JP4015520B2 - Magnetic adsorbent, method for producing the same, and water treatment method - Google Patents
Magnetic adsorbent, method for producing the same, and water treatment method Download PDFInfo
- Publication number
- JP4015520B2 JP4015520B2 JP2002285492A JP2002285492A JP4015520B2 JP 4015520 B2 JP4015520 B2 JP 4015520B2 JP 2002285492 A JP2002285492 A JP 2002285492A JP 2002285492 A JP2002285492 A JP 2002285492A JP 4015520 B2 JP4015520 B2 JP 4015520B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- water
- clay
- iron oxide
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、水に溶解または分散しているイオン性物質などを吸着し、さらに磁気分離可能な磁性吸着剤およびその製造方法、並びに磁性吸着剤を用いた水処理方法に関する。
【0002】
【従来の技術】
一般的な粘土鉱物は、Al3+、Fe2+、Fe3+、Mn2+、Mn3+、Mg2+、Ca2+、K+、Na+を化学主成分とし、結晶構造はSi−Oの四面体が互いに結合して層状を形成しているフィロケイ酸塩鉱物が大部分であり、その層間や結晶の破面にはCa、K、Naなどの交換性イオンが配位されているので、これに接するイオン性物質はこれらのイオンと置換されるように吸着される。
【0003】
このようなイオン交換性により、フィロケイ酸塩鉱物と呼ばれる層状結晶構造を有する粘土鉱物は、水中など溶液中でイオン性物質を吸着し、また層状の結晶構造によって、金属類その他染料などの有機物を含めて多くの物質を層間に物理・化学的に吸着させる。
【0004】
ところで、水処理技術の一つとして、水中から分離されるべき被分離物質が非磁性体である場合に、被処理水に磁性粉末を混合し、高分子凝集剤を添加して攪拌し、被分離物質を磁性粉末を含んだフロック状に形成して磁気分離するという方法が周知である。
【0005】
また、所定の分離される非磁性材等の活性基に、水酸化鉄(II)のコロイド粒子を結合させ、そのコロイド粒子の少なくとも一部を酸化して磁化し、被磁気分離体とする技術が公知である(特許文献1参照)。
【0006】
【特許文献1】
特開2002−210311号公報(特許請求の範囲、段落番号0001〜0040)
【0007】
【発明が解決しようとする課題】
しかし、上記した従来技術のうち、被分離物質を磁性粉末が含まれたフロック状にして磁気分離する方法では、被分離物質に、凝集剤と磁性粉末とを多量に添加しなければならないため、被分離物質の量よりも添加剤の量の方が多くなる場合もあり、これでは凝集後の処理量が多くなって処理が却って煩雑になるという問題がある。
【0008】
また、所定の非磁性材の活性基に、磁化性のコロイド粒子を結合させて磁化した被磁気分離体とする方法では、非磁性材が所定の活性基(水酸基、アミノ基、カルボキシル基、カルボニル基、フェニル基、スルホ基またはニトロ基など)を有していなければ磁気分離できず、被分離物質が磁化性のコロイド粒子と結合しないものには適用できないという問題がある。
【0009】
周知の吸着剤としては、活性炭やゼオライトなどが挙げられるが、これらは電気的に中性であるから、被分離物質を吸着した後に沈殿、またはろ過などして分離されねばならず、磁気分離という効率の良い選別法を採用できなかった。
【0010】
因みに、活性炭やゼオライトからなる吸着剤そのものを磁化(担磁)しようとすると、これらは化学的に反応点を持たない多孔物質であるので、磁化(担磁)効率が悪く、充分に実用性のある磁性吸着剤を調製できなかった。
【0011】
そこで、本願の磁性吸着剤に係る発明の課題は、上記した問題点を解決して、物理的な吸着性と電磁的な担磁性を併有する磁性吸着媒体にすることであり、また添加効率よく多種類の被分離物質を磁気分離できる磁性吸着剤とし、特に被分離物質がイオン性粒子と結合しない中性の物質である場合にも適用できる磁性吸着剤とすることである。また、このような磁性吸着剤を比較的簡単な手法で確実に得られる製造方法を提案することである。
【0012】
また、本願の磁性吸着剤を用いた水処理方法に係る発明は、前記した問題点を解決して、添加効率よく多種類の被分離物質を磁気分離できる水処理方法とし、しかも被分離物質の溶質または分散質がイオン的に中性の物質である場合にも分離除去できる水処理方法とすることである。
【0013】
【課題を解決するための手段】
上記の課題を解決するために、磁性吸着剤に係る発明では、層状結晶構造を有する粘土鉱物に磁性酸化鉄を化合させた磁性酸化鉄−粘土化合物からなる磁性吸着剤としたのである。
【0014】
上記したように構成されるこの発明の磁性吸着剤は、磁性酸化鉄が、粘土鉱物に化合一体化しているので、粘土鉱物の層状構造を利用して、溶質または分散質などの種々の物質は層間反応(=インターカレーション)による吸着が可能であると共に、磁性酸化鉄による磁性吸着性を有するものである。
【0015】
このような磁性吸着剤は、粘土鉱物の吸着性(層間反応や粘土の多孔性による)を利用しているから、結晶層間や層間上に多種類の物質の化学的吸着や物理的吸着が可能であり、吸着後は磁力によって被分離性のイオン性物質−磁性吸着剤複合体を引きつければ、吸着されなかった物(水などの溶媒)とは分離して選別することができる。
【0016】
この磁性吸着剤を確実に製造するには、第一鉄イオンおよび第二鉄イオンを含有する水溶液に、層状結晶構造を有する粘土鉱物を混合し、塩基性反応条件で磁性酸化鉄−粘土化合物を化成する磁性吸着剤の製造方法を採用することが好ましい。
【0017】
すなわち、第一鉄イオンおよび第二鉄イオンをpH9〜11程度、好ましくはpH10〜11のアルカリ条件で粘土鉱物の存在下で反応させると、粘土鉱物の表面には水酸基や極性の原子などの反応性の高い極性基を有するので、これに磁性酸化鉄(マグネタイト)が化学的に結合した状態で生成し担磁されるものと考えられる。
【0018】
この反応においてできるだけ確実に磁性酸化鉄である四三酸化鉄Fe3O4(=FeO・Fe2O3)を化学合成するためには、第一鉄イオンおよび第二鉄イオンは、2:1のモル比またはこれに近い比率で配合した水溶液で反応させることが好ましい。
【0019】
