JPS59161479A - Method of cutting granules in dry cooler - Google Patents

Method of cutting granules in dry cooler

Info

Publication number
JPS59161479A
JPS59161479A JP3698483A JP3698483A JPS59161479A JP S59161479 A JPS59161479 A JP S59161479A JP 3698483 A JP3698483 A JP 3698483A JP 3698483 A JP3698483 A JP 3698483A JP S59161479 A JPS59161479 A JP S59161479A
Authority
JP
Japan
Prior art keywords
cutting
temperature
coke
cooling
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3698483A
Other languages
Japanese (ja)
Other versions
JPS6241635B2 (en
Inventor
Kiyotaka Yamamoto
清隆 山本
Shuichi Yoshii
吉井 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP3698483A priority Critical patent/JPS59161479A/en
Publication of JPS59161479A publication Critical patent/JPS59161479A/en
Publication of JPS6241635B2 publication Critical patent/JPS6241635B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:Sensors are equipped so that the temperature of coke granules which are cut out at the outlet of the cooling tower and the number of coke cutting operations are detected to find the temperature difference from the cooling gas as well as the cutting speed to calculate the cutting interval, thus enabling the control of granule cutting so that the granules are uniformly cooled down. CONSTITUTION:A radiation type temperature sensor 17 is equipped so as to detect the temperature of the coke granules 15 which are cut through the valves 8a, 8b from the outlet 3a, 3b at the bottom of the cooling tower 1, further sensors 13 and 14 are installed to detect the number of granule cutting operations. The signals from these sensors are input into the arithmetic unit 18 and the amount of the granules is calculated in a certain time from the sensors 13, 14 to know the cutting speed and the temperature difference between the granules and the cooling gas is calculated from the signal of the sensor 17, then the interval of cutting valve operations is calculated so that the granules 15 become lower than the desired temperature to control the operations of the cutting valve 8.

Description

【発明の詳細な説明】 に冷却できるようにした切出制御方法に関する。[Detailed description of the invention] The present invention relates to a cutting control method that enables cooling.

製鉄や化学工業の分野では高温の粒塊の顕熱の回収を目
的とした乾式冷却方法がある。こnは、高温の粒塊を塔
内に入n1冷却ガス全循環して粒塊の顕熱全回収し、ボ
インで蒸気エネルギーに変換する方法であり、赤熱コー
クスの乾式消火設備もこの一種であるが、以下コークス
乾式消火設備全例にして本案を説明する。
In the fields of steelmaking and chemical industry, there is a dry cooling method for the purpose of recovering the sensible heat of high-temperature granules. This is a method in which high-temperature agglomerates are put into a tower and all of the cooling gas is circulated to recover all the sensible heat of the agglomerates, which is then converted into steam energy at the boiler. Dry extinguishing equipment for red-hot coke is also a type of this method. However, the main idea will be explained below using all examples of coke dry fire extinguishing equipment.

コークス乾式消火設備は、第1図に示すごとく、1は冷
却塔体で、頂部に赤熱コークス投入口2が設けらn、底
部に冷却後のコークス全排出する排出口3が設けら几て
いる。この塔体1の上部は連通管4を介してボイラ5の
上部と接続さ几、ボイラ5の底部と冷却塔体1の下部と
はファン6を介設した連結管7で連結さnており、不活
性ガスなどの冷却ガス全ファン6の駆動により循環でき
るようにしである。排出口3にはコークスをパッチ式に
切り出す切出弁8が設置さn、切出弁8の作動にょp該
塔体1内にコークスの下方への移動層全形成できるよう
になっている。したがって、コークスの移動層は冷却ガ
スと向流することになり、コークスは冷却さnるととも
に、冷却ガスは加熱さ几て高温となる。こnKよ几ば、
コークスを冷却できるとともに、コークスの顕熱で冷却
ガス?介してボイラ5vi−加熱できるため、省エネル
ギー効果?上げることができる。なお、9は上部バンカ
であり、上部ゲート10が開閉可能Vc堆付けらn1捷
た11は下部バンカであり1下部ケゝ−ト12が開閉可
能に取付けら几ている。
As shown in Fig. 1, the coke dry extinguishing equipment has a cooling tower body 1, which has a red-hot coke inlet 2 at the top and an outlet 3 at the bottom to discharge all the cooled coke. . The upper part of the tower body 1 is connected to the upper part of the boiler 5 via a communication pipe 4, and the bottom of the boiler 5 and the lower part of the cooling tower body 1 are connected by a connecting pipe 7 with a fan 6 interposed therebetween. , a cooling gas such as an inert gas can be circulated by driving the entire fan 6. A cut-off valve 8 for cutting off coke in a patch manner is installed at the discharge port 3, and the operation of the cut-off valve 8 makes it possible to completely form a downward moving layer of coke within the column body 1. Therefore, the moving bed of coke flows countercurrently to the cooling gas, and the coke is cooled and the cooling gas is heated to a high temperature. This is K, please
A cooling gas that can cool coke and use the sensible heat of coke? Boiler 5vi can be heated through the heating system, resulting in energy saving effect? can be raised. 9 is an upper bunker, and 11 is a lower bunker on which an upper gate 10 is attached so that it can be opened and closed.

