JPS59161920A - Logical circuit - Google Patents

Logical circuit

Info

Publication number
JPS59161920A
JPS59161920A JP58035813A JP3581383A JPS59161920A JP S59161920 A JPS59161920 A JP S59161920A JP 58035813 A JP58035813 A JP 58035813A JP 3581383 A JP3581383 A JP 3581383A JP S59161920 A JPS59161920 A JP S59161920A
Authority
JP
Japan
Prior art keywords
value
alpha
current
variance
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58035813A
Other languages
Japanese (ja)
Inventor
Noboru Masuda
昇 益田
Hironori Tanaka
田中 広紀
Takehisa Hayashi
剛久 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58035813A priority Critical patent/JPS59161920A/en
Publication of JPS59161920A publication Critical patent/JPS59161920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits

Landscapes

  • Logic Circuits (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)

Abstract

PURPOSE:To increase the working range of a CML circuit by varying the reference voltage in response to the variance of the current value of a constant current source of the CML circuit when it is produced. CONSTITUTION:The relation between load resistances R2 and R3 is set as R3= R2/2XalphaIc/alpha'I'c in order to obtain a fixed level of reference voltage Vref when the current Ic flowing to a constant current source Qc is set at alpha times as much as the designed value and the current I'c is set at alpha' times as much as the designed value owing to the variance of production. For two current sources consisting of FETs at the places close to each other on a crystal, either one of these two current values also varies if the other value varies owing to the variance of production. Therefore alpha and alpha' are approximately equal to each other. The value of the Vref is set between VH and VL despite the variance of the Ic value as long as R3=R2/2XIc/I'c is satisfied.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、論理回路、特に製造ばらつきに対する動作可
能範囲を拡げた電流切換型論理回路(以下、CML回路
と略す。)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a logic circuit, and particularly to a current switching type logic circuit (hereinafter abbreviated as CML circuit) that has an expanded operable range against manufacturing variations.

〔従来技術〕[Prior art]

第1図は、従来知られているCML回路の一例である。 FIG. 1 is an example of a conventionally known CML circuit.

第1図において% Qt + Qtは電流切換用FET
、Qcは定電流源用FET、R,、R。
In Figure 1, % Qt + Qt is the current switching FET
, Qc are constant current source FETs, R, , R.

は負荷抵抗、Do 、D、はレベルシフト用ダイオード
、Q、、 、 Q。は出力部の定電流源用FETである
。Aは入力電圧■Inが加えられる入力端%Bl百はそ
れぞれ出力電圧Vout4τiを取シ出す出力端、Cは
一定電圧端子i r@fが加えられる参照電圧入力端で
ある。Icは定電流源Qcを流れる電流、VsはDo 
、Doによる順方向降下電圧、工・* IOは定電流源
Q、o 、 Q、oを流れる電流である。通常はR3と
Rt −Qt とQ、t −DoとDo 、QoとQ。
is the load resistance, Do, D are level shift diodes, Q, , , Q. is a constant current source FET in the output section. A is an input terminal to which an input voltage (In) is applied; %Bl is an output terminal from which an output voltage Vout4τi is applied, and C is a reference voltage input terminal to which a constant voltage terminal ir@f is applied. Ic is the current flowing through the constant current source Qc, Vs is Do
, Do, the forward voltage drop due to *IO is the current flowing through the constant current source Q,o, Q,o. Usually R3 and Rt -Qt and Q, t -Do and Do, Qo and Q.

f″i、それぞれ同じ大きさに設計される。ここで、V
lnが■r・f よシ光分低い時は、Qlが遮断され、
ICは全てRt 、Qtを通って供給される。従ってR
1による電圧降下は馬ICとなシ、出力端Bに生じる電
圧V outは−RtIcVsとなる。(但し、■。が
R,を流れる事による電圧降下は無視する。)この時、
出力端Bに生じる電圧■outは−Vgとなっている。
f″i, are designed to have the same size. Here, V
When ln is low by ■r・f, Ql is blocked,
All ICs are fed through Rt, Qt. Therefore R
The voltage drop caused by 1 is different from that of the IC, and the voltage Vout generated at the output terminal B becomes -RtIcVs. (However, the voltage drop due to ■ flowing through R is ignored.) At this time,
The voltage ■out generated at the output terminal B is -Vg.