このようにして磁性酸化鉄の生成反応系内に粘土鉱物を存在させると、この粘土鉱物は単にγ−二三酸化鉄と四三酸化鉄との混合物ではなく、磁性酸化鉄が粘土鉱物と化合して磁性を有する粘土鉱物になる。
【0020】
一方、吸着剤を用いた水処理方法に係る前述の課題を解決するために、層状結晶構造を有する粘土鉱物に磁性酸化鉄を化合させた磁性酸化鉄−粘土化合物からなる磁性吸着剤を、溶質または分散質を含有する被処理水に混合して溶質または分散質を前記磁性吸着剤に吸着させ、その後、磁気分離して水と溶・分散質−磁性吸着剤複合体とを選別する水処理方法としたのである。
【0021】
磁性酸化鉄−粘土化合物は、カチオン性の物質やアニオン性の物質をイオン交換反応などにより結晶層間や層間上に取り込むことができ、かつその磁性によって水から磁気分離することができる。磁気分離は、適宜な手段で磁性を持たせた磁性体と、溶・分散質−磁性吸着剤複合体を分散した被処理水に対して、直接又は間接に接触させることであり、これによって磁性を有する物質と磁性を有しない物質を分離することができ、効率よく水と溶・分散質−磁性吸着剤複合体とを選別できる。
【0022】
このような水処理方法は、被処理水が、重金属、有機物または微生物を含有する水である場合にも採用でき、重金属、有機物または微生物の分離除去または回収が可能である。
【0023】
そして、水処理方法の態様としては、上述したように、被処理水に磁性酸化鉄−粘土化合物を混合する方法があるほか、被処理水中で磁性酸化鉄−粘土化合物を生成させる方法もある。
【0024】
すなわち、この方法は、被処理水に、層状結晶構造を有する粘土鉱物、第一鉄イオンおよび第二鉄イオンを添加混合して塩基性反応条件で反応させ、化成した磁性酸化鉄−粘土化合物からなる磁性吸着剤に溶・分散質を吸着させ、次いで生成した溶・分散質−磁性吸着剤複合体を水から磁気分離する水処理方法である。
【0025】
【発明の実施の形態】
この発明に用いる粘土鉱物は、層状結晶構造を有するものであり、主にフィロケイ酸塩鉱物と称されるものからなる。その結晶構造については、Si−Oの四面体が互いに結合して六角網状の四面体層(T)を形成し、その間に二つの水酸基(OH)と四つの酸素で囲まれた格子点を生じ、ここに金属イオンが配置された八面体層(O)を基本構造として、層状を形成している。
【0026】
この発明に好適に用いられる粘土鉱物としては、1枚のT層が1枚のO層と隣り合っている1:1型(例えばカオリナイト、ハロイサイト、蛇紋岩など)、2枚のT層が1枚のO層と組み合っている2:1型(例えばスメクタイト、バーミキュライト、セリサイト、モンモリロナイト、雲母、緑泥石など)が挙げられ、主としてカチオン性の化合物に適用される。また、主としてアニオン性有機物を交換可能なハイドロタルサイトを用いてもよい。
【0027】
粘土鉱物の吸着性は、以下のような機構により、カチオン性の物質やアニオン性の物質をイオン交換反応によって粘土層内に取り込むことができる。
【0028】
例えば、粘土鉱物であるサポナイトは、八面体構造のアルミノケイ酸塩と四面体構造のケイ酸塩からなる3層構造(2:1構造)を繰り返し単位とする構造である。この層間の表面には、金属イオンの同型置換による層内余剰の負の電荷を補償するために、アルカリ金属イオンが存在する。通常、この金属イオンには、層間水が付随して親水的な表面を与えており、水などの誘電率の高い溶媒には膨潤しやすい傾向にある。
【0029】
このとき、4級アンモニウムイオン(R−N+(CH3)3)やカチオン染料(Dye+)などのカチオン種が系内に存在すれば、この層間イオン(Na+)との間には下記の化1に示す平衡(前者の場合に式(1)、後者の場合に(2))が成立し、新たなカチオン種との交換が可能になる。
【0030】
【化1】
【0031】
このような交換反応によって、粘土とカチオン性化合物との間に有機/無機複合体が生成する。この結合定数はかなり大きく、カチオン種にもよるが、109にも達する場合もある。
【0032】
また、層間にアニオン種を交換可能な粘土としてハイドロタルサイトを使用する場合には、下記の化2に示す平衡が成立し、アニオン性の物質をイオン交換反応により粘土層内に取り込むことができる。
【0033】
【化2】
【0034】
また、粘土鉱物は、たとえばモンモリロナイトは800m2/gというような比較的大きな表面積を有するから、上述したようなイオン性の層間吸着以外にも他の多くの物質を物理的な吸着によって取り込むことが可能である。
【0035】
このような粘土鉱物に対して磁性を持たせるために磁性酸化鉄を化合させるのであるが、通常は、第1鉄イオンと第2鉄イオンの混合溶液にpH9〜11程度、好ましくはpH10〜11となるアルカリを加えると、磁性を帯びた鉄の酸化物(磁鉄鉱)の粉末が得られる。
【0036】
この発明において水溶液に存在させる第1鉄イオンは、2価の鉄塩から供給されるものであり、鉄塩としては硫酸第一鉄、硫酸第一鉄アンモニウムが挙げられる。この発明において水溶液に存在する第2鉄イオンは、3価の鉄塩から供給されるものであり、鉄塩としては硫酸第二鉄、硫酸第二鉄アンモニウム、その他の市販工業薬品の硫酸第二鉄液やポリテツ(商品名)を用いることもできる。
【0037】
そして、このような磁鉄鉱の生成反応系内に粘土鉱物を存在させると、この粘土鉱物は単にγ−二三酸化鉄と四三酸化鉄の混合物ではなく、磁性を有する新規な粘土鉱物である磁性酸化鉄−粘土化合物になる。
【0038】
すなわち、水で充分に膨潤させた粘土の懸濁液に、前もって水で溶解した硫酸第一鉄(FeSO4・7H2O)などの第一鉄塩と、硫酸第二鉄(Fe2(SO4)3・xH2O)などの第二鉄塩とを添加し攪拌する。次いで上部から攪拌しながらゆっくりと10N-KOHを加えたところ、黒褐色に着色した懸濁液が得られる。これを必要に応じて例えば50℃程度に加熱し、約1時間程度の所定時間攪拌し、濾過して採取された沈殿物を再度イオン交換水に懸濁させ、その懸濁液の下方から磁石を近づけて固形物の沈下を促進し、その上澄み液を捨てる操作を繰り返して磁性のある粘土である磁性酸化鉄−粘土化合物が得られる。
【0039】
得られた磁性酸化鉄−粘土化合物を用いて水処理をすることにより、水中に含まれている重金属イオン、希少な元素、有機物(染料、可塑剤など)を吸着させ、周知の磁性分離によって選別できる。
【0040】
また、溶質または分散質を含有する被処理水に、層状結晶構造を有する粘土鉱物、第一鉄イオンおよび第二鉄イオンを添加混合して塩基性反応条件で反応させ、化成した磁性酸化鉄−粘土化合物からなる磁性吸着剤に溶質または分散質を吸着させ、次いで生成した溶・分散質−磁性吸着剤複合体を水から磁気分離する水処理方法であってもよい。
【0041】
水中に含有されている物質量に対して処理のために配合または水中に生成させる磁性酸化鉄−粘土化合物からなる磁性吸着剤の量は、選別する物質の種類と水処理の必要程度に応じて調整すればよく、数値限定をして配合されるものではない。
【0042】
