JPS59162762A - Spherical motor - Google Patents

Spherical motor

Info

Publication number
JPS59162762A
JPS59162762A JP58035081A JP3508183A JPS59162762A JP S59162762 A JPS59162762 A JP S59162762A JP 58035081 A JP58035081 A JP 58035081A JP 3508183 A JP3508183 A JP 3508183A JP S59162762 A JPS59162762 A JP S59162762A
Authority
JP
Japan
Prior art keywords
pole
magnetic flux
spherical
shell
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58035081A
Other languages
Japanese (ja)
Inventor
Masahiro Tanmachi
反町 誠宏
Joji Amitani
網谷 譲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58035081A priority Critical patent/JPS59162762A/en
Publication of JPS59162762A publication Critical patent/JPS59162762A/en
Priority to US06/788,653 priority patent/US4707642A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0258Two-dimensional joints
    • B25J17/0275Universal joints, e.g. Hooke, Cardan, ball joints
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/20Motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To move a movable member in three-dimensional manner by providing the member and a guide member at least at one of a supporting members for supporting the movable member. CONSTITUTION:A spherical bearing is composed of a sphere 51 and a spherical bearing 52. A shell-shaped pattern member 55 is continued to a supporting shaft 54, and a shell-shaped drive member 56 is coupled to a movable shaft 53. A communication of force between the shaft 54 and the shaft 53 is performed at the spherical bearing. The drive and the control between the shafts 54 and 53 are performed by a pattern formed outside the member 55 (front surface) and the pole of the inside of the member 56 (back surface).

Description

【発明の詳細な説明】 技術分野 本発明は、簡単な構成でダイレクトに6次元動作が可能
な球面モータに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a spherical motor that has a simple configuration and is capable of direct six-dimensional operation.

従来技術 従来、リニアパルスモータに関しては、第1図。Conventional technology Regarding the conventional linear pulse motor, FIG.

第2図において、駆動部スライダー101に牢り付けら
れた制御信号線102に電流tを通電することによりス
ケール歯部106上を駆動部スライダー101が移動す
るものである。今、第1図において、■〜■の各モード
の繰り返しによって磁極1〜4の磁束が永久磁石(PM
)の磁束と加減されて駆動部スライダー101とスケー
ル歯部106間の安定位置が順次移り変わるものである
In FIG. 2, the drive slider 101 is moved on the scale teeth 106 by passing a current t through the control signal line 102 connected to the drive slider 101. Now, in Fig. 1, by repeating each mode of ■ to ■, the magnetic flux of magnetic poles 1 to 4 is
), the stable position between the drive section slider 101 and the scale tooth section 106 changes sequentially.

