1589905호(2016.01.25)Korean Patent Registration No. 10-1589905 (2016.01.25)

개시된 내용은 수중에 함유된 세슘이온에 대해 우수한 흡착력을 나타내는 흡착용 조성물을 제공하는 키틴을 이용한 세슘 흡착용 조성물의 제조방법을 제공하는 것이다.Disclosed is to provide a method for preparing a composition for adsorption of cesium using chitin, which provides a composition for adsorption showing excellent adsorption power for cesium ions contained in water.

하나의 일 실시예로서 이 개시의 내용은 금속염화물 수용액에 키틴을 혼합하고 교반하는 키틴혼합단계, 상기 키틴혼합단계를 통해 제조된 고형분을 분리하는 고형분분리단계, 상기 고형분분리단계를 통해 분리된 고형분을 헥사시아노철산칼륨 수용액에 투입하는 헥사시아노철산칼륨반응단계, 상기 헥사시아노철산칼륨반응단계를 거친 고형분을 분리하고 세척하는 분리세척단계 및 상기 분리세척단계를 통해 세척된 고형분을 건조하는 건조단계로 이루어지는 것을 특징으로 하는 키틴을 이용한 세슘 흡착용 조성물의 제조방법에 대해 기술하고 있다.As an embodiment, the content of this disclosure is a chitin mixing step of mixing and stirring chitin in an aqueous metal chloride solution, a solid content separation step of separating the solid content prepared through the chitin mixing step, and the solid content separated through the solid content separation step. Potassium hexacyanoferrate reaction step in which potassium hexacyanoferrate is added to an aqueous solution of potassium hexacyanoferrate, a separation washing step of separating and washing the solids subjected to the potassium hexacyanoferrate reaction step, and drying the washed solids It describes a method for producing a composition for adsorption of cesium using chitin, characterized in that it consists of a drying step.

바람직하기로는, 상기 키틴혼합단계는 금속염화물 수용액 100 중량부에 키틴 0.5 내지 1.5 중량부를 혼합하여 이루어질 수 있다.Preferably, the chitin mixing step may be performed by mixing 0.5 to 1.5 parts by weight of chitin with 100 parts by weight of an aqueous metal chloride solution.

더 바람직하기로는, 상기 금속염화물 수용액은 농도가 0.05 내지 0.15 mol/L이며, 상기 금속염화물은 염화구리, 염화니켈 및 염화철로 이루어진 그룹에서 선택된 하나로 이루어질 수 있다.More preferably, the metal chloride aqueous solution has a concentration of 0.05 to 0.15 mol/L, and the metal chloride may be made of one selected from the group consisting of copper chloride, nickel chloride, and iron chloride.

더욱 바람직하기로는, 상기 헥사시아노철산칼륨반응단계는 25 내지 35℃의 온도에서 10 내지 15시간 동안 이루어질 수 있다.More preferably, the potassium hexacyanoferrate reaction step may be performed at a temperature of 25 to 35° C. for 10 to 15 hours.

더욱 더 바람직하기로는, 상기 헥사시아노철산칼륨 수용액은 농도가 0.05 내지 0.15 mol/L로 이루어질 수 있다.Even more preferably, the aqueous solution of potassium hexacyanoferrate may have a concentration of 0.05 to 0.15 mol/L.

이상에서와 같은 키틴을 이용한 세슘 흡착용 조성물의 제조방법은 수중에 함유된 세슘이온에 대해 우수한 흡착력을 나타내는 흡착용 조성물을 제공하는 탁월한 효과를 나타낸다.The method for preparing a composition for adsorption of cesium using chitin as described above has an excellent effect of providing a composition for adsorption that exhibits excellent adsorption power for cesium ions contained in water.

도 1은 개시된 키틴을 이용한 세슘 흡착용 조성물의 제조방법을 나타낸 순서도이다.
도 2는 개시된 실시예 1 및 비교예 1의 세슘 흡착용 조성물의 표면 변화를 알아보기 위해 주사전자 현미경을 촬영하여 나타낸 사진이다.
도 3은 개시된 실시예 1의 키틴을 이용한 세슘 흡착용 조성물과 비교예 1을 통해 제조된 세슘 흡착용 조성물의 합성여부를 확인하기 위해 EDX분석을 실시하여 나타낸 그래프이다.
도 4는 개시된 실시예 1 및 비교예 1을 통해 제조된 세슘 흡착용 조성물을 XRD분석하여 그 결과를 나타낸 그래프이다.
도 5는 개시된 실시예 1 내지 3 및 비교예 1을 통해 제조된 세슘 흡착용 조성물의 pH에 따른 Cs(I) 흡착률을 측정하여 나타낸 그래프이다.
도 6은 개시된 실시예 1 및 비교예 1을 통해 제조된 세슘 흡착용 조성물의 시간에 따른 Cs(I) 흡착속도를 측정하여 나타낸 그래프이다.
도 7은 개시된 실시예 1의 키틴을 이용한 세슘 흡착용 조성물과 비교예 1을 통해 제조된 세슘 흡착용 조성물의 이온강도에 따른 흡착력을 측정하여 나타낸 그래프이다.
1 is a flow chart showing a method for preparing a composition for adsorption of cesium using chitin disclosed.
Figure 2 is a photograph showing a scanning electron microscope to determine the surface change of the composition for adsorption of cesium of Example 1 and Comparative Example 1 disclosed.
3 is a graph showing an EDX analysis to confirm whether the composition for adsorption of cesium using chitin of Example 1 and the composition for adsorption of cesium prepared through Comparative Example 1 are synthesized.
Figure 4 is a graph showing the results of XRD analysis of the composition for adsorption of cesium prepared through the disclosed Example 1 and Comparative Example 1.
5 is a graph showing the measurement of Cs(I) adsorption rate according to pH of the composition for adsorption of cesium prepared through the disclosed Examples 1 to 3 and Comparative Example 1. FIG.
6 is a graph showing the measurement of Cs(I) adsorption rate over time of the composition for adsorption of cesium prepared through the disclosed Example 1 and Comparative Example 1. FIG.
7 is a graph showing the measurement of adsorption power according to the ionic strength of the composition for adsorption of cesium using chitin of Example 1 and the composition for adsorption of cesium prepared through Comparative Example 1. FIG.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, but this is for explaining in detail enough that one of ordinary skill in the art can easily carry out the invention, This does not mean that the technical spirit and scope of the present invention are limited.