水処理の基本操作は、磁性吸着剤の添加と攪拌と磁石(好ましくは超伝導磁石)を用いた磁力による固液分離であり、吸着速度を適当にするために、被処理水を適宜に加温することが好ましい。
【0043】
【実施例】
磁性吸着剤の合成例1〜3:
〔実施例1〕
粘土(コープケミカル社製:合成スメクタイト)6gを500mlの水に充分膨潤および懸濁させ、この懸濁液に予め準備しておいた硫酸第二鉄水溶液(Fe2(SO4)2・nH2Oの8.3gを水300mlに溶解した水溶液)および硫酸第一鉄水溶液(FeSO4・7H2Oの10gを水30mlに溶解した水溶液)を順次攪拌しながら添加した。その後、10N−KOHを加えてアルカリ性(pH11)に調整し、1時間室温下で攪拌した。これに酸を加えて中性に戻してろ過し、分離した沈殿物を充分に水洗し、80℃で乾燥して12.3gの黒色乾燥物を得た。
【0044】
この乾燥物を乳鉢で擂り潰して粉末化し、これが永久磁石に引き付けられる磁性を有することを確認した。
【0045】
〔実施例2〕
粘土(合成スメクタイト)4gを500mlの水に充分膨潤および懸濁させ、この懸濁液に予め準備しておいた硫酸第二鉄水溶液(Fe2(SO4)2・nH2O 3.7gを水200mlに溶解した水溶液)および硫酸第一鉄水溶液(FeSO4・7H2O 4.5gを水40mlに溶解した水溶液)を順次攪拌しながら添加した。その後は実施例1と全く同様にしてpH調整し、ろ過し、分離、乾燥して11.4gの茶褐色乾燥物を得た。
【0046】
この乾燥物を乳鉢で擂り潰して粉末化し、これが永久磁石に引き付けられる磁性を有することを確認した。
【0047】
〔実施例3〕
アニオン交換用粘土(ハイドロタルサイト)(協和化学社製:KW-1100)6gを100mlの水に充分膨潤および懸濁させ、この懸濁液に予め準備しておいた硫酸第二鉄水溶液(Fe2(SO4)2・nH2O 8.3gを水300mlに溶解した水溶液)および硫酸第一鉄水溶液(FeSO4・7H2O 10.0gを水100mlに溶解した水溶液)を順次攪拌しながら添加した。その後は実施例1と全く同様にしてpH調整し、ろ過し、分離、乾燥して12.1gの黒色乾燥物を得た。
【0048】
この乾燥物を乳鉢で擂り潰して粉末化し、これが永久磁石に引き付けられる磁性を有することを確認した。
【0049】
次に、実施例1,2に対する吸着性試験を行なった。
【0050】
[メチレンブルー(MB)の吸着性試験]
50mlのメスフラスコを複数個用意し、実施例1または実施例2の磁性吸着剤の所定量(約10mg〜約250mg)を精密に秤量して入れ、着色物質としてメチレンブルー(MB)の4×10-4M水溶液を入れて50mlとし、数日間の放置後のMB濃度と磁性吸着剤の使用量との関係を調べて図1のグラフに示した(実施例1=a、実施例2=b)。
【0051】
図1の結果からも明らかなように、実施例2の磁性吸着剤(第1鉄成分の添加割合が粘土の1.1倍)は、実施例1(第1鉄成分の添加割合が粘土の1.7倍)に比べてその吸着効率が良いことがわかる。
【0052】
また、実施例1、実施例2またはブランク(未処理のスメクタイト)からなる磁性吸着剤のMB飽和吸着量(カチオン交換容量CECに相当する。)を示す吸着等温線を図2のグラフにそれぞれa,b,cに示した。
【0053】
図2の結果からも明らかなように、磁性吸着剤を調製時の第1鉄イオンの粘土に対する配合割合によりカチオン交換容量(CEC)が異なっている。第1鉄イオン成分を粘土の1.7倍配合した実施例1(図2中の記号a)では、CEC=38meq/100g-clayであり、未処理の粘土ではCEC=101meq/100g-clayに比べて小さいが、第1鉄イオン成分を粘土の1.1倍配合した実施例2(図2中の記号b)では、CEC=78meq/100g-clayであった。
【0054】
また、実施例1では80mg、実施例2では50mgの磁性吸着剤で完全にMBが脱色された。また、染料を吸着した実施例1,2の磁性吸着剤は、磁石に引き付けられることを確認した。
【0055】
次に、実施例3に対する吸着性試験を行なった。
【0056】
[オレンジIIに対する吸着性試験]
50mlのメスフラスコを複数個用意し、実施例3の磁性吸着剤の所定量(0〜0.5g)を精密に秤量して入れ、着色物質としてオレンジIIの2×10-3M水溶液を入れて50mlとし、数日間の放置後のオレンジIIの濃度と磁性吸着剤の使用量との関係を調べて図3のグラフに示した。
【0057】
また、実施例3の磁性吸着剤のオレンジII飽和吸着量の吸着等温線を図4のグラフに示し、磁性吸着剤として使用に耐えるものであることを確認した。なお、オレンジIIのアニオン交換容量AECは、この濃度範囲を超えて存在している。
【0058】
[カドミウムに対する吸着性試験]
1000ppmのカドミウム標準溶液を調製し、一定量の実施例3の磁性吸着剤を入れた50ml容量のメスフラスコに前記溶液を入れ、時々攪拌しながら一晩放置し、これをろ過した。分取した濾液のカドミウムイオン量を原子吸光分析にて測定し、実施例3の磁性吸着剤の吸着効率が95〜100%であることを確認した。
【0059】
[イオン的に中性の物質に対する吸着性試験]
活栓付き試験管にイオン的に中性のハロゲン化合物であるp−ジクロルベンゼンを含む水溶液15ml(1.67×10-3M)を入れ、これに実施例3の磁性吸着剤(Fe3O4/ハイドロタルサイト)100mgを加え、25℃、24時間の試料攪拌を行なう吸着試験を行なった。この試験前後の試料を液体高速クロマトグラフィー(HLPC)測定にてジクロルベンゼン量を調べたところ、試験後には86%が吸着されていることが判明した。
【0060】
〔実施例4〕
水200mlに膨潤させた粘土(スメクタイト)4gと被分離物質であるメチレンブルー(MB)の2.0×10-3M水溶液100mlを混合し、攪拌しながら水に溶解した硫酸第二鉄(Fe2(SO4)2・nH2O)3.7gおよび硫酸第一鉄(FeSO4・7H2O)を4.5gを順次添加した。次いで、10N−KOHを加えてアルカリ性(pH11)に調整したところ、黒色の沈殿物が認められた。この懸濁した黒色の沈殿物は、磁石に引き寄せられるものであり、またその上澄み液は無色透明であった。このことは、溶質を含む被処理水に、粘土、硫酸第二鉄、硫酸第一鉄およびアルカリ成分を加えることによって、被処理水内で溶質・磁性吸着剤複合体を生成し得たことを示している。
【0061】
このように磁性吸着剤を用いることにより、廃水中のイオン性物質や中性物質、その他の有機物や重金属類は、効率よく捕捉され、好ましくは磁気分離手段として超伝導磁石を利用することによって大量の廃水を浄化処理することも可能となり、これにより水処理施設の効率的な運用、水処理コストの低減を図れることが期待できる。
【0062】
【発明の効果】
この発明は、以上説明したように、磁性酸化鉄−粘土化合物からなる磁性吸着剤としたので、物理的な吸着性と電磁的な担磁性を併有する磁性吸着剤になり、また添加効率よく多種類の被分離物質を磁気分離できる磁性吸着剤となり、特に被分離物質がイオン性粒子と結合しない中性の物質である場合にも適用できる磁性吸着剤になる利点がある。