また、vInがvr費f  よυ光分高い時はQtが遮
断されIcは全てRt −Qt を通って供給される。
Further, when vIn is higher than vr cost f by υ light, Qt is cut off and Ic is all supplied through Rt - Qt.

この場合はVoutは−V B 、 V outは−R
I IC−VIIとなシ、出力関係が逆転する。■Ir
Iとvoutの関係を求めると次式のようになる。
In this case, Vout is -V B and V out is -R
I IC-VII, the output relationship is reversed. ■Ir
The relationship between I and vout is determined by the following equation.

但し、βはF E T Q+ 、Qlの相互コンダクタ
ンス係数である。また、Voutの値は上式においてV
lllとV r@fを入れ替えた式で表わされ、v、o
utを反転した形となる。通常、■refはv、out
のノーイレベル(Vi)とローレベル(VL )の中間
の値、即ち、 となるように設計しである。この条件のもとに第1式を
計算したものが第2図である。第2図の横軸は入力電圧
、縦軸は出力電圧を示す。X、Yはそれぞれvout 
、 V outを示し、一方x’ 、y’はそれぞれX
、Yの入力電圧と出力電圧を入れ替 □えたものである
。XとY′の交点P、Q、RはそレソれV・atのロー
レベル(VL)における動作点、ハイレベル(Vn)に
おける動作点、論理しきい値の点を示す。また、YとY
′の交点8.TはV outのVL及びViにおける動
作点である。
However, β is a mutual conductance coefficient of F ET Q+ and Ql. Also, the value of Vout is V in the above equation.
It is expressed by a formula in which lll and V r@f are exchanged, and v, o
It is an inverted version of ut. Usually, ■ref is v, out
It is designed to have an intermediate value between the noi level (Vi) and the low level (VL), that is, the following. FIG. 2 shows the calculation of the first equation under these conditions. In FIG. 2, the horizontal axis shows the input voltage, and the vertical axis shows the output voltage. X and Y are each vout
, V out, while x' and y' are respectively X
, the input voltage and output voltage of Y are swapped □. The intersections P, Q, and R of X and Y' indicate the operating point at the low level (VL), the operating point at the high level (Vn), and the logical threshold point of V.at. Also, Y and Y
’ intersection point 8. T is the operating point of V out at VL and Vi.

しかしながら、第1図に示した回路は以下に述べるよう
な欠点を有している。第1図の回路のようにFETで定
電流源を構成した場合、その定電流源を流れる電流Ic
UFETのしきい電圧Vtや  :相互コンダクタンス
係数βによって決まるが、こ  :れらの値は製造条件
の変動によって大きく変化する。特に、ICはV2O3
乗で変化するため、Vyの変動に対して敏感であり、こ
の結果Icの値はSiバイポーラ素子を用いたECL回
路よシも大きくばらつく。例えば、Icが製造ばらつき
により設計値の80%に減少した場合を考える。   
:この場合、第2図で示した入出力特性は第3図のよう
に変化し、XとY′の交点Pがなくなり論理回路として
の動作が不可能となる。また、ICが設計値の180%
に増加した場合には、入出力特性は第4図のようになり
、この場合にも論理回路としての動作は不可能となる。
However, the circuit shown in FIG. 1 has the following drawbacks. When a constant current source is configured with FETs as in the circuit shown in Figure 1, the current Ic flowing through the constant current source is
It is determined by the threshold voltage Vt of the UFET and the mutual conductance coefficient β, but these values vary greatly depending on variations in manufacturing conditions. In particular, IC is V2O3
Since it changes as a power, it is sensitive to fluctuations in Vy, and as a result, the value of Ic varies widely even in ECL circuits using Si bipolar elements. For example, consider a case where Ic decreases to 80% of the design value due to manufacturing variations.
: In this case, the input/output characteristics shown in FIG. 2 change as shown in FIG. 3, and the intersection point P between X and Y' disappears, making it impossible to operate as a logic circuit. Also, the IC is 180% of the design value.
In this case, the input/output characteristics become as shown in FIG. 4, and in this case as well, operation as a logic circuit becomes impossible.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、製造条件の変動に対する動作可能範囲
の大きなCML回路を提供することにある。
An object of the present invention is to provide a CML circuit that has a wide operable range with respect to variations in manufacturing conditions.