개시된 키틴을 이용한 세슘 흡착용 조성물의 제조방법은 금속염화물 수용액에 키틴을 혼합하고 교반하는 키틴혼합단계(S101), 상기 키틴혼합단계(S101)를 통해 제조된 고형분을 분리하는 고형분분리단계(S103), 상기 고형분분리단계(S103)를 통해 분리된 고형분을 헥사시아노철산칼륨 수용액에 투입하는 헥사시아노철산칼륨반응단계(S105), 상기 헥사시아노철산칼륨반응단계(S105)를 거친 고형분을 분리하고 세척하는 분리세척단계(S107) 및 상기 분리세척단계(S107)를 통해 세척된 고형분을 건조하는 건조단계(S109)로 이루어진다.The method for preparing a composition for adsorption of cesium using chitin is a chitin mixing step (S101) of mixing and stirring chitin in an aqueous metal chloride solution, and a solid content separation step (S103) of separating the solid content prepared through the chitin mixing step (S101). , The solid content separated through the solid content separation step (S103) is added to the potassium hexacyanoferrate aqueous solution, the reaction step of potassium hexacyanoferrate (S105), and the solid content through the potassium hexacyanoferrate reaction step (S105) is separated. And a separate washing step (S107) of washing and a drying step (S109) of drying the solids washed through the separate washing step (S107).

상기 키틴혼합단계(S101)는 금속염화물 수용액에 키틴을 혼합하고 교반하는 단계로, 농도가 0.05 내지 0.15 mol/L인 금속염화물 수용액 100 중량부에 키틴 0.5 내지 1.5 중량부를 혼합하여 이루어진다.The chitin mixing step (S101) is a step of mixing and stirring chitin in an aqueous metal chloride solution, and is made by mixing 0.5 to 1.5 parts by weight of chitin to 100 parts by weight of an aqueous metal chloride solution having a concentration of 0.05 to 0.15 mol/L.

이때, 상기 키틴은 새우에 껍질에서 유래된 것으로, 미국 Sigma Aldrich사 제품을 사용할 수 있으며, 구조가 셀룰로오스와 흡사하고 비교적 안정된 상태로 존재하며 수중에 함유되어 있는 세슘이온에 대해 우수한 흡착성능을 발휘한다.At this time, the chitin is derived from the shell of shrimp, and can be used by Sigma Aldrich in the United States, has a structure similar to cellulose, exists in a relatively stable state, and exhibits excellent adsorption performance for cesium ions contained in water. .

또한, 상기 금속염화물은 상기 금속염화물 수용액은 농도가 0.05 내지 0.15 mol/L인 것을 사용할 수 있으며, 0.1 mol/L의 금속염화물을 사용하는 것이 바람직한데, 염화구리, 염화니켈 및 염화철로 이루어진 그룹에서 선택된 하나로 이루어지는 것이 더우 바람직하다.In addition, as the metal chloride, the aqueous metal chloride solution may have a concentration of 0.05 to 0.15 mol/L, and it is preferable to use a metal chloride of 0.1 mol/L, in the group consisting of copper chloride, nickel chloride, and iron chloride. It is more preferable to consist of the selected one.

상기와 같이 키틴을 금속염화물 수용액에 혼합하고 교반하게 되면 염화구리, 염화니켈 및 염화철 등과 같은 금속염화물에 함유된 구리, 니켈 및 철 성분이 키틴과 합성된다.When chitin is mixed and stirred in an aqueous metal chloride solution as described above, copper, nickel and iron components contained in metal chlorides such as copper chloride, nickel chloride, and iron chloride are synthesized with chitin.

상기 고형분분리단계(S101)는 상기 키틴혼합단계(S101)를 통해 제조된 고형분을 분리하는 단계로, 상기 키틴혼합단계(S101)를 통해 제조된 혼합물에서 고형분을 분리하여 이루어지는데, 여과필터나 채거름 등의 방법을 통해 혼합물 내에 고형분을 분리하는 과정으로 이루어진다.The solid content separation step (S101) is a step of separating the solid content prepared through the chitin mixing step (S101), and is performed by separating the solid content from the mixture prepared through the chitin mixing step (S101). It consists of a process of separating solids in the mixture through a method such as manure.

상기 헥사시아노철산칼륨반응단계(S105)는 상기 고형분분리단계(S103)를 통해 분리된 고형분을 헥사시아노철산칼륨(potassium ferrocyanide, K3[Fe(CN)6]) 수용액에 투입하여 반응시키는 단계로, 상기 고형분분리단계(S103)를 통해 분리된 고형분을 농도가 0.05 내지 0.15 mol/L인 헥사시아노철산칼륨 수용액에 투입하고 25 내지 35℃의 온도에서 10 내지 15시간 동안 반응하여 이루어진다.In the reaction step of potassium hexacyanoferrate (S105), the solid content separated through the solid content separation step (S103) is added to an aqueous solution of potassium hexacyanoferrate (K 3 [Fe(CN) 6]) for reaction. As a step, the solid content separated through the solid content separation step (S103) is added to an aqueous solution of potassium hexacyanoferrate having a concentration of 0.05 to 0.15 mol/L, and reacted at a temperature of 25 to 35° C. for 10 to 15 hours.