【0063】
また、第一鉄イオンおよび第二鉄イオンを含有する水溶液に、層状結晶構造を有する粘土鉱物を混合し、塩基性反応条件で磁性酸化鉄−粘土化合物を化成するので、前記利点を有する磁性吸着剤を比較的簡単な手法で確実に得られる製造方法になる。
【0064】
また、溶質または分散質を含有する被処理水に磁性吸着剤を混合し、この被処理水を磁気分離して水と溶・分散質−磁性吸着剤複合体とを選別するか、または被処理水中で磁性酸化鉄−粘土化合物を生成させて、溶・分散質を吸着させ、この被処理水を磁気分離するようにしたので、効率よく多種類の被分離物質を簡単に磁気分離できる水処理方法となり、しかも被分離物質がイオン的に中性の物質である場合にも分離除去できる水処理方法である。
【図面の簡単な説明】
【図1】メチレンブルー濃度と磁性粘土(吸着剤)の使用量との関係を示す図表
【図2】磁性粘土(吸着剤)のメチレンブルー飽和吸着量を示す等温線を示す図表
【図3】オレンジII濃度と磁性粘土(吸着剤)の使用量との関係を示す図表
【図4】磁性粘土(吸着剤)のオレンジII飽和吸着量を示す等温線を示す図表[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic adsorbent capable of adsorbing an ionic substance dissolved or dispersed in water and magnetically separating it, a method for producing the same, and a water treatment method using the magnetic adsorbent.
[0002]
[Prior art]
Common clay minerals have Al 3+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 3+ , Mg 2+ , Ca 2+ , K + , and Na + as chemical main components, and the crystal structure is Si Most of the phyllosilicate minerals in which -O tetrahedrons are bonded to each other to form a layer form, and exchange ions such as Ca, K, and Na are coordinated on the interlayer and the fracture surface of the crystal. Therefore, the ionic substance in contact therewith is adsorbed so as to be substituted for these ions.
[0003]
Due to such ion exchange properties, clay minerals having a layered crystal structure called phyllosilicate minerals adsorb ionic substances in solutions such as water, and organic materials such as metals and other dyes are adsorbed by the layered crystal structure. Many substances, including those, are physically and chemically adsorbed between the layers.
[0004]
By the way, as one of the water treatment technologies, when the substance to be separated from water is a non-magnetic material, magnetic powder is mixed with the water to be treated, a polymer flocculant is added, and the mixture is stirred. A method is known in which a separation substance is formed into a floc containing magnetic powder and magnetically separated.
[0005]
In addition, a technique in which a colloidal particle of iron (II) hydroxide is bonded to a predetermined active group such as a non-magnetic material, and at least a part of the colloidal particle is oxidized and magnetized to form a magnetic separator. Is known (see Patent Document 1).
[0006]
[Patent Document 1]
JP 2002-210311 A (Claims, paragraph numbers 0001 to 0040)
[0007]
[Problems to be solved by the invention]
However, among the conventional techniques described above, in the method of magnetically separating the substance to be separated in the form of a floc containing magnetic powder, a large amount of flocculant and magnetic powder must be added to the substance to be separated. In some cases, the amount of the additive is larger than the amount of the substance to be separated, which causes a problem that the processing amount after aggregation is increased and the processing becomes complicated.