この乾式冷却塔にはコークスの粒度偏析に起因した冷却
ガスの偏流、粒塊の不拘−降下等により赤熱コークスの
冷却が不均一になるという問題がある。不均一が顕著に
なると、排出口3から切出弁8によって切出さnるコー
クス中に高温のもの−が混在するととKなるので危険で
あった。
This dry cooling tower has the problem that cooling of the red-hot coke becomes uneven due to uneven flow of the cooling gas due to particle size segregation of the coke, unrestrained descent of grains, and the like. If the non-uniformity becomes noticeable, it is dangerous if high temperature coke is mixed in the coke cut out from the discharge port 3 by the cut-off valve 8 because it becomes dangerous.

このため、従来は、冷却塔1の円周壁に複数の温度検出
端を配置し、コークスの不均一冷却を操業時Vc監視す
るようにし、その円周壁土の温度分布に大きな差が生じ
たときに、不均一冷却と近似的および相関的に判断して
切出弁8を閉止し、コークスの排出を停止させていた。
For this reason, in the past, a plurality of temperature detection ends were placed on the circumferential wall of the cooling tower 1 to monitor the uneven cooling of coke during operation, and when a large difference occurred in the temperature distribution of the circumferential wall soil. In this case, the cut-out valve 8 was closed to stop the discharge of coke based on the approximation and correlation with non-uniform cooling.

しかし、コークスの排出を停止するのでは好ましくない
。コークスの排出を停止せずにコークスの不均一冷却に
対処するには、冷却がスおよびコークスの不均一な流l
rLを予め想定し、そnに見合う冷却塔体1の形状を設
計することが考えらnる。
However, it is not preferable to stop discharging coke. To address non-uniform cooling of coke without stopping coke discharge, cooling should be
It is conceivable to assume rL in advance and design the shape of the cooling tower body 1 commensurate with it.

しかし、この場合は冷却能力に余裕ヶ取ることになり、
該塔体1の形状が大きくなってしまい、コークスの顕熱
を回収する設備としては経済性を損うこととなる。一方
、コークスの不均一冷却に対して、冷却ガスの供給量を
不均一に対応して変える方法が考えらnる。すなわち、
冷却ガスの供給設備全分割して設け、冷却不足部に供給
量?増加し、冷却過剰部に供給量?減少するようにして
、コークスを均一に冷却するものである。さらに、冷却
ガスの出口においても、その出口を分割して各々のガス
排出量全適宜制限し、コークスの冷却をより均一化する
方法もある。また不均一冷却部へ冷却に必要な最小量に
見合う冷却ガスを供給すべく、冷却ガス供給量全全体的
に増加させる方法もある。これらの冷却ガスの供給量を
変える方法によnば、前記塔体inのコークスの粒度分
布の偏りに起因して冷却ガスの上昇速度分布が第2図の
ごとく、両壁面1aと1bVc比較して中心1cで速度
が遅す場合であっても、その中心1cへの、ゲス供給量
を増すことでその速度分布全均一化し、コークスの冷却
全均一化できることになる。しかし、該塔体1円はコー
クスの移動層となっており、コークスの降下速度が大き
い場合には、冷却力スの供給量全変える方法に限界があ
る。つまり、第3図に示すごとく、該塔体1内のコーク
スの降下速度分布が、中心1cで速度が一番遅く、中心
1cと両壁面ia、lbの間で一番速く、しかも最大値
と最小値の差が大きいという場合に、コークス全均一に
冷却するために従来の方法を使用すると、降下速度の速
い部分へも充分な冷却ガスが配分さnるように多量の冷
却ガス全速り込む必要がちり、そのためにはファン6倉
大型化するなどの設備の大規模化r招来し、経済性を損
ってしまう不都合があった。
However, in this case, you will have some extra space in your cooling capacity.
The shape of the column body 1 becomes large, which impairs economic efficiency as a facility for recovering sensible heat from coke. On the other hand, in order to deal with non-uniform cooling of coke, it is possible to consider a method of changing the supply amount of cooling gas in response to the non-uniform cooling. That is,
Is the cooling gas supply equipment all divided and supplied to areas with insufficient cooling? Increased amount of supply to the cooling excess section? The purpose is to uniformly cool the coke so that the amount of coke decreases. Furthermore, there is also a method of dividing the outlet of the cooling gas and appropriately restricting the total amount of gas discharged from each outlet to more uniformly cool the coke. There is also a method of increasing the total amount of cooling gas supplied in order to supply the non-uniform cooling section with the minimum amount of cooling gas required for cooling. According to the method of changing the supply amount of the cooling gas, the rising speed distribution of the cooling gas is as shown in FIG. Even if the speed is slow at the center 1c, by increasing the amount of gas supplied to the center 1c, the speed distribution can be made completely uniform, and coke cooling can be made completely uniform. However, each tower body is a moving bed of coke, and if the coke descending speed is high, there is a limit to how the total amount of cooling power supplied can be changed. In other words, as shown in FIG. 3, the descending velocity distribution of coke in the column body 1 has the slowest velocity at the center 1c, the fastest velocity between the center 1c and both wall surfaces ia and lb, and the maximum value. When the difference in the minimum value is large, if conventional methods are used to uniformly cool the entire coke, a large amount of cooling gas is forced to flow at full speed so that sufficient cooling gas is distributed even to areas where the falling speed is high. This required an increase in the size of the equipment, such as increasing the size of six fan bays, which was an inconvenience that would impair economic efficiency.