상기의 과정을 통해 고형분분리단계(S103)에서 분리된 고형분과 헥사시아노철산칼륨이 반응하여 혼합물 내에 다양한 형태의 헥사시아노철산염이 생성되는데, 상기 키틴혼합단계(S101)에서 사용되는 금속염화물이 염화구리인 경우에는 구리헥사시아노철산염(Copper hexacyanoferrate, CuHCF)이 생성되며, 상기 키틴혼합단계(S101)에서 사용되는 금속염화물이 니켈인 경우에는 니켈 헥사시아노철산염(Nickel hexacyanoferrate, NiHCF)이 생성되고, 상기 키틴혼합단계(S101)에서 사용되는 금속염화물이 철인 경우에는 철헥사시아노철산염(Iron hexacyanoferrate, FeHCF)이 생성된다.Through the above process, the solid content separated in the solid content separation step (S103) and potassium hexacyanoferrate react to produce various types of hexacyanoferrate in the mixture, and the metal chloride used in the chitin mixing step (S101) In the case of copper chloride, copper hexacyanoferrate (CuHCF) is produced, and when the metal chloride used in the chitin mixing step (S101) is nickel, nickel hexacyanoferrate (NiHCF) ) Is generated, and when the metal chloride used in the chitin mixing step (S101) is iron, iron hexacyanoferrate (FeHCF) is generated.

상기 분리세척단계(S107)는 상기 헥사시아노철산칼륨반응단계(S105)를 거친 고형분을 분리하고 세척하는 단계로, 상기 헥사시아노철산칼륨반응단계(S105)를 통해 제조된 구리헥사시아노철산염, 니켈헥사시아노철산염 및 철헥사시아노철산염 등으로 생성된 고형분을 필터로 여과하여 분리하고, 분리된 고형분을 증류수로 1 내지 3회에 걸쳐 세척하여 고형분의 표면에 잔존하는 불순물을 제거하는 단계다.The separation and washing step (S107) is a step of separating and washing the solid content that has been subjected to the potassium hexacyanoferrate reaction step (S105), and copper hexacyanoferrate prepared through the potassium hexacyanoferrate reaction step (S105). Solids generated from salt, nickel hexacyanoferrate, iron hexacyanoferrate, etc. are separated by filtration through a filter, and the separated solids are washed 1 to 3 times with distilled water to remove impurities remaining on the surface of the solids. This is the step of removing.

상기 건조단계(S107)는 상기 분리세척단계(S107)를 통해 세척된 고형분을 건조하는 단계로, 상기 분리세척단계(S107)를 통해 세척된 고형분을 65 내지 75℃의 온도로 가열하여 건조하는 단계다.The drying step (S107) is a step of drying the solids washed through the separation and washing step (S107), and drying by heating the solids washed through the separation and washing step (S107) to a temperature of 65 to 75°C. All.

상기의 과정으로 이루어지는 건조단계(S107)를 거치면 개시된 키틴을 이용한 세슘 흡착용 조성물의 제조가 완료된다.After the drying step (S107) consisting of the above process is performed, the preparation of the composition for adsorption of cesium using the disclosed chitin is completed.

이하에서는, 개시된 키틴을 이용한 세슘 흡착용 조성물의 제조방법 및 그 제조방법을 통해 제조된 세슘 흡착용 조성물의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, a method for preparing a composition for adsorption of cesium using chitin and physical properties of a composition for adsorption of cesium prepared through the method will be described with reference to examples.

<실시예 1><Example 1>

농도가 0.1mol/L 염화구리 수용액 1000mL에 10g의 키틴(Shrimp shells, Sigma Aldrich, USA)을 투입하고 150rpm으로 실온에서 24시간 동안 교반한 후에 고형분을 분리하고, 분리된 고형분을 농도가 0.1mol/L인 헥사시아노철산칼륨(>98%, Hayashi Pure Chemical, Japan) 수용액 1000mL에 투입하고 30℃의 온도에서 12시간동안 교반하여 구리헥사시아노철산염을 생성시키고, 생성된 구리헥사시아노철산염을 여과하여 분리하고, 분리된 구리헥사시아노철산염을 증류수로 2회 세척한 후에 70℃의 온도에서 건조하여 키틴을 이용한 세슘 흡착용 조성물을 제조하였다.10 g of chitin (Shrimp shells, Sigma Aldrich, USA) was added to 1000 mL of a 0.1 mol/L copper chloride aqueous solution and stirred at room temperature at 150 rpm for 24 hours to separate the solid content, and the separated solid content was mixed with a concentration of 0.1 mol/l. L potassium hexacyanoferrate (>98%, Hayashi Pure Chemical, Japan) was added to 1000 mL of aqueous solution and stirred at 30°C for 12 hours to produce copper hexacyanoferrate, and the produced copper hexacyanoferric acid The salt was separated by filtration, and the separated copper hexacyanoferrate was washed twice with distilled water and then dried at a temperature of 70° C. to prepare a composition for adsorption of cesium using chitin.

<실시예 2><Example 2>

상기 실시예 1과 동일하게 진행하되, 염화구리 수용액 대신 염화니켈 수용액을 사용하여 키틴을 이용한 세슘 흡착용 조성물을 제조하였다.Proceeding in the same manner as in Example 1, a composition for adsorption of cesium using chitin was prepared by using an aqueous nickel chloride solution instead of an aqueous copper chloride solution.

<실시예 3><Example 3>

상기 실시예 1과 동일하게 진행하되, 염화구리 수용액 대신 염화철 수용액을 사용하여 키틴을 이용한 세슘 흡착용 조성물을 제조하였다.Proceeding in the same manner as in Example 1, a composition for adsorption of cesium using chitin was prepared using an aqueous iron chloride solution instead of an aqueous copper chloride solution.