[0008]
Further, in a method of forming a magnetized magnetic separator by bonding magnetizable colloidal particles to an active group of a predetermined nonmagnetic material, the nonmagnetic material has a predetermined active group (hydroxyl group, amino group, carboxyl group, carbonyl group). Group, a phenyl group, a sulfo group, a nitro group, etc.) cannot be magnetically separated and cannot be applied to those in which the substance to be separated does not bind to the magnetizable colloidal particles.
[0009]
Well-known adsorbents include activated carbon and zeolite, but these are electrically neutral, so they must be separated by adsorption or filtration after adsorbing the substance to be separated, which is called magnetic separation. An efficient sorting method could not be adopted.
[0010]
By the way, when trying to magnetize (magnetizing) the adsorbent itself made of activated carbon or zeolite, these are porous materials that do not have a chemically reactive point, so the magnetization (magnetizing) efficiency is poor and they are sufficiently practical. A magnetic adsorbent could not be prepared.
[0011]
Therefore, an object of the invention relating to the magnetic adsorbent of the present application is to solve the above-described problems and to make a magnetic adsorbing medium having both physical adsorbability and electromagnetic magnetism, and also with high addition efficiency. A magnetic adsorbent capable of magnetically separating many kinds of substances to be separated, particularly a magnetic adsorbent applicable even when the substance to be separated is a neutral substance that does not bind to ionic particles. Another object of the present invention is to propose a production method capable of reliably obtaining such a magnetic adsorbent by a relatively simple method.
[0012]
In addition, the invention relating to the water treatment method using the magnetic adsorbent of the present application solves the above-described problems, and provides a water treatment method capable of magnetically separating many kinds of substances to be separated efficiently. The water treatment method can separate and remove even when the solute or dispersoid is an ionically neutral substance.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, in the invention relating to the magnetic adsorbent, the magnetic adsorbent is made of a magnetic iron oxide-clay compound obtained by combining magnetic iron oxide with a clay mineral having a layered crystal structure.
[0014]
In the magnetic adsorbent of the present invention configured as described above, since magnetic iron oxide is compounded and integrated with the clay mineral, various substances such as solutes or dispersoids can be obtained using the layered structure of the clay mineral. Adsorption by an interlayer reaction (= intercalation) is possible, and it has magnetic adsorptivity by magnetic iron oxide.
[0015]
Since these magnetic adsorbents use the adsorptivity of clay minerals (due to interlayer reaction and clay porosity), it is possible to perform chemical and physical adsorption of many kinds of substances between crystal layers and between layers. After adsorption, if the separable ionic substance-magnetic adsorbent complex is attracted by magnetic force, it can be separated and separated from the non-adsorbed substance (solvent such as water).
[0016]
In order to reliably produce this magnetic adsorbent, a clay mineral having a layered crystal structure is mixed with an aqueous solution containing ferrous ions and ferric ions, and a magnetic iron oxide-clay compound is formed under basic reaction conditions. It is preferable to employ a method for producing a magnetic adsorbent for chemical conversion.
[0017]
That is, when ferrous ions and ferric ions are reacted in the presence of clay minerals under alkaline conditions of about pH 9-11, preferably pH 10-11, reaction of hydroxyl groups and polar atoms on the surface of the clay minerals. Since it has a highly polar group, it is considered that magnetic iron oxide (magnetite) is generated and magnetized in a chemically bonded state.
[0018]
In order to chemically synthesize iron iron tetroxide Fe 3 O 4 (= FeO · Fe 2 O 3 ), which is as reliable as possible in this reaction, ferrous ions and ferric ions are 2: 1 It is preferable to make it react with the aqueous solution mix | blended by the molar ratio of this, or the ratio close | similar to this.
[0019]
When the clay mineral is present in the reaction system for the production of magnetic iron oxide in this way, this clay mineral is not simply a mixture of γ-iron trioxide and iron tetroxide, but the magnetic iron oxide is combined with the clay mineral. It becomes a clay mineral with magnetism.
[0020]
On the other hand, in order to solve the above-mentioned problems related to the water treatment method using an adsorbent, a magnetic adsorbent comprising a magnetic iron oxide-clay compound obtained by combining magnetic iron oxide with a clay mineral having a layered crystal structure is used as a solute. Alternatively, water treatment is performed by mixing with water to be treated containing dispersoids, adsorbing the solute or dispersoid on the magnetic adsorbent, and then separating the water and the solute / dispersoid-magnetic adsorbent complex by magnetic separation. It was a method.
[0021]
The magnetic iron oxide-clay compound can incorporate a cationic substance or an anionic substance between crystal layers or between layers by an ion exchange reaction or the like, and can be magnetically separated from water by its magnetism. Magnetic separation is a direct or indirect contact with a magnetic material provided with magnetism by an appropriate means and water to be treated in which a dissolved / dispersoid-magnetic adsorbent complex is dispersed. Thus, it is possible to separate a substance having a magnetic property and a substance having no magnetism, and efficiently select water and a dissolved / dispersed substance-magnetic adsorbent complex.
[0022]
Such a water treatment method can also be adopted when the water to be treated is water containing heavy metals, organic substances or microorganisms, and it is possible to separate or remove heavy metals, organic substances or microorganisms.
[0023]
And as an aspect of the water treatment method, as described above, there is a method of mixing a magnetic iron oxide-clay compound in the water to be treated, and a method of generating a magnetic iron oxide-clay compound in the water to be treated.
[0024]
That is, in this method, a clay mineral having a layered crystal structure, ferrous ions and ferric ions are added to and mixed with water to be treated and reacted under basic reaction conditions. This is a water treatment method in which a solute / dispersoid is adsorbed to a magnetic adsorbent, and the resulting solute / dispersoid-magnetic adsorbent complex is magnetically separated from water.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The clay mineral used in the present invention has a layered crystal structure, and is mainly composed of what is called a phyllosilicate mineral. As for the crystal structure, Si—O tetrahedrons are bonded to each other to form a hexagonal network tetrahedron layer (T), and a lattice point surrounded by two hydroxyl groups (OH) and four oxygens is formed between them. A layered structure is formed with an octahedral layer (O) in which metal ions are arranged as a basic structure.
[0026]
Clay minerals suitably used in the present invention include a 1: 1 type (for example, kaolinite, halloysite, serpentinite, etc.) in which one T layer is adjacent to one O layer, and two T layers. Examples include 2: 1 type (for example, smectite, vermiculite, sericite, montmorillonite, mica, chlorite, etc.) combined with one O layer, and are mainly applied to cationic compounds. Moreover, you may use the hydrotalcite which can mainly exchange an anionic organic substance.
[0027]
As for the adsorptivity of clay minerals, a cationic substance or an anionic substance can be taken into the clay layer by an ion exchange reaction by the following mechanism.
[0028]
For example, saponite, which is a clay mineral, has a structure having a repeating unit of a three-layer structure (2: 1 structure) composed of an octahedral aluminosilicate and a tetrahedral silicate. Alkali metal ions are present on the surface between the layers in order to compensate for excess negative charges in the layer due to isomorphous substitution of metal ions. Usually, this metal ion is accompanied by interlayer water to give a hydrophilic surface and tends to swell in a solvent having a high dielectric constant such as water.
[0029]
At this time, if a cation species such as a quaternary ammonium ion (R—N + (CH 3 ) 3 ) or a cationic dye (Dye + ) is present in the system, the interlayer ion (Na + ) is The equilibrium shown in Chemical Formula 1 (equation (1) in the former case and (2) in the latter case) is established, and exchange with a new cation species becomes possible.
[0030]
[Chemical 1]
[0031]
By such an exchange reaction, an organic / inorganic composite is formed between the clay and the cationic compound. This binding constant is quite large and may reach as high as 10 9 depending on the cationic species.
[0032]
In addition, when hydrotalcite is used as a clay capable of exchanging anion species between layers, the equilibrium shown in the following
[0033]
[Chemical 2]
[0034]
Moreover, since clay minerals have a relatively large surface area such as montmorillonite, for example, 800 m 2 / g, many other substances can be incorporated by physical adsorption in addition to ionic interlayer adsorption as described above. Is possible.
[0035]
In order to give magnetism to such a clay mineral, magnetic iron oxide is combined. Usually, the pH is about 9 to 11, preferably 10 to 11, in a mixed solution of ferrous ions and ferric ions. When an alkali is added, a magnetic iron oxide (magnetite) powder is obtained.
[0036]
In this invention, the ferrous ion to be present in the aqueous solution is supplied from a divalent iron salt, and examples of the iron salt include ferrous sulfate and ferrous ammonium sulfate. In this invention, the ferric ion present in the aqueous solution is supplied from a trivalent iron salt. As the iron salt, ferric sulfate, ferric ammonium sulfate, and other commercially available industrial chemicals such as ferric sulfate. An iron solution or polytetsu (trade name) can also be used.
[0037]
When clay minerals are present in such a magnetite formation reaction system, this clay mineral is not simply a mixture of γ-triiron tetroxide and ferrotrioxide, but is a novel magnetic clay mineral. Becomes an iron oxide-clay compound.
[0038]
That is, ferrous sulfate such as ferrous sulfate (FeSO 4 · 7H 2 O) previously dissolved in water and ferric sulfate (Fe 2 (SO 2 )) in a clay suspension sufficiently swollen with water. 4 ) Add ferric salt such as 3 · xH 2 O) and stir. Next, 10N-KOH is slowly added with stirring from above, and a black-brown colored suspension is obtained. If necessary, this is heated to, for example, about 50 ° C., stirred for a predetermined time of about 1 hour, filtered, and the collected precipitate is suspended in ion-exchanged water again. The magnetic iron oxide-clay compound, which is a magnetic clay, is obtained by repeating the operation of bringing the solids close to accelerate the sedimentation of the solid and discarding the supernatant.
[0039]
Water treatment using the obtained magnetic iron oxide-clay compound adsorbs heavy metal ions, rare elements and organic substances (dyes, plasticizers, etc.) contained in the water and selects them by well-known magnetic separation. it can.
[0040]
In addition, a clay mineral having a layered crystal structure, ferrous ions and ferric ions are added to and mixed with water to be treated containing a solute or a dispersoid and reacted under basic reaction conditions to form a formed magnetic iron oxide- A water treatment method may be used in which a solute or a dispersoid is adsorbed on a magnetic adsorbent composed of a clay compound, and then the generated solute / dispersoid-magnetic adsorbent complex is magnetically separated from water.
[0041]
The amount of magnetic adsorbent composed of magnetic iron oxide-clay compound formulated for treatment or generated in water with respect to the amount of substance contained in water depends on the type of substance to be selected and the required degree of water treatment. What is necessary is just to adjust, and it does not mix | blend by limiting a numerical value.
[0042]
The basic operation of water treatment is the addition of magnetic adsorbent, agitation, and solid-liquid separation by magnetic force using a magnet (preferably a superconducting magnet). It is preferable to warm.
[0043]
【Example】
Synthesis examples 1 to 3 of magnetic adsorbent:
[Example 1]
6 g of clay (manufactured by Co-op Chemical Co., Ltd .: synthetic smectite) was sufficiently swollen and suspended in 500 ml of water, and a ferric sulfate aqueous solution (Fe 2 (SO 4 ) 2 .nH 2 prepared beforehand in this suspension. An aqueous solution in which 8.3 g of O was dissolved in 300 ml of water) and an aqueous ferrous sulfate solution (an aqueous solution in which 10 g of FeSO 4 .7H 2 O was dissolved in 30 ml of water) were sequentially added with stirring. Thereafter, 10N-KOH was added to adjust to alkaline (pH 11), and the mixture was stirred at room temperature for 1 hour. The solution was neutralized by adding acid thereto, filtered, and the separated precipitate was sufficiently washed with water and dried at 80 ° C. to obtain 12.3 g of a black dried product.
[0044]
The dried product was ground and powdered in a mortar, and it was confirmed that it had magnetism that was attracted to a permanent magnet.
[0045]
[Example 2]
Sufficiently swell and suspend 4 g of clay (synthetic smectite) in 500 ml of water, and 3.7 g of ferric sulfate aqueous solution (Fe 2 (SO 4 ) 2 · nH 2 O prepared in advance in this suspension An aqueous solution dissolved in 200 ml) and an aqueous ferrous sulfate solution (an aqueous solution in which 4.5 g of FeSO 4 .7H 2 O was dissolved in 40 ml of water) were sequentially added. Thereafter, the pH was adjusted in the same manner as in Example 1, filtered, separated, and dried to obtain 11.4 g of a brown dried product.
[0046]
The dried product was ground and powdered in a mortar, and it was confirmed that it had magnetism that was attracted to a permanent magnet.