〔発明の概要〕[Summary of the invention]

本発明は、製造ばらつきに対応して参照電圧を変化させ
ることにより、CML回路の動作、可能範囲を拡げたこ
とを特徴とするものである。
The present invention is characterized in that the operational range of the CML circuit is expanded by changing the reference voltage in response to manufacturing variations.

〔発明の実施例〕[Embodiments of the invention]

第5図に本発明の一実施例を示す。本実施例回路は、第
1図の従来回路と異なシ、IC′の値によって6点の電
位V refが変化するようにしていることが特徴であ
る。第5図において、QC′は第2の定電流源用FET
、R,は負荷抵抗、Drはレベルシフトダイオード、D
は一層電圧vOが加えられる端子である。Ic’はQC
′を流れる電流、■B′はダイオードl)rによる順方
向降下電圧である。その他は第1図と同じである。本実
施例回路ではV r@fは V r@f = Vo  Rrs Ic ’  Vs 
’  −−−(3)となって、■c′の値によシ変化す
るようになつている。ここでV r@fの値は前述((
2)式)のようにVmとvLの中間の値にする必要があ
る為、となるようにV。e Vs ’ * R,の値を
設定する。
FIG. 5 shows an embodiment of the present invention. The circuit of this embodiment is different from the conventional circuit shown in FIG. 1 in that the potential V ref at six points changes depending on the value of IC'. In Figure 5, QC' is the second constant current source FET
, R, is the load resistance, Dr is the level shift diode, D
is a terminal to which a further voltage vO is applied. Ic' is QC
2B' is the forward voltage drop caused by the diode l)r. Other details are the same as in Figure 1. In this example circuit, V r@f is V r@f = Vo Rrs Ic 'Vs
' ---(3), which changes depending on the value of c'. Here, the value of V r@f is as described above ((
2) Since it is necessary to set the value between Vm and vL as shown in equation (2), V should be set as follows. e Set the value of Vs'*R.

Icが設計値となっている場合、(2)式と(3)式に
おけるvr・fの値は同じにな夛、本発明の回路は従来
回路と直流特性が等しくなる。次に、製造ばらつきによ
シIcが変動した場合を考える。Icが設計値のα倍、
IC′が設計値のα′倍に変化し、それぞれαIc、α
′IC′になったとする。この場合、(2)式は ”  Va  −RnαIc   ・・・・・・・・・
・・・・・・(5)のように変化し、(3)式は V r@f =vo 7B4(1’Ic ’ −Vg 
’ ”= (6)のように変化する。従って、(5)式
と(6)式におけるV r@fの値を等しくする条件は となる。ところで、結晶上の近接した場所にWで構成し
た2つの定電流源の電流値は、片方が製造ばらつきで変
動した場合他方も同じように変動する。従って前述のα
とα′はほぼ等しくなる。
When Ic is the designed value, the values of vr·f in equations (2) and (3) are the same, and the circuit of the present invention has the same DC characteristics as the conventional circuit. Next, consider a case where Ic varies due to manufacturing variations. Ic is α times the design value,
IC' changes to α' times the design value, αIc and α, respectively.
Suppose that it becomes 'IC'. In this case, equation (2) is “Va −RnαIc ・・・・・・・・・
・・・・・・It changes as shown in (5), and the equation (3) is V r@f = vo 7B4(1'Ic ' - Vg
''' = (6). Therefore, the condition for making the values of V r@f in equations (5) and (6) equal is as follows. If the current values of the two constant current sources fluctuate due to manufacturing variations, the other will fluctuate in the same way.Therefore, the above-mentioned α
and α′ are almost equal.

従って、R1を(4)式の値に設定しておけば、Icの
値が変動してもV refO値はViとVLの中間の値
になる。この条件のもとにIcの値が設計値の80%に
減少した場合の入出力特性を示したものが第6図である
。第6図の各記号の意味は第2図と同じである。この場
合、P、Qをそれぞれ出力voutのVs、、Vmに対
する動作点として、また、S、Tを出力口のVt、、V
aに対する動作点として論理動作可能である。また、第
7図はIcの値が設計値の180%に増加した場合の入
出力特性である。この場合も論理動作可能である。
Therefore, if R1 is set to the value of equation (4), even if the value of Ic changes, the V refO value will be an intermediate value between Vi and VL. FIG. 6 shows the input/output characteristics when the value of Ic is reduced to 80% of the designed value under this condition. The meaning of each symbol in FIG. 6 is the same as in FIG. 2. In this case, P and Q are the operating points for Vs, , Vm of the output vout, respectively, and S and T are the operating points of the output port Vt, , Vm.
A logical operation is possible as an operating point for a. Moreover, FIG. 7 shows the input/output characteristics when the value of Ic increases to 180% of the design value. In this case as well, logical operation is possible.