<비교예 1><Comparative Example 1>

키틴(Shrimp shells, Sigma Aldrich, USA)으로 이루어진 세슘 흡착용 조성물.A composition for adsorption of cesium made of chitin (Shrimp shells, Sigma Aldrich, USA).

상기 실시예 1 및 비교예 1의 세슘 흡착용 조성물의 표면 변화를 알아보기 위해 SEM분석을 하였으며, 그 결과를 아래 도 2에 나타내었다.SEM analysis was performed to determine the surface change of the composition for adsorption of cesium of Example 1 and Comparative Example 1, and the results are shown in FIG. 2 below.

아래 도 2에 나타낸 것처럼, 실시예 1을 통해 제조된 세슘 흡착용 조성물(CuHCF)은 HCF 합성을 통해 표면에 미세한 입자들이 고르게 결합되어 있는 반면, 비교예 1을 통해 제조된 세슘흡착용 조성물의 경우 표면이 매끄러운 것을 확인할 수 있다.As shown in Figure 2 below, the composition for adsorption of cesium (CuHCF) prepared through Example 1 has fine particles evenly bonded to the surface through HCF synthesis, whereas the composition for adsorption of cesium prepared through Comparative Example 1 You can see that the surface is smooth.

또한, 상기 실시예 1의 키틴을 이용한 세슘 흡착용 조성물과 비교예 1을 통해 제조된 세슘 흡착용 조성물의 합성여부를 확인하기 위해 EDX분석을 실시하여 그 결과를 아래 도 3에 나타내었다.In addition, EDX analysis was performed to confirm whether the composition for adsorption of cesium using chitin of Example 1 and the composition for adsorption of cesium prepared through Comparative Example 1 were synthesized, and the results are shown in FIG. 3 below.

아래 도 3에 나타낸 것처럼, 비교예 1의 세슘 흡착용 조성물의 주 성분은 탄소와 산소로 나타났으며, 실시예 1을 통해 제조된 세슘 흡착용 조성물(CuHCF)은 HCF 합성을 통해 K, Fe가 합성되었으며, Cu도 1.17% 합성된 것을 확인할 수 있다.As shown in FIG. 3 below, the main components of the composition for adsorption of cesium of Comparative Example 1 were carbon and oxygen, and the composition for adsorption of cesium (CuHCF) prepared through Example 1 contained K and Fe through HCF synthesis. It was synthesized, and it can be seen that Cu was also synthesized by 1.17%.

또한, 상기 실시예 1 및 비교예 1을 통해 제조된 세슘 흡착용 조성물을 XRD분석하여 그 결과를 아래 도 4에 나타내었다.In addition, the composition for adsorption of cesium prepared through Example 1 and Comparative Example 1 was analyzed by XRD, and the results are shown in FIG. 4 below.

아래 도 4에 나타낸 것처럼, 각 세슘 흡착용 조성물은은 유사한 회절 피크를 보였으나 피크의 상대적 강도는 다르게 나타났다. 22~23.5°, 39~40°에서 C의 피크, 25~27°에서 O의 피크가 나타났다. 36.5°에서 HCF 합성에 의한 Fe 피크가 나타나으며, 44.2°, 51.5°에서는 Cu합성을 확인할 수 있다. As shown in FIG. 4 below, the composition for adsorption of cesium showed similar diffraction peaks, but the relative intensity of the peaks was different. A peak of C appeared at 22~23.5° and 39~40°, and a peak of O at 25~27°. Fe peaks due to HCF synthesis appear at 36.5°, and Cu synthesis can be confirmed at 44.2° and 51.5°.

또한, 상기 실시예 1 내지 3 및 비교예 1을 통해 제조된 세슘 흡착용 조성물의 pH에 따른 Cs(I) 흡착률을 측정하여 아래 도 5에 나타내었다.In addition, the Cs(I) adsorption rate according to the pH of the composition for adsorption of cesium prepared through Examples 1 to 3 and Comparative Example 1 was measured and shown in FIG. 5 below.

{단, Cs(I) 흡착률은 Cs(I) 10ppm 용액 100 mL를 pH 2 내지 10으로 조절하여 실험을 진행하였고, 세슘 흡착용 조성물은 2g/L의 조건으로 주입하여 24 시간동안 교반한 후 분석하였다.} {However, the Cs(I) adsorption rate was conducted by adjusting 100 mL of a Cs(I) 10ppm solution to pH 2 to 10, and the composition for adsorption of cesium was injected under the condition of 2g/L and stirred for 24 hours. Analyzed.}

아래 도 5에 나타낸 것처럼, 전체적으로 24시간 후 pH는 약간 증가한 것으로 나타났다. 비교예 1을 통해 제조된 키틴의 경우 pH 2에서 약 30%, pH 4에서 약 46%, pH 6이상에서 약 65%의 제거율을 보였고, 실시예 1을 통해 제조된 세슘 흡착용 조성물은 pH 2에서 6으로 증가할 때 제거율이 약 82%에서 95%로 점차 증가하였으며, pH가 더 증가할수록 제거율은 약간 감소하여 pH 10 일 때 약 90%의 제거율을 보였다. 실시예 2를 통해 제조된 세슘 흡착용 조성물(NiHCF)의 경우 pH 2일 때 약 74%의 제거율을 보였으며, pH 6에서 87%, pH 10일 때 약 85%의 제거율을 보였다.As shown in FIG. 5 below, it was found that the pH was slightly increased after 24 hours as a whole. In the case of chitin prepared through Comparative Example 1, it showed a removal rate of about 30% at pH 2, about 46% at pH 4, and about 65% at pH 6 or higher, and the composition for adsorption of cesium prepared through Example 1 was at pH 2 When increasing from to 6, the removal rate gradually increased from about 82% to 95%, and the removal rate slightly decreased as the pH increased, showing a removal rate of about 90% at pH 10. In the case of the composition for adsorption of cesium (NiHCF) prepared in Example 2, the removal rate was about 74% at pH 2, 87% at pH 6, and about 85% at pH 10.