[0047]
Example 3
Anion-exchange clay (hydrotalcite) (Kyowa Chemical Co., Ltd .: KW-1100) 6 g was sufficiently swollen and suspended in 100 ml of water, and a ferric sulfate aqueous solution (Fe 2 (SO 4 ) 2 · nH 2 O (aqueous solution in which 8.3 g was dissolved in 300 ml of water) and ferrous sulfate aqueous solution (aqueous solution in which 10.0 g of FeSO 4 · 7H 2 O was dissolved in 100 ml of water) were sequentially added with stirring. . Thereafter, the pH was adjusted in the same manner as in Example 1, filtered, separated and dried to obtain 12.1 g of a black dried product.
[0048]
The dried product was ground and powdered in a mortar, and it was confirmed that it had magnetism that was attracted to a permanent magnet.
[0049]
Next, the adsorptivity test for Examples 1 and 2 was performed.
[0050]
[Adsorption test of methylene blue (MB)]
A plurality of 50 ml volumetric flasks are prepared, and a predetermined amount (about 10 mg to about 250 mg) of the magnetic adsorbent of Example 1 or Example 2 is precisely weighed and added, and 4 × 10 4 of methylene blue (MB) is used as a coloring substance. -4 M solution was added to make 50 ml, and the relationship between the MB concentration after standing for several days and the amount of magnetic adsorbent used was examined and shown in the graph of FIG. 1 (Example 1 = a, Example 2 = b) ).
[0051]
As is clear from the results of FIG. 1, the magnetic adsorbent of Example 2 (addition ratio of ferrous component is 1.1 times that of clay) is the same as that of Example 1 (addition ratio of ferrous component is clay). It can be seen that the adsorption efficiency is better than (1.7 times).
[0052]
Further, the adsorption isotherm indicating the MB saturated adsorption amount (corresponding to the cation exchange capacity CEC) of the magnetic adsorbent comprising Example 1, Example 2 or blank (untreated smectite) is shown in the graph of FIG. , B, c.
[0053]
As is clear from the results of FIG. 2, the cation exchange capacity (CEC) varies depending on the blending ratio of ferrous ions to clay when the magnetic adsorbent is prepared. In Example 1 (symbol a in FIG. 2) in which the ferrous ion component was mixed with 1.7 times the clay, CEC = 38 meq / 100 g-clay, and in the untreated clay, CEC = 101 meq / 100 g-clay. Although smaller than that in Example 2 (symbol b in FIG. 2) in which the ferrous ion component was blended 1.1 times as much as clay, CEC = 78 meq / 100 g-clay.
[0054]
Also, MB was completely decolorized with 80 mg of magnetic adsorbent in Example 1 and 50 mg of Example 2. It was also confirmed that the magnetic adsorbents of Examples 1 and 2 that adsorbed the dye were attracted to the magnet.
[0055]
Next, the adsorptivity test for Example 3 was performed.
[0056]
[Adsorption test for Orange II]
Prepare a plurality of 50 ml volumetric flasks, precisely weigh the predetermined amount (0-0.5 g) of the magnetic adsorbent of Example 3, and add 2 × 10 −3 M aqueous solution of Orange II as a coloring substance. The relationship between the concentration of Orange II after standing for several days and the amount of magnetic adsorbent used was examined and shown in the graph of FIG.
[0057]
Further, the adsorption isotherm of the orange II saturated adsorption amount of the magnetic adsorbent of Example 3 is shown in the graph of FIG. 4, and it was confirmed that the magnetic adsorbent can be used as a magnetic adsorbent. The anion exchange capacity AEC of Orange II exists beyond this concentration range.
[0058]
[Adsorption test for cadmium]
A 1000 ppm cadmium standard solution was prepared, and the solution was placed in a 50 ml volumetric flask containing a certain amount of the magnetic adsorbent of Example 3 and allowed to stand overnight with occasional stirring, followed by filtration. The amount of cadmium ions in the collected filtrate was measured by atomic absorption analysis, and it was confirmed that the adsorption efficiency of the magnetic adsorbent of Example 3 was 95 to 100%.
[0059]
[Adsorption test for ionically neutral substances]
A test tube with a stopcock was charged with 15 ml (1.67 × 10 −3 M) of an aqueous solution containing p-dichlorobenzene, which is an ionically neutral halogen compound, and the magnetic adsorbent of Example 3 (Fe 3 O) was added thereto. 4 / hydrotalcite) 100 mg was added, and an adsorption test was performed in which the sample was stirred for 24 hours at 25 ° C. When the amount of dichlorobenzene was examined by liquid high performance chromatography (HLPC) measurement for the sample before and after the test, it was found that 86% was adsorbed after the test.
[0060]
Example 4
4 g of clay (smectite) swollen in 200 ml of water and 100 ml of a 2.0 × 10 −3 M aqueous solution of methylene blue (MB) as a substance to be separated were mixed, and ferric sulfate (Fe 2) dissolved in water with stirring. 3.7 g of (SO 4 ) 2 · nH 2 O) and 4.5 g of ferrous sulfate (FeSO 4 · 7H 2 O) were sequentially added. Next, 10N-KOH was added to adjust to alkaline (pH 11), and a black precipitate was observed. This suspended black precipitate was attracted to the magnet, and the supernatant was colorless and transparent. This means that by adding clay, ferric sulfate, ferrous sulfate, and alkali components to the water to be treated containing the solute, a solute / magnetic adsorbent complex could be generated in the water to be treated. Show.
[0061]
By using a magnetic adsorbent in this way, ionic substances, neutral substances, other organic substances and heavy metals in wastewater are efficiently captured, and preferably by using a superconducting magnet as a magnetic separation means. It is also possible to purify the wastewater, which can be expected to reduce the water treatment costs and the efficient operation of the water treatment facility.
[0062]
【The invention's effect】
As described above, since the present invention is a magnetic adsorbent comprising a magnetic iron oxide-clay compound, it becomes a magnetic adsorbent having both physical adsorptivity and electromagnetic magnetism, and has a high addition efficiency. There is an advantage in that it becomes a magnetic adsorbent that can magnetically separate different types of substances to be separated, and in particular, can be applied even when the substance to be separated is a neutral substance that does not bind to ionic particles.
[0063]
In addition, a clay mineral having a layered crystal structure is mixed with an aqueous solution containing ferrous ions and ferric ions, and a magnetic iron oxide-clay compound is formed under basic reaction conditions. It becomes a manufacturing method which can obtain an agent reliably by a comparatively simple method.