なお、以上の説明においてはダイオードの順方向降下電
圧の製造ばらつきは無視しているが、これが無視できな
いとしても、 とすれば、VsとVs′の変動が互いに相殺されるので
、問題ない。また、第8図に示すように、出力取出部分
にソースフォロワQ、stσBを挿入しても動作原理は
同じである。また、本発明において、第9図に示すよう
に、電流切換部と参照電圧入力部との間にソースフォロ
ワ8Fを設けてもよい。さらに、第10図に示すように
、レベルシフトダイオードDrの全部又は一部をソース
フォロワSFに設けても良く、この場合もその動作原理
は同じである。また、上述した実施例ではQ、t +Q
t e Qc + Qc ’ * Q、o + Q、o
がショットキー接合型FETである場合について、説明
したが、これらのFETがMO8型FE’l’あるいは
PN接合型FETでも良いことは勿論である。また、第
を抵抗で構成しても、その動作原理は同じである。
Note that in the above explanation, manufacturing variations in the forward voltage drop of the diodes are ignored, but even if this cannot be ignored, there is no problem because the variations in Vs and Vs' cancel each other out. Further, as shown in FIG. 8, even if source followers Q and stσB are inserted in the output extraction portion, the operating principle remains the same. Further, in the present invention, as shown in FIG. 9, a source follower 8F may be provided between the current switching section and the reference voltage input section. Furthermore, as shown in FIG. 10, all or part of the level shift diode Dr may be provided in the source follower SF, and the operating principle is the same in this case as well. Furthermore, in the above embodiment, Q, t +Q
t e Qc + Qc ' * Q, o + Q, o
Although the case where these FETs are Schottky junction FETs has been described, it goes without saying that these FETs may be MO8 type FE'l' or PN junction FETs. Furthermore, even if the first element is composed of a resistor, the principle of operation remains the same.

また、ダイオードD、、D、、Drを設けなくとも艮く
、あるいは1個だけでよく、ダイオードの数に限定され
るものではない。さらに、第11図のように入力のFE
Tを2個以上設けてもよいことは、本発明の動作態−か
ら明らかである。
Furthermore, the number of diodes is not limited, and the diodes D, D, and Dr may not be provided, or only one diodes may be provided. Furthermore, as shown in Figure 11, the input FE
It is clear from the operation mode of the present invention that two or more T may be provided.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、定電流源の電流値が製造ばらつきに
よって変動し、従来回路では論理回路としての動作が不
可能となる条件においても、本発明によれば論理回路と
しての動作が可能となる。
As described above, the present invention enables operation as a logic circuit even under conditions where the current value of the constant current source fluctuates due to manufacturing variations, making it impossible for conventional circuits to operate as a logic circuit. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の回路図、第2図から第4図はその回路
の入出力特性を示す図、第5図は本発明の一実施例を示
す回路図、第6図及び第7図は本発明による論理回路の
入出力特性を示す図、第8図から第11図はそれぞれ本
発明の他の実施例の要部を示す回路図である。 A・・・入力端、B、B・・・出力端、C・・・参照電
圧入力端、D・・・一定電圧を加える端子、Q、s t
 Q、t lQc = Q、c’−Qo −Qo ・・
・FET%Rt 、R1。 R3・・・負荷抵L Do 、 Do 、 D 、・・
・レベルシフ′¥I 1 図 Y 2 口 入力電工 遁 32 田Vpe+1− 人力電渓 菫 4 口 入力電瓜 第   乙   し1 六カ電亙 第 7 図 49図
Figure 1 is a circuit diagram of a conventional example, Figures 2 to 4 are diagrams showing the input/output characteristics of the circuit, Figure 5 is a circuit diagram showing an embodiment of the present invention, and Figures 6 and 7. is a diagram showing input/output characteristics of a logic circuit according to the present invention, and FIGS. 8 to 11 are circuit diagrams showing main parts of other embodiments of the present invention. A...Input terminal, B, B...Output terminal, C...Reference voltage input terminal, D...Terminal for applying constant voltage, Q, s t
Q, t lQc = Q, c'-Qo -Qo...
-FET%Rt, R1. R3...Load resistance L Do, Do, D,...
・Level shift'¥I 1 Figure Y 2 Oral input electrician's release 32 田Vpe+1- 人力电纫 4 Orally input electrician 1 Rokuka electrician 7 Figure 49