실시예 3을 통해 제조된 세슘 흡착용 조성물(FeHCF)의 경우 pH 2일 때 제거율이 약 84%이며, pH 6일 때 93%, pH 10일 때 약 90% 제거율을 보였다. 전체적으로 중성 pH에서 제거율이 가장 높았으며, pH가 중성영역에서 증가, 감소할수록 제거율은 낮게 나타났다.In the case of the composition for adsorption of cesium (FeHCF) prepared in Example 3, the removal rate was about 84% at pH 2, 93% at pH 6, and about 90% at pH 10. Overall, the removal rate was highest at neutral pH, and the removal rate was lower as pH increased or decreased in the neutral region.

특히, 실시예 1을 통해 제조된 세슘 흡착용 조성물의 Cs(I)제거율이 가장 높게 나타난 것을 알 수 있다.In particular, it can be seen that the Cs(I) removal rate of the composition for adsorption of cesium prepared through Example 1 was the highest.

pH가 4 이하에서 제거율이 감소하는 이유는 반응식 1과 같이 pH가 감소하게 되면 수용액 중의 H+ 농도가 급격히 증가하게 되고, Cs 이온에 대해 H+가 경쟁 이온으로 작용하여 제거량이 낮아지기 때문이다. The reason why the removal rate decreases when the pH is less than 4 is that when the pH decreases as shown in Scheme 1, the H + concentration in the aqueous solution increases rapidly, and H + acts as a competing ion for Cs ions, resulting in a decrease in the removal amount.

[반응식 1][Scheme 1]

MOH0 + H+ ↔ MOH2 + MOH 0 + H + ↔ MOH 2 +

또한, 상기 실시예 1 및 비교예 1을 통해 제조된 세슘 흡착용 조성물의 시간에 따른 Cs(I) 흡착속도를 측정하여 아래 도 6에 나타내었다.In addition, the Cs(I) adsorption rate according to time of the composition for adsorption of cesium prepared through Example 1 and Comparative Example 1 was measured and shown in FIG. 6 below.

{단, 수성 매질로부터 오염 물질의 시간에 따른 흡착 변화는 흡착 공정에서 연구되어야 할 가장 중요한 특징 중 하나로, Cs(I)에 대해 5분에서 400분 사이의 다양한 시간 간격으로 흡착 실험을 진행하였다.}{However, the change of adsorption of pollutants from aqueous medium over time is one of the most important features to be studied in the adsorption process, and adsorption experiments were conducted for Cs(I) at various time intervals between 5 and 400 minutes. }

아래 도 6에 나타낸 것처럼, Cs(I) 10ppm 용액 100mL에 세슘 흡착용 조성물 2g/L의 조건으로 주입하여 실험한 결과 비교예 1의 세슘 흡착용 조성물(Chitin)은 실험 시작 5분후 약 11%, 180분 후 약 55%, 300분 후 약 64%의 제거율을 보였으며, 실시예 1의 세슘 흡착용 조성물(CuHCF)은 실험 5분 후 제거율이 약 55%, 180분 후 약 91%, 240분 후 약 96%로 나타났다. 모든 세슘 흡착용 조성물의 사용 시 240분 이후부터는 시간의 증가에 따른 감소율의 변화가 크지 않았다. 이러한 현상은 일반적으로 흡착 초기 단계에서는 흡착용 조성물 표면에 비어있는 활성점이 많아 흡착속도가 빠르지만, 흡착이 진행됨에 따라 비어있는 활성점의 수가 감소함에 따라 흡착 속도가 감소하기 때문이다. 실험결과 300분 후 평형상태에 이르는 것으로 판단되어 최적시간을 5시간으로 하여 실험을 진행하였다.As shown in Figure 6 below, as a result of an experiment by injecting a composition for adsorption of cesium into 100 mL of a 10 ppm Cs(I) solution under the condition of 2 g/L, the composition for adsorption of cesium of Comparative Example 1 (Chitin) was about 11% 5 minutes after the start of the experiment, It showed a removal rate of about 55% after 180 minutes and about 64% after 300 minutes, and the removal rate of the composition for adsorption of cesium (CuHCF) of Example 1 was about 55% after 5 minutes of the experiment, about 91% after 180 minutes, and 240 minutes. It was found to be about 96%. When all the cesium adsorption compositions were used, there was no significant change in the reduction rate with increasing time after 240 minutes. This phenomenon is because in the initial stage of adsorption, the adsorption rate is high due to the large number of empty active sites on the surface of the adsorption composition, but the adsorption rate decreases as the number of empty active sites decreases as adsorption proceeds. As a result of the experiment, it was determined that the equilibrium state was reached after 300 minutes, so the experiment was conducted with the optimum time set to 5 hours.

또한, 상기 실시예 1의 키틴을 이용한 세슘 흡착용 조성물과 비교예 1을 통해 제조된 세슘 흡착용 조성물의 농도에 따른 Cs(I) 흡착력를 측정하여 아래 표 1에 나타내었다.In addition, Cs(I) adsorption power according to the concentration of the composition for adsorption of cesium using chitin of Example 1 and the composition for adsorption of cesium prepared through Comparative Example 1 was measured and shown in Table 1 below.