[0064]
Further, a magnetic adsorbent is mixed with water to be treated containing a solute or a dispersoid, and the water to be treated is magnetically separated to select water and a solute / dispersoid-magnetic adsorbent complex, or to be treated. Since the magnetic iron oxide-clay compound is generated in water to adsorb solutes and dispersoids and magnetically separate the water to be treated, the water treatment can efficiently and easily separate many kinds of substances to be separated. This is a water treatment method that can be separated and removed even when the substance to be separated is an ionically neutral substance.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the concentration of methylene blue and the amount of magnetic clay (adsorbent) used. FIG. 2 is a graph showing an isotherm indicating the saturated adsorption amount of methylene blue of magnetic clay (adsorbent). Chart showing the relationship between concentration and amount of magnetic clay (adsorbent) used. [Figure 4] Chart showing an isotherm showing the amount of saturated adsorption of Orange II on magnetic clay (adsorbent).
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002285492A JP4015520B2 (en) | 2002-09-30 | 2002-09-30 | Magnetic adsorbent, method for producing the same, and water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002285492A JP4015520B2 (en) | 2002-09-30 | 2002-09-30 | Magnetic adsorbent, method for producing the same, and water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004121890A JP2004121890A (en) | 2004-04-22 |
JP4015520B2 true JP4015520B2 (en) | 2007-11-28 |
Family
ID=32278782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002285492A Expired - Lifetime JP4015520B2 (en) | 2002-09-30 | 2002-09-30 | Magnetic adsorbent, method for producing the same, and water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4015520B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5110463B2 (en) * | 2007-03-09 | 2012-12-26 | 独立行政法人産業技術総合研究所 | Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism |
DE102008062299A1 (en) | 2008-12-15 | 2010-06-17 | Süd-Chemie AG | Process for the treatment of nitrogen-contaminated wastewater |
CN101648745B (en) * | 2009-09-04 | 2012-01-11 | 宇星科技发展(深圳)有限公司 | Magnetic seed filler taking sludge as main raw material and preparation method thereof |
JP2011056483A (en) * | 2009-09-14 | 2011-03-24 | Kajima Corp | Method and system for treating heavy metal contaminated water |
CN102531094B (en) * | 2012-02-13 | 2013-12-18 | 扬州大学 | Treatment method of wastewater containing heavy metal ions or phosphorus |
CA2919827A1 (en) * | 2013-12-03 | 2015-06-11 | Kyowa Chemical Industry Co., Ltd. | Magnetic hydrotalcite composite and production method thereof |
CN104399431B (en) * | 2014-12-02 | 2017-02-22 | 兰州理工大学 | Amino-modified and thiol-group-modified magnetic carbon nanotube composite material and preparation method thereof |
CN107381869B (en) * | 2017-08-21 | 2020-11-06 | 北京市畜牧业环境监测站 | Method for treating methylene blue wastewater |
JP7116952B2 (en) * | 2018-05-02 | 2022-08-12 | 広島県公立大学法人 | Method and apparatus for preparing object to be processed and method and apparatus for treating object to be processed |
CN111871377A (en) * | 2020-06-30 | 2020-11-03 | 西北大学 | Composite modified montmorillonite magnetic adsorbent, preparation method and application thereof |
CN114773121B (en) * | 2022-05-25 | 2023-04-25 | 云南天腾化工有限公司 | Anti-caking agent for nitro compound fertilizer, and preparation method and application thereof |
-
2002
- 2002-09-30 JP JP2002285492A patent/JP4015520B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004121890A (en) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Uddin | A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade | |
Fayazi et al. | Synthesis of novel sepiolite–iron oxide–manganese dioxide nanocomposite and application for lead (II) removal from aqueous solutions | |
Reddy et al. | Spinel ferrite magnetic adsorbents: alternative future materials for water purification? | |
Bosco et al. | Removal of Mn (II) and Cd (II) from wastewaters by natural and modified clays | |
Hashemian et al. | Adsorption of cobalt (II) from aqueous solutions by Fe 3 O 4/bentonite nanocomposite | |
CA2741778C (en) | Liquid purification using magnetic nanoparticles | |
Shi et al. | Use of carboxyl functional magnetite nanoparticles as potential sorbents for the removal of heavy metal ions from aqueous solution | |
Darder et al. | Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake | |
JP5674952B2 (en) | Magnetite-bernite mixture, synthesis method thereof and water treatment method | |
Irannajad et al. | Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics, and kinetics studies | |
JP4015520B2 (en) | Magnetic adsorbent, method for producing the same, and water treatment method | |
JP2005137973A (en) | Magnetic adsorbent, its manufacturing method and water treatment method | |
US20170266670A1 (en) | Liquid purification using magnetic nanoparticles | |
JP5250140B1 (en) | Magnetic adsorbent particles | |
JP4121419B2 (en) | Clay-based magnetic adsorbent and method for producing the same | |
Ivanets et al. | Effect of Mg2+ ions on competitive metal ions adsorption/desorption on magnesium ferrite: Mechanism, reusability and stability studies | |
CN108889266A (en) | A kind of magnetism Mg-Al composite oxide and its preparation method and application | |
El-Denglawey et al. | Tertiary nanocomposites of metakaolinite/Fe3O4/SBA-15 nanocomposite for the heavy metal adsorption: isotherm and kinetic study | |
Liu et al. | The adsorption of arsenic on magnetic iron oxide in aqueous solutions | |
Motallebi et al. | Fabrication of superparamagnetic adsorbent based on layered double hydroxide as effective nanoadsorbent for removal of Sb (III) from water samples | |
Intachai et al. | Efficient removal of both anionic and cationic dyes by activated carbon/NiFe-layered double oxide | |
Nithya et al. | In situ synthesis of mesostructured iron oxide nanoparticles embedded in L. camara: adsorption insights and modeling studies | |
Kurniawan et al. | Natural clays/clay minerals and modified forms for heavy metals removal | |
Naglah et al. | Application of nanosized zeolite X modified with glutamic acid as a novel composite for the efficient removal of Co (II) ions from aqueous media | |
Bao et al. | Iron-containing nanominerals for sustainable phosphate management: A comprehensive review and future perspectives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070913 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110921 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120921 Year of fee payment: 5 |