本発明の目的は、粒塊の排出全停止することなく粒塊を
均一に冷却することができ、かつ、設備の経済性會向上
できる粒塊の乾式冷却設備における切出制御方法全提供
することである。
An object of the present invention is to provide a complete cutting control method for dry cooling equipment for grain agglomerates, which can uniformly cool grain agglomerates without completely stopping the discharge of grain agglomerates, and which can improve the economical efficiency of the equipment. It is.

上記目的を達成するために、本発明の構成は、冷却塔下
部の排出口から切出した粒塊の温1j(’l”検知する
放射式の♂1j温センサ?設け、かつ、該冷却塔下部の
粒塊切出装置に設けら几でいる複数の切出弁に粒塊の切
出回数?検出する切出回数センサ全般け、こnらの測温
センサ及び切出回数センサの信号を演算器に入力し、切
出回数センサの信号から一定時間内における粒塊切出量
全算出して粒塊切出速度を算定し、測温センサの信号か
らの粒塊温度と冷却塔内に入る前の冷却がス温度あるい
は予め設定した基準温度との温度差を算出し、該温度差
と粒塊切出速度とから切出うP操作の最適インターバル
を算定して各切出弁の作動を制御即し、粒塊全均一温度
に冷却するようになしたものである。
In order to achieve the above object, the configuration of the present invention is to provide a radiation-type ♂1j temperature sensor that detects the temperature 1j ('l) of the agglomerates cut out from the outlet at the lower part of the cooling tower, and The multiple cutting valves installed in the grain agglomerate cutting device are used to detect the number of times the grain agglomerates are cut out.The temperature sensor and the number of cutting sensors are used to calculate the signals of the temperature sensor and the number of cutting times sensor. The total amount of agglomerates cut out within a certain period of time is calculated from the signal of the cutting number sensor to calculate the agglomerate cutting speed, and the agglomerate temperature from the temperature sensor signal is input into the cooling tower. Calculate the temperature difference between the previous cooling temperature or a preset reference temperature, calculate the optimum interval for the P operation from the temperature difference and the agglomerate cutting speed, and operate each cutting valve. In other words, the entire grain agglomerate is cooled to a uniform temperature.

以下、本発明の好適一実施例について、第4図を参照し
ながら説明する。
A preferred embodiment of the present invention will be described below with reference to FIG.

第4図に示すごとく、1は冷却塔体であり、その底部に
は冷却後の粒塊、つまりこの実施例ではコークスを排出
する排出口3が設けらnている。
As shown in FIG. 4, reference numeral 1 denotes a cooling tower body, and a discharge port 3 is provided at the bottom of the tower body for discharging cooled granules, that is, coke in this embodiment.

排出口3は複数個設けらnlここでは2個設けた場合に
ついて説明すると、各排出口3a、3bからコークスを
排出できるようVCなっている。各排出口3a、3b[
は切出弁8a、8bが設置さn1各切出弁8a、3bの
作動により各排出口3a。
A plurality of discharge ports 3 are provided. Here, a case where two discharge ports 3 are provided will be described. A VC is provided so that coke can be discharged from each of the discharge ports 3a and 3b. Each outlet 3a, 3b [
Cut-out valves 8a and 8b are installed, and each outlet 3a is opened by the operation of each cut-out valve 8a and 3b.

3b2開閉するようVCなっている。各切出弁8a。VC is set to open and close 3b2. Each cut-out valve 8a.