{단, 농도에 따른 Cs(I) 흡착력은 각 세슘 흡착용 조성물을 사용하여 Cs(I)의 농도별 흡착 실험을 진행하여 확인하였는데, Cs(I) 1~50 ppm의 용액 100mL에 세슘 흡착용 조성물 2g/L를 투입하고 5 시간동안 교반한 후 분석하는 방법을 이용하였다.}{However, the adsorption power of Cs(I) according to the concentration was confirmed by conducting an adsorption experiment for each concentration of Cs(I) using each cesium adsorption composition. After adding 2g/L of the composition and stirring for 5 hours, an analysis method was used.}

아래 표 1에 나타낸 것처럼, 제조된 세슘 흡착용 조성물의 흡착거동을 알아보기 위해 얻어진 흡착실험 결과를 Langmuir adsorption isotherm과 Freundlich adsorption isotherm를 사용하여 해석하였다. Langmuir adsorption isotherm은 흡착이 단분자 층으로 일어날 때 주로 쓰이며, 액상흡착에 대한 일반적인 형태는 다음과 같다.As shown in Table 1 below, the results of adsorption experiments obtained to investigate the adsorption behavior of the prepared cesium adsorption composition were analyzed using Langmuir adsorption isotherm and Freundlich adsorption isotherm. Langmuir adsorption isotherm is mainly used when adsorption occurs in a single molecular layer, and the general form of liquid phase adsorption is as follows.

Figure 112019008696586-pat00001
Figure 112019008696586-pat00001

여기서 qe는 흡착 평형에서 흡착제 단위 g당 흡착된 용질의 양 (mg/g), qm은 최대흡착량(mg/g), Ce는 흡착 평형에서 수용액상 용질의 평형농도 (mg/L), K는 흡착 에너지와 관계된 Langmuir 상수를 의미한다.Where qe is the amount of solute adsorbed per gram of adsorbent in adsorption equilibrium (mg/g), qm is the maximum adsorption amount (mg/g), Ce is the equilibrium concentration of the aqueous solute in the adsorption equilibrium (mg/L), K Means the Langmuir constant related to the adsorption energy.

Freundlich adsorption isotherm은 흡착제와 흡착질 분자 사이의 다분자층 흡착을 설명하기 위해 주로 쓰이며, 다음의 식과 같이 표현된다.Freundlich adsorption isotherm is mainly used to describe the adsorption of a multimolecular layer between an adsorbent and an adsorbent molecule, and is expressed as the following equation.

Figure 112019008696586-pat00002
Figure 112019008696586-pat00002

여기서 qe는 흡착 평형에서 흡착제 단위 g당 흡착된 용질의 양(mg/g), C (mg/L)는 수용액상의 평형농도, Kf (mg/g)와 n은 Freundlich 상수이다. Kf는 어떤 특정한 수용액상의 용질의 농도에서 고체상의 흡착능을 나타내고, 지수 n은 흡착 과정에서 에너지의 크기와 불균일성을 나타낸다.Where qe is the amount of solute adsorbed per gram of adsorbent in adsorption equilibrium (mg/g), C (mg/L) is the equilibrium concentration in aqueous solution, Kf (mg/g) and n are Freundlich constants. Kf represents the adsorption capacity of the solid phase at a certain concentration of a solute in an aqueous solution, and the index n represents the magnitude and non-uniformity of the energy during the adsorption process.

비교예 1을 통해 제조된 세슘 흡착용 조성물(Chitin)과, 실시예 1을 통해 제조된 세슘 흡착용 조성물(CuHCF)의 Cs(I)에 대한 등온흡착결과를 아래 표 1에 나타내었는데, Langmuir adsorption isotherm을 적용하였을 때, chitin과 CuHCF의 R2값은 각각 0.65, 0.976이고, Freundlich adsorption isotherm을 적용하였을 때의 R2값은 각각 0.992, 0.98이다. 따라서, 세슘 흡착용 조성물의 표면에 세슘 이온이 단분자 층의 형태로 흡착된다는 것을 예상할 수 있고, 그에 따른 chitin, CuHCF의 최대흡착량은 각각 2.72mg/g, 18.5mg/g이다. HCF와 합성시 최대흡착량이 약 6배 향상되었다.The isothermal adsorption results for Cs(I) of the composition for adsorption of cesium (Chitin) prepared in Comparative Example 1 and the composition for adsorption of cesium (CuHCF) prepared in Example 1 are shown in Table 1 below, Langmuir adsorption When isotherm was applied, the R 2 values of chitin and CuHCF were 0.65 and 0.976, respectively, and the R 2 values when the Freundlich adsorption isotherm was applied were 0.992 and 0.98, respectively. Therefore, it can be expected that cesium ions are adsorbed on the surface of the composition for adsorption of cesium in the form of a single molecular layer, and the maximum adsorption amounts of chitin and CuHCF are 2.72 mg/g and 18.5 mg/g, respectively. When synthesized with HCF, the maximum adsorption amount was improved about 6 times.

<표 1><Table 1>

Figure 112019008696586-pat00003
Figure 112019008696586-pat00003

또한, 세슘 흡착 비교를 위해 아래 표 2에 흡착제별 최대 흡착량을 나타내었다. 각 흡착제에 의한 흡착 용량의 차이는 Cs(I)의 농도범위, pH, 온도, 이온 강도 등을 포함한 실험요소 뿐만 아니라 흡착제의 물리화학적 특성의 차이 때문일 수 있으나, CuHCF는 수용액으로부터 Cs(I)의 제거에 대해 상당히 높은 효율을 나타내는 것을 알 수 있다.In addition, for comparison of adsorption of cesium, the maximum adsorption amount for each adsorbent is shown in Table 2 below. The difference in adsorption capacity by each adsorbent may be due to differences in the physicochemical properties of the adsorbent as well as experimental factors including the concentration range of Cs(I), pH, temperature, ionic strength, etc. It can be seen that it shows a fairly high efficiency for removal.

<표 2><Table 2>

Figure 112019008696586-pat00004
Figure 112019008696586-pat00004

또한, 상기 실시예 1의 키틴을 이용한 세슘 흡착용 조성물과 비교예 1을 통해 제조된 세슘 흡착용 조성물의 이온강도에 따른 흡착력을 측정하여 아래 도 7에 나타내었다.In addition, the adsorption power according to the ionic strength of the composition for adsorption of cesium using chitin of Example 1 and the composition for adsorption of cesium prepared through Comparative Example 1 were measured and shown in FIG. 7 below.