Claims (1)

【特許請求の範囲】[Claims] 1、 互いのソース電極が共通に接続された第1および
第2のガリウム砒素電界効果トランジスタ(GaAsF
ET)と、第1のGaAsFETのドレイン電極と高電
位側電源との間に接続された第1の抵抗素子と、前記第
2のQaAsFETのドレイン電極と前記高電位側電源
との間に接続された第2の抵・抗素子と、ドレイン電極
が前記第1および第2のQaAsFBTのソース電極に
接続され、ソースおよびゲート電極を低電位側電源に接
続された第3のGaAsFET  と、ソースおよびゲ
ート電極を前記低電位側電源に接続された第4のGaA
sFETと、前記第4のQaAsPETのドレイン電極
と一定電圧端子との間に設けられた第3の抵抗素子およ
び前記第4のQ a A s F E Tのドレイン電
極の電位をレベルシフトさせるだめの手段とを有し、前
記第40FETのドレイン電極と、前記第2のFETの
ゲート電極とを接続したことを特徴とする論理回路。
1. First and second gallium arsenide field effect transistors (GaAsF) whose source electrodes are commonly connected to each other.
ET), a first resistance element connected between the drain electrode of the first GaAsFET and the high potential power supply, and a first resistance element connected between the drain electrode of the second QaAsFET and the high potential power supply. a third GaAsFET whose drain electrodes are connected to the source electrodes of the first and second QaAsFBTs and whose source and gate electrodes are connected to a low potential power supply; a fourth GaA electrode connected to the low potential side power supply;
sFET, a third resistance element provided between the drain electrode of the fourth QaAsPET and the constant voltage terminal, and a third resistance element for level-shifting the potential of the drain electrode of the fourth QaAsFET. 1. A logic circuit comprising means for connecting a drain electrode of the fortieth FET and a gate electrode of the second FET.
JP58035813A 1983-03-07 1983-03-07 Logical circuit Pending JPS59161920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58035813A JPS59161920A (en) 1983-03-07 1983-03-07 Logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58035813A JPS59161920A (en) 1983-03-07 1983-03-07 Logical circuit

Publications (1)

Publication Number Publication Date
JPS59161920A true JPS59161920A (en) 1984-09-12

Family

ID=12452363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58035813A Pending JPS59161920A (en) 1983-03-07 1983-03-07 Logical circuit

Country Status (1)

Country Link
JP (1) JPS59161920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570409B2 (en) * 2001-04-06 2003-05-27 Sun Microsystems, Inc. Current steering logic circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570409B2 (en) * 2001-04-06 2003-05-27 Sun Microsystems, Inc. Current steering logic circuits

Similar Documents

Publication Publication Date Title
US4663584A (en) Intermediate potential generation circuit
US4806790A (en) Sample-and-hold circuit
JP2014230350A (en) Semiconductor integrated circuit and method for operating the same
US8198875B2 (en) Voltage regulator
CA1167116A (en) High speed cmos comparator circuit
JPS6157118A (en) Level converting circuit
JPH0693615B2 (en) Driver circuit
US8664925B2 (en) Voltage regulator
JPS61127226A (en) Emitter coupled logic circuit
JPS6070822A (en) Semiconductor integrated circuit
JPS59161920A (en) Logical circuit
JPS59208926A (en) Schmitt trigger circuit
KR0165986B1 (en) Bicmos logic circuit
JP3052433B2 (en) Level shift circuit
JPH04278719A (en) Source electrode coupled logic circuit
JPS6175618A (en) Complementary bimis tri-state gate circuit
JPH0687537B2 (en) Level shift circuit
JPH06152376A (en) Semiconductor integrated circuit device
JPH0625063Y2 (en) Current switching type logic circuit
JP2748475B2 (en) Constant voltage generator
JPH01284114A (en) Bipolar cmos level conversion circuit
JP2566931B2 (en) Level comparator
JPH0766709A (en) Ecl/cmos level conversion circuit and semiconductor integrated circuit including the circuit
JPS63313916A (en) Level conversion circuit
JPS5925426A (en) Semiconductor circuit