8bvCはコークスの切出回数全検出するための切出回
数センサ13a、13bが設けらnている。
8bvC is provided with cutting number sensors 13a and 13b for detecting the total number of cuttings of coke.

また15は下部デート12から排出さnたコークスで、
16はこn −t 搬送するベルトコンベヤである。1
1は放射式の測温センサで、該コンベヤ16に載せられ
て移動中のコークス15の温度全測温する。この1つの
測温センサ17と複数個の切出回数センサ13a、13
bは演算器181C電気的に接続さn1温度信号および
切出回数信号?演算器18に入力する。演算器18Vc
はコークスの切出速度設定器19が接続さn1演葺器1
8にコークスの切出速度設定値全入力する。演算器18
の出力側は各切出弁8a、3blC接続さ几、作動指令
信号20を出すことで各切出弁8a、8bの動作を制御
する。
Also, 15 is coke discharged from the lower date 12,
16 is a belt conveyor that conveys this n-t. 1
Reference numeral 1 denotes a radiation type temperature sensor which measures the entire temperature of the coke 15 placed on the conveyor 16 and being moved. This one temperature sensor 17 and a plurality of cutting number sensors 13a, 13
b is electrically connected to the arithmetic unit 181C n1 temperature signal and cutting number signal? Input to the calculator 18. Arithmetic unit 18Vc
The coke cutting speed setting device 19 is connected to n1 operator 1.
Input all the coke cutting speed settings in 8. Arithmetic unit 18
The output side is connected to each cut-off valve 8a, 3blC, and controls the operation of each cut-off valve 8a, 8b by issuing an operation command signal 20.

演算器18の機能について説明すると、第一に、切出回
数信号からコークス切出速度全脚:定する。
To explain the functions of the calculator 18, first, the coke cutting speed is determined from the cutting number signal.

すなわち、通常でのコークスの切出速度Vは次式で算出
される。
That is, the normal coke cutting speed V is calculated by the following equation.

ここで、tは経過時間〔時間〕、Zは経過時間内におけ
るコークスの切出回数〔回〕、Qは1回当りのコークス
切出量〔トン/回数〕である。
Here, t is the elapsed time [time], Z is the number of times the coke is cut out within the elapsed time [times], and Q is the amount of coke cut out per time [tons/number of times].

他方、過渡時におけるコークス切出速度V′は次式で算
出さnる。
On the other hand, the coke cutting speed V' during the transient period is calculated by the following equation.

ここで、Voはコークス切出速度設定値〔トン/時間〕
、 toおよびt′については、to−Q/vo〔時間
7回)、 t’−、t/C[時間7回〕、Cはある経過
時間内コークス切出回数の積算値〔回〕である。過渡時
に該当する時期とは、コークス切出の開始時やコークス
切出速度設定値V。?変更した時等から所定の時間経過
するまでの時期を指し、コークス切出速度の変化が必要
最小限度において安定するまでの時期である。
Here, Vo is the coke cutting speed setting value [tons/hour]
, to and t', to-Q/vo [time 7 times], t'-, t/C [time 7 times], C is the integrated value of the number of coke cuttings within a certain elapsed time [times] . The period corresponding to the transient period is the start of coke cutting and the coke cutting speed setting value V. ? It refers to the period from when the change is made until a predetermined period of time has elapsed, and is the period until the change in coke cutting rate stabilizes at the minimum necessary level.

第二に、演算器18は連続的に測定する測温センサ11
からの切出弁8aのコークス温度θ1と、切出弁8bの
コークス温度θ4、塔体1内に入る前の冷却ガス温度θ
。との温度差Δθi及びΔθjt−算出すると共に、温
度差Δθi及びΔθjについて平均値H1及びi、?算
出する。この演算式2次に示す。
Second, the computing unit 18 continuously measures the temperature sensor 11.
The coke temperature θ1 of the cutoff valve 8a, the coke temperature θ4 of the cutoff valve 8b, and the cooling gas temperature θ before entering the column body 1.
. Temperature differences Δθi and Δθjt- are calculated, and average values H1 and i, ? are calculated for the temperature differences Δθi and Δθj. calculate. This calculation formula is shown as follows.

ここで、N、Mは設定時間内の切出弁8a及び8bの切
出回数である。
Here, N and M are the number of times the cutoff valves 8a and 8b are cut out within the set time.

尚、塔体1内へ流入前の冷却がス温度は図示しない温度
センサで測定した値とするも、この冷却ガス温度に代え
て設計上予め求めた基準温度としてもよい。
Note that the temperature of the cooling gas before it flows into the tower body 1 is a value measured by a temperature sensor (not shown), but instead of this cooling gas temperature, it may be a reference temperature determined in advance based on the design.