即ち第1図の■拡■モードの場合でAコイルに十箆流を
流すと磁気力は極1において(PM磁束十八へイル磁束
二)最大磁束となり極1が安定位置となる。この場合極
2においては(PM磁束−人コイル磁束=)0磁束、極
6.極4においては磁気力がバランスされた状態にある
。同様にして■モードにおいてBコイルに十電流を流す
と極1゜極2においては磁気カバランス、極6において
は(PM磁束−Bコイル磁束二)0磁束、極4において
は(PMi束十号コイル磁束=)最大磁束となり極4が
安定位置となり、■モードにおいてAコイルに一電流を
流すと極1においては(PM磁束−Aコイル磁束=)0
磁束、極2においては(PM磁束十人コイル磁束=)最
大磁束、極6゜極4においては磁気カバランスされた状
態となり極2が安定位置となり、さらに■モードにおい
てBコイルに一電流を流すと極1.極2においては磁気
カバランス、極6においては(PM&束十Bコイル磁束
二)最大磁束、極4においては(PMffi束−Bコイ
ル磁束=)O磁束となり極6が安定位置となる。
That is, in the case of the (1) expansion mode in FIG. 1, when a ten-point flow is applied to the A coil, the magnetic force becomes the maximum magnetic flux at pole 1 (PM magnetic flux 18, 2 PM magnetic flux), and pole 1 becomes a stable position. In this case, at pole 2, (PM magnetic flux - human coil magnetic flux =) 0 magnetic flux, pole 6. At pole 4, the magnetic forces are in a balanced state. Similarly, when ten currents are passed through the B coil in mode ■, the magnetic flux at pole 1 and pole 2 is magnetic flux, (PM magnetic flux - B coil magnetic flux 2) is 0 magnetic flux at pole 6, and (PMi flux is 10 degrees at pole 4). Coil magnetic flux =) becomes the maximum magnetic flux and pole 4 is at a stable position, and when one current flows through A coil in mode ■, (PM magnetic flux - A coil magnetic flux =) 0 at pole 1.
Magnetic flux, at pole 2 (PM magnetic flux 10 coil magnetic flux =) maximum magnetic flux, pole 6 degrees, at pole 4 it is in a magnetically balanced state and pole 2 is in a stable position, and in addition, one current is passed through B coil in mode ■ and pole 1. At pole 2, there is magnetic flux; at pole 6, the maximum magnetic flux is (PM & flux 1 B coil magnetic flux 2); at pole 4, (PMffi flux - B coil magnetic flux =) O magnetic flux, and pole 6 is at a stable position.

従って、令弟2図に示したように■■■■モードの順に
コイルA−Bに電圧を印加していけば極1・2・6・4
の順に安定位置が順次移り変っていくのでスケール歯部
106に対して駆動部が移動することになる。
Therefore, as shown in Figure 2, if voltage is applied to coils A-B in the order of ■■■■ mode, poles 1, 2, 6, 4
Since the stable position changes sequentially in this order, the drive unit moves relative to the scale tooth portion 106.

即ち、第1図■のようにスケール曲部103間) のピッチをPとすればP/4 (1ステッグ当りの移動
量)で安定状態が移動することになる0第3図は、リニ
アパルスモータの原理を二次元に拡張した2軸回時す=
アモータ(平面モータ)の原理説明図である。即ち平面
板601の表面上、x、夕方向に(例えば正方形の)凸
部、スケール歯部306が基板の目の様に配置されてい
る0上記スケ一ル歯部303に対してX軸、y軸の各々
の方向に制御可能な信号配線(不図示)及び複数の磁極
(不図示)を有する駆動部スライダー302(第1図の
駆動部スライダー101に相当)がX。
In other words, as shown in Figure 1 (■), if the pitch between the scale curved portions 103 is P, the stable state will move at P/4 (the amount of movement per one step). Figure 3 shows the linear pulse Two-axis rotation that extends the principle of a motor to two dimensions =
It is a principle explanatory diagram of an amotor (planar motor). That is, on the surface of the plane plate 601, the scale teeth 306 are arranged like the eyes of the board, and the x-axis is parallel to the scale teeth 303. A drive section slider 302 (corresponding to the drive section slider 101 in FIG. 1) having signal wiring (not shown) and a plurality of magnetic poles (not shown) that can be controlled in each direction of the y-axis is indicated by X.

夕方向に滑らかに移動可能な状態で配置され、X。It is placed so that it can move smoothly in the evening direction, and the X.

夕方向にダイレクトに駆動制御されるものである。The drive is controlled directly in the evening direction.

目   的 本発明は上記リニアモータ及び平面モータを更に発展さ
せ、球面上においてダイレクトに駆動制御させようとす
る全く新しい発想によるものである(このモータを球面
モータと呼ぶことにする)。
Purpose The present invention is based on a completely new idea of further developing the above-mentioned linear motor and planar motor and directly controlling the drive on a spherical surface (this motor will be referred to as a spherical motor).

実施例、効果 本発明の原理の1例を第4図に示す。Examples, effects An example of the principle of the present invention is shown in FIG.