{단, 이온강도에 따른 흡착력은 Cs(I) 10ppm 용액 100mL에 NaCl 0.001 M~0.1 M을 주입하여 실험을 진행하되, 흡착제는 2g/L의 조건으로 주입하여 5시간동안 교반한 후 분석하는 방법을 이용하였다.}{However, for the adsorption power according to the ionic strength, proceed with the experiment by injecting 0.001 M~0.1 M of NaCl into 100 mL of a 10 ppm Cs(I) solution, but the adsorbent is injected under the condition of 2 g/L, stirred for 5 hours, and then analyzed. Was used.}

아래 도 7에 나타낸 것처럼, 이온 강도에 따른 제거율이 비교예 1을 통해 제조된 세슘 흡착용 조성물(Chitin)의 경우 약 67~61%, 실시예 1을 통해 제조된 ㅅ세세슘 흡착용 조성물(CuHCF)의 경우 약 93%로 나타났다. 이온강도가 증가함에 따라 chitin의 경우 약 4% 감소하였으나, CuHCF의 경우 큰 변화는 없는 것으로 나타났다.As shown in Figure 7 below, the removal rate according to the ionic strength is about 67 to 61% in the case of the cesium adsorption composition (Chitin) prepared through Comparative Example 1, and the cesium adsorption composition prepared through Example 1 (CuHCF) In the case of, it was found to be about 93%. As the ionic strength increased, chitin decreased by about 4%, but there was no significant change in the case of CuHCF.

오염물질 제거에 대한 이온 강도의결과는 흡착물질에 의한 오염물질의 특이흡착(specific adsorption)과 비특이적 흡착(non-specific adsorption)을 조사하는데 필수적이다. 비특이적 흡착에서 독성이온은 수화 구를 형성하고 정전기적 인력을 통해 흡착제 표면에 흡착되며 금속 이온은 외부 구 복합체를 형성한다. 특이 흡착은 오염 물질이 흡착제 표면에 직접적으로 결합하고 최종적으로 물질에 존재하는 작용기와 복합체를 형성한다. 그러므로 비특이적인 흡착은 이온강도의 변화에 큰 영향을 받는 반면 특이 흡착은 이온강도에 영향을 받지 않는다. 따라서 상기의 과정에서 흡착은 특이 흡착으로 판단되며. 물질의 작용기와 내부 구 복합체를 형성한 것을 알 수 있다. The results of ionic strength on the removal of pollutants are essential to investigate specific adsorption and non-specific adsorption of pollutants by adsorbents. In non-specific adsorption, toxic ions form hydration spheres, are adsorbed on the adsorbent surface through electrostatic attraction, and metal ions form external sphere complexes. In specific adsorption, contaminants bind directly to the surface of the adsorbent and finally form a complex with functional groups present in the material. Therefore, non-specific adsorption is greatly affected by changes in ionic strength, whereas specific adsorption is not affected by ionic strength. Therefore, adsorption in the above process is judged as specific adsorption. It can be seen that the functional group of the substance formed an inner sphere complex.

따라서, 개시된 키틴을 이용한 세슘 흡착용 조성물의 제조방법은 수중에 함유된 세슘이온에 대해 우수한 흡착력을 나타내는 흡착용 조성물을 제공한다.Accordingly, the disclosed method for preparing a composition for adsorption of cesium using chitin provides a composition for adsorption that exhibits excellent adsorption power for cesium ions contained in water.

S101 ; 키틴혼합단계
S103 ; 고형분분리단계
S105 ; 헥사시아노철산칼륨반응단계
S107 ; 분리세척단계
S109 ; 건조단계
S101; Chitin mixing step
S103; Solid content separation step
S105; Potassium hexacyanoferrate reaction step
S107; Separation washing step
S109; Drying stage

Claims (5)

금속염화물 수용액에 키틴을 혼합하고 교반하는 키틴혼합단계;
상기 키틴혼합단계를 통해 제조된 고형분을 분리하는 고형분분리단계;
상기 고형분분리단계를 통해 분리된 고형분을 헥사시아노철산칼륨 수용액에 투입하는 헥사시아노철산칼륨반응단계;
상기 헥사시아노철산칼륨반응단계를 거친 고형분을 분리하고 세척하는 분리세척단계; 및
상기 분리세척단계를 통해 세척된 고형분을 건조하는 건조단계;로 이루어지며,
상기 헥사시아노철산칼륨반응단계는 25 내지 35℃의 온도에서 10 내지 15시간 동안 이루어지는 것을 특징으로 하는 키틴을 이용한 세슘 흡착용 조성물의 제조방법.
Chitin mixing step of mixing and stirring chitin in an aqueous metal chloride solution;
A solid content separation step of separating the solid content prepared through the chitin mixing step;
Potassium hexacyanoferrate reaction step of introducing the solids separated through the solids separation step into an aqueous solution of potassium hexacyanoferrate;
Separation washing step of separating and washing the solids that have gone through the potassium hexacyanoferrate reaction step; And
Consists of; a drying step of drying the solid content washed through the separation washing step,
The method for producing a composition for adsorption of cesium using chitin, wherein the reaction step of potassium hexacyanoferrate is performed at a temperature of 25 to 35° C. for 10 to 15 hours.
청구항 1에 있어서,
상기 키틴혼합단계는 금속염화물 수용액 100 중량부에 키틴 0.5 내지 1.5 중량부를 혼합하여 이루어지는 것을 특징으로 하는 키틴을 이용한 세슘 흡착용 조성물의 제조방법.
The method according to claim 1,
The chitin mixing step is a method of producing a composition for adsorption of cesium using chitin, characterized in that 0.5 to 1.5 parts by weight of chitin are mixed with 100 parts by weight of an aqueous metal chloride solution.
청구항 1 또는 2에 있어서,
상기 금속염화물 수용액은 농도가 0.05 내지 0.15 mol/L이며,
상기 금속염화물은 염화구리, 염화니켈 및 염화철로 이루어진 그룹에서 선택된 하나로 이루어지는 것을 특징으로 하는 키틴을 이용한 세슘 흡착용 조성물의 제조방법.
The method according to claim 1 or 2,
The metal chloride aqueous solution has a concentration of 0.05 to 0.15 mol/L,
The metal chloride is a method for producing a composition for adsorption of cesium using chitin, characterized in that consisting of one selected from the group consisting of copper chloride, nickel chloride, and iron chloride.
삭제delete 청구항 1에 있어서,
상기 헥사시아노철산칼륨 수용액은 농도가 0.05 내지 0.15 mol/L인 것을 특징으로 하는 키틴을 이용한 세슘 흡착용 조성물의 제조방법.
The method according to claim 1,
The method for producing a composition for adsorption of cesium using chitin, wherein the aqueous solution of potassium hexacyanoferrate has a concentration of 0.05 to 0.15 mol/L.
KR1020190009185A 2019-01-24 2019-01-24 Method for preparing a composition for adsorbing cesium using chitin KR102225373B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190009185A KR102225373B1 (en) 2019-01-24 2019-01-24 Method for preparing a composition for adsorbing cesium using chitin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190009185A KR102225373B1 (en) 2019-01-24 2019-01-24 Method for preparing a composition for adsorbing cesium using chitin