第三に、演算器18は温度差Δθ1.Δθ、平均温等か
ら平均弁8a、8bの切出時間のインターバルTl +
 ’r、、 + TI’+ T2’を算定する。すなわ
ち、通常時における切出弁8a及び8bのコークス切出
時間のインターバルTは次式で算出さnる。
Thirdly, the computing unit 18 calculates the temperature difference Δθ1. Based on Δθ, average temperature, etc., the interval Tl + of the average cutting time of valves 8a and 8b
Calculate 'r,,+TI'+T2'. That is, the interval T between the coke cutting times of the cutting valves 8a and 8b during normal times is calculated by the following equation.

他方、過渡時におけるコークス切出時間のインターバル
T′は次式で算出さする。
On the other hand, the interval T' of the coke cutting time during the transient period is calculated by the following equation.

次に第4図に示した装置の作用について述べる。Next, the operation of the apparatus shown in FIG. 4 will be described.

切出速度設定器19に切出速度設定値V。をセットし、
演算器18に介して各切出弁8a、8bのコークス切出
時間のインターバルTl p ’r21 T、/ rT
z’に調整する。このとき、各切出弁8a、8blCお
ける切出速度V1 r V2 r vIZ V2’が変
ll1l、シて冷却塔体1内でのコークスの降下速度が
変わることになる。
The cutting speed setting value V is set in the cutting speed setting device 19. set,
The calculation unit 18 calculates the coke cutting time interval Tl p 'r21 T, / rT of each cutting valve 8a, 8b.
Adjust to z'. At this time, the cutting speed V1 r V2 r vIZ V2' at each cutting valve 8a, 8blC changes, and the descending speed of coke in the cooling tower body 1 changes.

通常時にコークスの不均一冷却が起きる場合、その不均
一に冷却さnたコークスが切出さnると、測温センサ1
γからの温度信号より温度差Δθi。
When coke is unevenly cooled during normal operation, when the unevenly cooled coke is cut out, the temperature sensor 1
Temperature difference Δθi from temperature signal from γ.

Δθj及び平均値Δθ1.Δθj、Δθに’を演算器1
8で算出し、その不均一に冷却さ几たことを容易に判別
することができる。また、排出口3a、3bの切出弁8
a、8bにおけるコークス切出速度v2各切出回数セン
サ13a、13bからの切出回数信号より演算器18で
算出するが、切出弁8a。
Δθj and average value Δθ1. Calculator 1 sets ' to Δθj, Δθ
8, and it can be easily determined that the temperature was unevenly cooled. In addition, the cutoff valves 8 of the discharge ports 3a and 3b
Coke cutting speed v2 at the cutting valve 8a is calculated by the calculator 18 from the cutting number signals from the respective cutting number sensors 13a and 13b.

8bの開閉も演算器18によって行なうので、温度差Δ
θi、ΔθjVc対応するコークス切出速度がいずれで
あるかも容易に判別することができる。このように判別
さfしたこ几らの算出値より上記(5)式に示す如く各
切出弁8a、8bの切出時間の最適インターバルT+、
T2に演算器18で算定し、そのインターバル’r、 
l ’r2で各切出弁8a、8bが作動するような作動
指令信号20を演算器18が出力する。従って合弁の、
温度かΔθ1.Δθjの平均質がその全体の平均値馬よ
りも太きいと(5)式の10./凧又はIf)j/IO
Qが大きくなり、高温のコークスが切出さ几る排出口3
a、3blC対応する切出@8a、8bの作動インター
バルTi大きくすることとなる。インターバルTが犬き
くなると、上記コークス切出量Qが一定であるゆえ・コ
ークス切出速度Vが減少しくV=Q/T)、コークス降
下速度が遅くなる。その結果、炉内滞在時間が延長する
ので、コークスの冷却効果が上が9、コークス冷却が均
一化に向かう。逆に、温度差Δθ1゜Δθ、が平均値Δ
θによりも小さいと低温會呈するコークスが切出さnる
排出口3a、3bに対応する切出弁8a、8bの切出時
間のインター・ぐルTi小さくすることとなり、コーク
ス切出速度Vが増加し、コークス降下速度が速くなる。
8b is also opened and closed by the computing unit 18, so the temperature difference Δ
It is also possible to easily determine which coke cutting speed corresponds to θi and ΔθjVc. Based on the calculated values of F and Takori et al., the optimum interval T+ of the cut-off time of each cut-off valve 8a, 8b is determined as shown in the above equation (5).
Calculated by the calculator 18 at T2, and the interval 'r,
The computing unit 18 outputs an operation command signal 20 such that each cutoff valve 8a, 8b operates at l'r2. Therefore, the joint venture
Temperature or Δθ1. If the average quality of Δθj is greater than its overall average value, then 10 of equation (5). /Kite or If)j/IO
Discharge port 3 where Q increases and high temperature coke is cut out and cooled
The operation interval Ti of cutting @8a and 8b corresponding to a and 3blC is increased. When the interval T becomes shorter, since the coke cutting amount Q is constant, the coke cutting speed V decreases (V=Q/T), and the coke descending speed becomes slower. As a result, the residence time in the furnace is extended, which improves the coke cooling effect and makes coke cooling more uniform. Conversely, the temperature difference Δθ1°Δθ is the average value Δ
If it is smaller than θ, the interglue Ti of the cutting time of the cutting valves 8a, 8b corresponding to the discharge ports 3a, 3b from which coke having a low temperature is cut out will be reduced, and the coke cutting speed V will increase. This increases the coke fall speed.

この結果、炉内滞在時間が短かくなるので、コークスの
冷却効果が下が9、コークス冷却が均一化さnる。
As a result, the residence time in the furnace is shortened, so the coke cooling effect is reduced and coke cooling is made more uniform.

過渡時にコークスの不均一冷却が発生する場合にも、前
述と同様にして、温度差io、 、  77?rj及び
その平均値Δθに更にはコークス切出速度v1’+ ”
2’を演算器18で算出し、これらの値より上記(6)
式に示す如く各切出弁8a、8bのコークス切出時間の
インターバルTI’l Tz’ k演算器18で算定し
、そのインターバルT I ’ + T2’で各切出弁
5atabが作動するような作動指令信号20を演算器
18が出力する。こ几によって、各切出弁8a、8bは
コークス切出速度v1′、■2′が変化し、コークス降
下速度を変えるため、炉内滞在時間が調整さn1コーク
ス冷却が均一化さnることになる。
Even when non-uniform cooling of coke occurs during a transient period, the temperature difference io, , 77? rj and its average value Δθ, and also the coke cutting speed v1'+ ”
2' is calculated by the calculator 18, and from these values the above (6) is calculated.
As shown in the formula, the interval TI'l Tz' k of the coke cutting time of each cutting valve 8a, 8b is calculated by the k calculator 18, and each cutting valve 5atab is operated at the interval TI'+T2'. The arithmetic unit 18 outputs an operation command signal 20. With this oven, the coke cutting speeds v1' and 2' of the respective cutoff valves 8a and 8b change, and the coke descending speed is changed, so the residence time in the oven is adjusted and coke cooling is made uniform. become.

以上の如き動作を適宜繰り返すことで、通常時、過渡時
のいずnにおいてもコークスの冷却を均一に行なうこと
ができるものである。
By appropriately repeating the above operations, coke can be uniformly cooled both in normal and transient conditions.

なお、放射式の測温センサ17は、熱電対のように冷却
塔体1内に設けるのではなく、該塔体1外に1つ設け、
各切出弁8a、8bごとに切出さnて下部ゲート12か
らベルトコンベヤ16に落チ、直チに該コンベヤ16で
バッチ状で搬送移動の際のコークスの温度を検知する。
Note that the radiation type temperature sensor 17 is not provided inside the cooling tower body 1 like a thermocouple, but one is provided outside the tower body 1.
The coke is cut out from each cutoff valve 8a, 8b and dropped from the lower gate 12 onto the belt conveyor 16, and the temperature of the coke is immediately detected as it is conveyed in batches on the conveyor 16.

すなわち、冷却塔体1内に熱電χ・Jを設置する場合は
、摩耗対策のため、熱電対を塔壁レンガ内に埋設しなけ
nばならないので、塔体1内のコークスの温度を正しく
測定できない上、塔体1内はコークスが未だ冷却途上で
あり、冷却コークスとはいえない。しかも、塔体1内で
は〃スC影#全受け、熱電対はガスの温度を検知してし
まい、また応答も遅い。しかし、放射式の測温センサ1
7を第4図のように塔体11外に設けると、外乱がなく
、冷却後のコークスの真の温度を測定することができ、
かつ塔体1内に設置する場合と比べて設置環境が工く、
長寿命が期待でき、メンテナンスも容易となり、しかも
応答が速いので、プロセス値の変化を早くつかんで切出
弁8a、8bの制御に使いやすい。
In other words, when installing a thermocouple χ・J inside the cooling tower body 1, the thermocouple must be buried in the brick wall of the tower to prevent wear, so it is difficult to accurately measure the temperature of coke inside the tower body 1. Moreover, the coke inside the column body 1 is still in the process of being cooled, and cannot be called cooled coke. Moreover, inside the tower body 1, the thermocouple detects the temperature of the gas and the response is slow. However, the radiation temperature sensor 1
7 outside the column body 11 as shown in Figure 4, there is no disturbance and the true temperature of the coke after cooling can be measured.
Moreover, the installation environment is better than when installed inside the tower body 1.
A long life can be expected, maintenance is easy, and the response is quick, so changes in process values can be quickly detected and used to control the cutoff valves 8a and 8b.

以上要するに本発明によ几は次のような優nた効果全発
揮する。
In summary, the present invention exhibits all the following excellent effects.

(1)粒塊の排出全停止することなく、粒塊を均一に冷
却することができ、乾式冷却装置の稼動率が向上し、か
つ複数の切出弁を用い、各切出弁の開閉動作のインター
ベルを制御することにより、冷却塔内の粒塊の降下速度
を制御することができ、粒塊の冷却を確実に均一化する
ことができる。
(1) Agglomerates can be uniformly cooled without having to completely stop discharging the agglomerates, improving the operating rate of the dry cooling system, and using multiple cut-off valves, each cut-out valve can be opened and closed. By controlling the interval, the rate of descent of the agglomerates in the cooling tower can be controlled, and cooling of the agglomerates can be reliably uniformed.

(2)シかも、通常時と過渡時における切出弁の制御が
行なえる。とくに、冷却塔下部の排出口から切出した粒
塊の温度を放射式の温度センサで検知するから、熱電対
全冷却塔内に設置する場合に比較して、外乱がなく、冷
却後のコークスの真の温度を検知し、かつ、応答が速く
、粒塊の均一冷却が精度の高いものとなり、しかも、設
置環境がよく、長寿命が期待でき、メンテナンスも容易
となる。
(2) It is also possible to control the cutoff valve during normal and transient times. In particular, since the temperature of the agglomerates cut out from the outlet at the bottom of the cooling tower is detected by a radiation-type temperature sensor, there is no disturbance compared to when thermocouples are installed inside the cooling tower, and the temperature of the coke after cooling is reduced. It can detect the true temperature, has a fast response, and uniformly cools the agglomerates with high precision.Moreover, it has a good installation environment, can be expected to have a long life, and is easy to maintain.

(3)゛炉内に熱電対を設置して粒塊の温度を知る方法
に依れば、少くとも切出弁の数史熱電対を要するが、切
出弁は後続設備の能力上、一度に複数の切出弁が開閉す
ることはないので、切出回数センサと連動すnば、1台
の放射式測温センサにて切出弁が複数個あっても各切出
弁毎の切出粒塊温度を検知出来る。
(3) According to the method of installing a thermocouple in the furnace to determine the temperature of the agglomerates, at least several thermocouples are required for the cut-out valve, but due to the capacity of the subsequent equipment, the cut-out valve can be installed once. Since multiple cut-off valves do not open or close at the same time, by linking with the cut-off frequency sensor, even if there are multiple cut-off valves, one radiation-type temperature measurement sensor can control the cut-off time for each cut-off valve. It is possible to detect the temperature of the ejected pellets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の粒塊の乾式消火設備の一例を示した縦断
立面図、第2図は第1図の冷却塔体内における冷却ガス
上昇速度比分布金示した説明図、第3図は第1図の冷却
塔体内における粒塊の降下速度比分布?示した説明図、
第4図は本発明を実施する装置の一例全示したM新党面
図である。 尚、図中1は冷却塔、3a、3bは排出口、8a、gb
は切出弁、13.14は切出回数センサ、15はコーク
ス、11は測温センサ、18は演算器である。 特 許 出 願 人  石川島播磨重工業株式会社代理
人 弁理士  絹 谷 信 雄 第1図 第2図 第3図 /
Figure 1 is a longitudinal sectional elevation view showing an example of a conventional dry fire extinguishing system for pellets, Figure 2 is an explanatory diagram showing the distribution of the cooling gas rising speed ratio in the cooling tower body of Figure 1, and Figure 3 is What is the distribution of the falling speed ratio of the particles in the cooling tower body in Figure 1? The explanatory diagram shown,
FIG. 4 is a front view of an M new machine showing an example of an apparatus for carrying out the present invention. In addition, in the figure, 1 is a cooling tower, 3a, 3b are discharge ports, 8a, gb
13 and 14 are cutting valves, 13 and 14 are cutting number sensors, 15 is coke, 11 is a temperature sensor, and 18 is a computing unit. Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Agent: Patent attorney: Nobuo Kinutani Figure 1 Figure 2 Figure 3/

Claims (1)

【特許請求の範囲】[Claims] 冷却塔下部の排出口から切出した粒塊の温度を検知する
放射式の測温センサを設け、かつ、該冷却塔下部の粒塊
切出装置に設けられてbる複数の切出弁に粒塊の切出回
数全検出する切出ロ数センサ全設け、こ几らの測温セン
サ及び切出回数センサの信号?演算器に入力し、切出回
数センサの信号から一定時間内における粒塊切出量全算
出して粒塊切出速度を算定し、測温センサの信号からの
粒塊温度と冷却塔内に入る前の冷却ガス温度あるいは予
め設定した基準温度との温度差を算出し、該温度差と粒
塊切出速度とから粒塊が所望温度以下となるように切出
弁操作のインターバルを算定して各切出弁の作動を制御
し、粒塊を均一温度に冷却するようになしたことTh%
徴とする乾式冷却設備における粒塊の切出制御方法。
A radiation-type temperature sensor is provided to detect the temperature of the agglomerates cut out from the outlet at the bottom of the cooling tower, and the agglomerates are fed to a plurality of cutting valves provided in the agglomerate cutting device at the bottom of the cooling tower. Is there a full cutting number sensor that detects the total number of times the lump is cut out, and a signal from the temperature sensor and cutting number sensor? The input is input to a calculator, and the total amount of agglomerates cut out within a certain period of time is calculated from the signal of the cutting number sensor, the agglomerate cutting speed is calculated, and the agglomerate temperature from the signal of the temperature sensor and the amount in the cooling tower are Calculate the temperature difference between the cooling gas temperature before entering or a preset reference temperature, and calculate the cut-out valve operation interval from the temperature difference and the agglomerate cutting speed so that the agglomerate temperature is below the desired temperature. Th%
A method for controlling the cutting of agglomerates in dry cooling equipment based on the characteristics.
JP3698483A 1983-03-07 1983-03-07 Method of cutting granules in dry cooler Granted JPS59161479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3698483A JPS59161479A (en) 1983-03-07 1983-03-07 Method of cutting granules in dry cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3698483A JPS59161479A (en) 1983-03-07 1983-03-07 Method of cutting granules in dry cooler

Publications (2)

Publication Number Publication Date
JPS59161479A true JPS59161479A (en) 1984-09-12
JPS6241635B2 JPS6241635B2 (en) 1987-09-03

Family

ID=12485011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3698483A Granted JPS59161479A (en) 1983-03-07 1983-03-07 Method of cutting granules in dry cooler

Country Status (1)

Country Link
JP (1) JPS59161479A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450479A (en) * 1977-09-29 1979-04-20 Ishikawajima Harima Heavy Ind Co Ltd Cooling apparatus of vertical, countercurrent moving bed type
JPS57136087A (en) * 1981-02-16 1982-08-21 Ishikawajima Harima Heavy Ind Co Ltd Controlling method for delivery of granular mass in dry-type cooling tower

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450479A (en) * 1977-09-29 1979-04-20 Ishikawajima Harima Heavy Ind Co Ltd Cooling apparatus of vertical, countercurrent moving bed type
JPS57136087A (en) * 1981-02-16 1982-08-21 Ishikawajima Harima Heavy Ind Co Ltd Controlling method for delivery of granular mass in dry-type cooling tower

Also Published As

Publication number Publication date
JPS6241635B2 (en) 1987-09-03

Similar Documents

Publication Publication Date Title
CN103014329B (en) Control method of annular cooling air blower
RU2660475C1 (en) System for slag granulation
GB1221864A (en) Method and furnace for heating material such as glass
CN105910444A (en) Material temperature control method of sinter-circle-cooling machine
CN109724404A (en) A kind of rate of temperature fall controllable type vacuum sintering furnace and its control method
JPS59161479A (en) Method of cutting granules in dry cooler
US4671752A (en) Air-pulverizing apparatus for high-temperature molten slag
CN108662907A (en) A kind of vertical cooling machine discharge control method and device
CN103234366A (en) Automatic control method for cool-constant-temperature ore discharging of sinter ore furnace
CN206131757U (en) Device of wind -warm syndrome degree is got to stability and improvement kiln hood AQC stove from cooler
JPH0126400B2 (en)
JPS5893781A (en) Controlling discharge of lump coke in dry cooling tower
US5183495A (en) Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
CN106495195B (en) A kind of multifunctional roasting device and control method
JPS5893783A (en) Control of discharge of lump coke in dry cooling tower
FI102321B (en) Device for passing gas through materials to be sintered
CN107447099A (en) Silicon strip steel heat treatment stove controls cooling section hot blast cooling device
CN209778912U (en) Cooling type blanking barrel for slag dry method granulator
EP0602880B1 (en) Treatment of iron ore
JPS6241634B2 (en)
SU1476283A1 (en) Method of automatic controlling loose materials heat treating process in multi-stage fluidized bed furnace
US3261106A (en) Method and device for effecting heat exchange
SU998841A1 (en) Method of automatic control of material cooling process in grate-type refrigerator
SU1624708A1 (en) Method for controlling preparation of calcium carbide
CN117628916A (en) System and method for predicting cooling flue gas outlet temperature of sintering belt cooler