球状の支持台401の表面に、ある立体角内においであ
る規則性を持−った凸状(突起状)のパターン歯部40
3がほぼ球の全表面に渡って配置されている。上記パタ
ーン歯部40ろに対しである間隙(例えば0.1〜0.
3mm位)隔てた空間に、前述第6図に示した駆動部ス
ライダー602に相当する駆動スライダー402が、滑
らかに移動可能な状態に配置されている。
On the surface of the spherical support base 401, a convex (projection-like) pattern tooth portion 40 with a certain regularity within a certain solid angle is formed.
3 are arranged over almost the entire surface of the sphere. A certain gap (for example, 0.1~0.
A drive slider 402, which corresponds to the drive slider 602 shown in FIG. 6, is arranged in a space separated by about 3 mm) so as to be able to move smoothly.

よって第6図乎面モータと同様に球状の支持台401上
、即ち球表面上を自由に6次元的に駆動スライダー40
2が移動制御できるものである。
Therefore, similarly to the plane motor shown in FIG.
2 is one whose movement can be controlled.

又駆動スライダー402をパターン歯部40ろと同心に
して磁極(不図示)を任意なあるパターンで制御するこ
とにより、パターン歯部40ろの球表面上のピッチP’
x’ 、 P y’を任意に選ぶことができる。
Furthermore, by making the drive slider 402 concentric with the pattern teeth 40 and controlling the magnetic poles (not shown) in an arbitrary pattern, the pitch P' of the pattern teeth 40 on the spherical surface can be adjusted.
x' and P y' can be arbitrarily selected.

なお上記パターンは球の中心からのある立体角を仮定し
、その立体角に相当する球表面を決定すれば、球表面全
域に拡大することが可能である0第5図は、本発明によ
る実施例である。
Note that the above pattern can be expanded to the entire spherical surface by assuming a certain solid angle from the center of the sphere and determining the spherical surface corresponding to that solid angle. This is an example.

球51と球状の球面軸受52により、球軸受を構成し、
支持軸54に連結した殻状のパターン部材55及び可動
軸56に連結した殻状の駆動部材56よ構成る。支持軸
54と可動軸56間の力の受は渡しは前記球面軸受で成
され、パターン部材55の外側(表面)のパターンと駆
動部材56の内側(裏面)の磁極間に支持軸、可動軸間
の駆動及び制御を行なう。又、シェル及び球面軸受部の
開口部A、B、Cは支持軸、可動軸の為の非制御域(プ
ツトゾーン)となる。
The ball 51 and the spherical bearing 52 constitute a ball bearing,
It consists of a shell-shaped pattern member 55 connected to a support shaft 54 and a shell-shaped drive member 56 connected to a movable shaft 56. The force between the support shaft 54 and the movable shaft 56 is transferred by the spherical bearing, and the support shaft and the movable shaft are connected between the pattern on the outside (front surface) of the pattern member 55 and the magnetic pole on the inside (back surface) of the drive member 56. Drive and control between. Further, the openings A, B, and C of the shell and the spherical bearing section become uncontrolled areas (put zones) for the support shaft and movable shaft.

パターン部材55のパターン形状を第6図に示す。例え
ば球状のシエへある゛立体角4に関して、その対応する
パターン部材65及び駆動部材66の相互の磁界制御(
座標によるアドレス位置制御)によってダイレクトに駆
動制御可能なものである。
The pattern shape of the pattern member 55 is shown in FIG. For example, regarding the solid angle 4 in a spherical shell, the mutual magnetic field control of the corresponding pattern member 65 and drive member 66 (
The drive can be directly controlled by address position control (coordinate-based address position control).

であれば可動軸56の精度は約10μm位が可能となる
In this case, the accuracy of the movable shaft 56 can be about 10 μm.

第7図は本発明の他の実施例を示す構成説明図である。FIG. 7 is a configuration explanatory diagram showing another embodiment of the present invention.

支持軸74と該支持軸74に連結された球71、には制
御用パターン部材76を有するものによって構成されて
おり、本実施例によれば上記球面軸受の外側にパターン
を配置したことによって、シェルを少な(シ、構造を簡
単に小型化させることが出来る。
The support shaft 74 and the ball 71 connected to the support shaft 74 have a control pattern member 76, and according to this embodiment, by arranging the pattern on the outside of the spherical bearing, With fewer shells, the structure can be easily downsized.

と可動軸86に連結された球面軸受86によって軸受を
構成し、該球状殻85の内側(裏面)と殻状のパターン
部材82によって構成するものである。
A bearing is constituted by a spherical bearing 86 connected to a movable shaft 86, and is constituted by an inner side (back surface) of the spherical shell 85 and a shell-shaped pattern member 82.

本実施例によれば、軸受部を支持軸、可動軸等に比べて
太き(することが出来、高トルク、高出力の球面モータ
ーが可能となる。又パターン部材82への信号配線等を
シェル内側に納めることも可能となる。
According to this embodiment, the bearing part can be made thicker than the support shaft, movable shaft, etc., and a high torque, high output spherical motor is possible. Also, the signal wiring etc. to the pattern member 82 can be It is also possible to store it inside the shell.

なお、以上の実施例において可動部材、支持部材は相対
的なものでちるので、可動部材がパターン部材を有し、
支持部材が駆動部材を有していてもよい。更にシェルに
より、モータの駆動力(例えば重量に対して)を機械的
に補強することが可能となっている。
In addition, in the above embodiments, the movable member and the support member are relative, so the movable member has a pattern member,
The support member may have a drive member. Furthermore, the shell makes it possible to mechanically reinforce the driving force (for example, relative to the weight) of the motor.

以上の如く本発明における、球面モータという全く新し
い概念によって、従来、6次元(6方向)の動き(出力
)に対して、6ケ以上のモータ又はクラッチ等駆動系を
必要としていたのが、ダイレクトにかつ1ケのモータに
よって駆動制御が出来る様になった。
As described above, the completely new concept of the spherical motor in the present invention allows for direct movement, which previously required six or more motors or clutches, etc., for movement (output) in six dimensions (six directions). It became possible to control the drive with just one motor.

以上の事により小型でかつ高精度なアクチュエータとし
て多(の機械装置等に応用可能となった。
As a result of the above, it has become possible to apply it to a wide variety of mechanical devices as a small and highly accurate actuator.

例えばロボットにおける肩或いは手首の関節等に本発明
による球面モータを用いることによって、ロボットのア
ーム或いはハンド部のみで、ダイレクトに6自由度で姿
勢制御することができる様になった。他の例としては、
人間の目と同様な動きをするロボットの眼の姿勢制御等
、ロボットに限らず応用面は多大なものがある。
For example, by using the spherical motor according to the present invention in the shoulder or wrist joints of a robot, it has become possible to directly control the posture with six degrees of freedom using only the arm or hand of the robot. Other examples are:
It has many applications, not just for robots, such as controlling the posture of robot eyes that move in the same way as human eyes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、リニアパルスモータの構成を示す図、第2図
は、リニアパルスモータの制御信号を示す図、 第6図は、平面モータの構成原理を示す図、第4図は、
本発明に5よる球面モータの原理を示す図、 第5図は、本発明適用の1実施例の球面モータを示す図
、 第6図は、パターン部材65.駆動部材66の関係を示
した図、 第7図は、本発明適用の他の実施例を示す構成説明図、 第8図は、本発明適用の更に他の実施例を示す構成説明
図。 401は支持台、402は駆動スライダー、51.71
は球、403はパターン歯部、85は球状殻、52,7
2.86は球面軸受、55゜士士;丑依七薦jセ侵阜ヨ
凸、 65 、76 、82はパターン部材。 ;−f長 手続補正書(自発) 昭和59化11(月70日 特許庁長官 若杉和夫  殿 1 事件の表示 昭和58年 特許願  第 35081   号2、発
明の名称 球面モータ 3 補正をする者 事件との関係       特許出願人件 所 東京都
人U]区下丸子3−30−2名称 (100)キャノン
株式会社 代表者賀来龍三部 4代理人 居 所 士146東京都大ロコ区下丸子3−30−25
、補正の対象 明細書 6、補正の内容 (1)明細書第6頁下から6行目の「1・2拳3・4−
・・」を「1・4・2・6・・・」に補正する。 (2)明細書第7頁第6行目の「・・・殻状・・・」を
「・・・殻(シェル)状・・・」に補正する。 (6)明細書第8頁第4行目の「・・・72、・・・」
を「・・・75、・・・」に補正する。 (4)明細書第8頁第12行目の「・・・球状殻85」
を「・・・球状の殻(シェル)85」に補正する。 (5)明細書第10頁最下行の「・・・1.55 、 
Jを削除する。
Fig. 1 is a diagram showing the configuration of a linear pulse motor, Fig. 2 is a diagram showing control signals of the linear pulse motor, Fig. 6 is a diagram showing the configuration principle of a planar motor, and Fig. 4 is a diagram showing the configuration principle of a planar motor.
5 is a diagram showing the principle of a spherical motor according to the present invention. FIG. 5 is a diagram showing a spherical motor according to an embodiment of the present invention. FIG. 6 is a diagram showing the pattern member 65. FIG. 7 is a diagram showing a configuration of another embodiment to which the present invention is applied. FIG. 8 is a diagram illustrating a configuration of still another embodiment to which the present invention is applied. 401 is a support stand, 402 is a driving slider, 51.71
is a sphere, 403 is a pattern tooth portion, 85 is a spherical shell, 52, 7
2. 86 is a spherical bearing, 55° is spherical; 65, 76, and 82 are pattern members. ; - f-length procedural amendment (voluntary) 1985-11 (Mon. 70, Director General of the Patent Office, Kazuo Wakasugi, 1. Display of the case, 1983, Patent Application No. 35081, 2. Name of the invention, spherical motor 3. Person making the amendment. Relationship of Patent Applicant Location: 3-30-2 Shimomaruko, U-ku, Tokyo Name (100) Canon Co., Ltd. Representative Ryu Kaku Sanbu 4 Agent Address: 146 3-30-25 Shimomaruko, Oiroko-ku, Tokyo
, Specification subject to amendment 6, Contents of amendment (1) “1.2 fist 3.4-
..." is corrected to "1, 4, 2, 6...". (2) In the 6th line of page 7 of the specification, "...shell-like..." is corrected to "...shell-like...". (6) "...72,..." on page 8, line 4 of the specification
is corrected to "...75,...". (4) "... Spherical shell 85" on page 8, line 12 of the specification
is corrected to "...spherical shell (shell) 85". (5) “...1.55,” on the bottom line of page 10 of the specification.
Delete J.

Claims (1)

【特許請求の範囲】[Claims] 可動部材と前記可動部材を支持する支持部材と6次元的
に可動なよう構成したことを特徴とする球面モータ。
A spherical motor characterized in that a movable member and a support member that supports the movable member are configured to be movable in six dimensions.
JP58035081A 1983-03-03 1983-03-03 Spherical motor Pending JPS59162762A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58035081A JPS59162762A (en) 1983-03-03 1983-03-03 Spherical motor
US06/788,653 US4707642A (en) 1983-03-03 1985-10-14 Actuating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035081A JPS59162762A (en) 1983-03-03 1983-03-03 Spherical motor

Publications (1)

Publication Number Publication Date
JPS59162762A true JPS59162762A (en) 1984-09-13

Family

ID=12432028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035081A Pending JPS59162762A (en) 1983-03-03 1983-03-03 Spherical motor

Country Status (1)

Country Link
JP (1) JPS59162762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168484A (en) * 1985-01-19 1986-07-30 三洋電機株式会社 Multi-freedom-degree joint for manipulator
JPS61203860A (en) * 1985-03-06 1986-09-09 Agency Of Ind Science & Technol 3-degrees-of-freedom dc motor
JPS61221565A (en) * 1985-03-27 1986-10-01 Agency Of Ind Science & Technol Double freedom degree dc motor capable of positioning
JPS61288986A (en) * 1985-06-18 1986-12-19 株式会社 サンエス商工 Joint for robot
WO1991004835A1 (en) * 1989-10-03 1991-04-18 Kabushiki Kaisha Yaskawa Denki Seisakusho Manipulator using flat pulse motor
US6097080A (en) * 1996-04-24 2000-08-01 Susumu Okamura Semiconductor device having magnetic shield layer circumscribing the device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628093A (en) * 1975-09-04 1981-03-19 Ellis James M Improved diving cage
JPS5628460A (en) * 1979-08-15 1981-03-20 Mitsubishi Electric Corp High frequency starting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628093A (en) * 1975-09-04 1981-03-19 Ellis James M Improved diving cage
JPS5628460A (en) * 1979-08-15 1981-03-20 Mitsubishi Electric Corp High frequency starting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168484A (en) * 1985-01-19 1986-07-30 三洋電機株式会社 Multi-freedom-degree joint for manipulator
JPS61203860A (en) * 1985-03-06 1986-09-09 Agency Of Ind Science & Technol 3-degrees-of-freedom dc motor
JPS61221565A (en) * 1985-03-27 1986-10-01 Agency Of Ind Science & Technol Double freedom degree dc motor capable of positioning
JPS61288986A (en) * 1985-06-18 1986-12-19 株式会社 サンエス商工 Joint for robot
JPH0373435B2 (en) * 1985-06-18 1991-11-21 Sanesu Shoko Kk
WO1991004835A1 (en) * 1989-10-03 1991-04-18 Kabushiki Kaisha Yaskawa Denki Seisakusho Manipulator using flat pulse motor
US5248923A (en) * 1989-10-03 1993-09-28 Kabushiki Kaisha Yaskawa Denki Seisakusho Manipulator using plane pulse motor
US6097080A (en) * 1996-04-24 2000-08-01 Susumu Okamura Semiconductor device having magnetic shield layer circumscribing the device

Similar Documents

Publication Publication Date Title
Bederson et al. A miniature pan-tilt actuator: the spherical pointing motor
US7383747B2 (en) Apparatus and method for gyroscopic propulsion
US6734914B1 (en) Image recording unit and camera permitting 360° rotation
CN102361410B (en) Piezoelectric motor and piezoelectric motor system
EP1659435B1 (en) Actuator, lens unit and camera having the same
US4707642A (en) Actuating device
US8234943B2 (en) Apparatus and method for gyroscopic propulsion
EP0347846A2 (en) Actuator
US5204573A (en) Two-dimensional pointing motor
Yan et al. Design, modeling and experiments of 3-DOF electromagnetic spherical actuators
US20090207239A1 (en) Artificial eye system with drive means inside the eye-ball
US20230236474A1 (en) Actuator assembly
JPS62221856A (en) Spherical motor
JPS59162762A (en) Spherical motor
KR20040004727A (en) Spherical motor device
JPS59162763A (en) Spherical motor
US8573079B2 (en) Apparatus and method for gyroscopic propulsion
JPH0882757A (en) Biaxial luminous flux driving device
Wallace Miniature direct drive rotary actuators II: Eye, finger and leg
JPH01318563A (en) Actuator
Heya et al. Two-degree-of-freedom actuator for robotic eyes
US9287760B2 (en) Highly reliable actuator with multiple degrees of freedom and method for moving a payload using the actuator
JPS609693A (en) Multiple freedom-degree actuator
US20240192577A1 (en) Photosensitive module, camera module and gimbal camera apparatus
Allen Pawletko, LC Zai, M. Goldowsky, RE Brown, and RR Comulada, The