Publications (2)

Publication Number Publication Date
KR20200092080A KR20200092080A (en) 2020-08-03
KR102225373B1 true KR102225373B1 (en) 2021-03-09

Family

ID=72042978

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190009185A KR102225373B1 (en) 2019-01-24 2019-01-24 Method for preparing a composition for adsorbing cesium using chitin

Country Status (1)

Country Link
KR (1) KR102225373B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054826A1 (en) * 2021-09-30 2023-04-06 나재운 Coal-dust water flocculant using quinoasic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102694783B1 (en) * 2022-02-24 2024-08-12 세종대학교산학협력단 Metal ion adsorbent and fabricating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506979A (en) 1998-03-10 2002-03-05 ニューケム・ニュークレア・ゲーエムベーハー Adsorbent for radionuclides
JP2013011599A (en) * 2011-06-02 2013-01-17 Kankyo Joka Kenkyusho:Kk Radioactive substance removing material and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589905B1 (en) 2014-01-29 2016-01-29 가톨릭관동대학교산학협력단 Liquid Sericite Solution and Method of Removing Cesium from Contaminated Materials by the Same
KR101716570B1 (en) * 2014-10-14 2017-03-16 경북대학교 산학협력단 Preparation method of carbon nanotube adsorbent with metal ferrocyanide having a selective adsorption property to cesium or strontium, adsorbent prepared by the method, and seperation method of cesium or strontium using the adsorbent
KR101708708B1 (en) 2015-09-03 2017-02-21 한국원자력연구원 Adsorbent of radioactive cesium and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506979A (en) 1998-03-10 2002-03-05 ニューケム・ニュークレア・ゲーエムベーハー Adsorbent for radionuclides
JP2013011599A (en) * 2011-06-02 2013-01-17 Kankyo Joka Kenkyusho:Kk Radioactive substance removing material and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054826A1 (en) * 2021-09-30 2023-04-06 나재운 Coal-dust water flocculant using quinoasic acid

Also Published As

Publication number Publication date
KR20200092080A (en) 2020-08-03

Similar Documents

Publication Publication Date Title
Lito et al. Removal of anionic pollutants from waters and wastewaters and materials perspective for their selective sorption
US4769223A (en) Biosorbent for gold
EP0450047A1 (en) Polymer bead containing immobilized metal extractant
Adhikari et al. Recovery of precious metals by using chemically modified waste paper
KR102225373B1 (en) Method for preparing a composition for adsorbing cesium using chitin
JPH1176807A (en) Manufacture of cesium separation material
CN112058233A (en) Preparation method and application of magnetic porous biochar modified by lanthanum hydroxide
JP3822329B2 (en) Fiber having metal chelate-forming ability, process for producing the same, and metal ion trapping method using the fiber
CN113559820A (en) Preparation method, application and recovery method of phosphorus removal adsorbent for fosfomycin pharmaceutical wastewater
CN107572557B (en) Salt slag refined highly effective combined depth processing method
Afridi et al. Progress, challenges, and prospects of MOF-based adsorbents for phosphate recovery from wastewater
US8133838B2 (en) Water purification material
KR101621954B1 (en) Chelating compound, and method of use of, poly(2-octadecyl-butanedioate) and the corresponding acid, poly(2-octadecyl-butanedioate)
JP2014008477A (en) Method for removing fluoride ion
CN103359789B (en) Preparation method of bismuth subcarbonate
JPH1157695A (en) Treatment process for phosphorus-containing wastewaer
CN114225924A (en) Method for recovering bismuth by using plant polyphenol modified adsorption resin
JP2000169828A (en) Powdery chelate-catching material and its production, and ion-catching using the catching material
KR20180037830A (en) Method of manufacturing hydrogel film of cesium adsorptioin
CN104923169A (en) L-arginine modified magnetic chitosan, preparation method and application thereof
KR101927288B1 (en) Manufacturing method of surface modified activated carbon and the surface modified activated carbon manufacturing by the method
CN109761302A (en) A kind of heavy metal-polluted water process material and its purification method
CN113477232B (en) Water purifying agent for coking wastewater treatment and preparation method thereof
CN115072899B (en) Method for removing and recycling copper ions in high-salt water by using tetraethylenepentamine functional resin
KR102179393B1 (en) Adsorbent of ammonium ion and method for preparing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant