JPS59160205A - Sample value pid control device - Google Patents

Sample value pid control device

Info

Publication number
JPS59160205A
JPS59160205A JP3379983A JP3379983A JPS59160205A JP S59160205 A JPS59160205 A JP S59160205A JP 3379983 A JP3379983 A JP 3379983A JP 3379983 A JP3379983 A JP 3379983A JP S59160205 A JPS59160205 A JP S59160205A
Authority
JP
Japan
Prior art keywords
control
signal
transfer function
identification
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3379983A
Other languages
Japanese (ja)
Other versions
JPH0561643B2 (en
Inventor
Takashi Shigemasa
隆 重政
Yoshinori Ichikawa
市川 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3379983A priority Critical patent/JPS59160205A/en
Publication of JPS59160205A publication Critical patent/JPS59160205A/en
Publication of JPH0561643B2 publication Critical patent/JPH0561643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To raise responsiveness and a suppressing property against a disturbance by injecting an identifying signal to a control system in the course of controlling a closed loop, identifying a dynamic characteristic of a process, and executing an auto-tuning to the control system having a response shape conforming to specifications. CONSTITUTION:In a process 1 in which a temperature, etc. of a chemical plant are controlled, a deviation between a sampled output y(t) and an output h(k) of a target value filter 4 is calculated by an operational amplifier 6, and this deviation e(k) executes a control through a deviation filter 7 and a PID operating part 8 so that the output signal y(t) of the process is made to coincide with a target value signal r(k) through a sample holding part 2. A pulse transfer function is identified by inputting an output u(k) of an adding part 10 and a sampled output y(k) to a pulse transfer function identifying part 11, and a control constant is obtained through an S transfer function operating part 12 and a control constant operating part 13 by its coefficient, a sample period tau, a response shape coefficient alpha of a control system, etc. In this regard, they are controlled by a deciding part 14 for ending of identification.

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は、プロセスの動特性を同定し、その同定結果を
用い制御系に課せられた仕様を満足するように制御常数
を自動調整(オートチューニング)等る機能を有す、4
PID制御装置に関する。
[Detailed Description of the Invention] [Field to which the invention pertains] The present invention identifies dynamic characteristics of a process, and uses the identification results to automatically adjust control constants (auto-tuning) so as to satisfy specifications imposed on a control system. ) have the same function, 4
This invention relates to a PID control device.

し従来技術とその問題点〕 ゛ オートチューニング機能を実現するには、何らかの
方法により制御対象プロセスの動特性を同定する機能と
制御仕様を満足するように制御系を設計する機能とが必
要である。同定方法については、制御装置と制御対象プ
ロセスとを切り離して開ループ動作下で行なう方法と、
制御対象プロセスを制御しながら、すなわち閉ループ動
作下で行なう方法とがある。石油化学プラントのような
、数!OOループから構成される複雑なプロセスでは、
プロセスの動特性を同定するために1つの制御ループを
オープンにした状態で長時間維持することはプラント全
体のバランスをくずして困難であるばかりでなく、これ
により不良製品を多量に発生することになり、これによ
り多大のエネルギロスを招く。したがって、同定方法は
、経済上、品質管理上、あるいは安全上などの観点から
、閉ループ動作下で行なえる事が望ましい。
Prior art and its problems] ゛ To realize the auto-tuning function, it is necessary to have a function to identify the dynamic characteristics of the controlled process by some method and a function to design the control system to satisfy the control specifications. . As for the identification method, there is a method in which the control device and the process to be controlled are separated and the process is performed under open-loop operation;
There is a method in which the control target process is controlled, that is, under closed-loop operation. Like petrochemical plants, numbers! In a complex process consisting of OO loops,
Keeping one control loop open for long periods of time to identify process dynamics is not only difficult because it upsets the balance of the entire plant, but also leads to a large number of defective products. This causes a large amount of energy loss. Therefore, it is desirable that the identification method be performed under closed loop operation from the viewpoint of economy, quality control, or safety.

閉ループ制御中に制卸系のオートチューニングを行なえ
るサンプル値PID制御装置として、これまで公開特許
特開昭57−90704号公報に記載の技術が知られて
いる。この制御装置では、流体輸送プロセスによく見ら
れるような制御対象の伝達関数が8領域の左半面にゼロ
点(伝達関数の分子多項式二〇の根である。)を含む場
合であっても、制御仕様を満足させる必要があった。さ
らば、PID制御部それ自身が直列補償であるため、チ
ューニング後の制御系は、目標値変化に対する連応性は
良好であるが、さらに外乱に対する抑制性をも良好にす
る必要があった。す々わち、プロセスコントローラとし
ては、連応性と抑制性の両性質とも良好である事が望ま
しい。
As a sample value PID control device capable of performing auto-tuning of a control system during closed-loop control, a technique described in Japanese Patent Application Laid-Open No. 57-90704 is known. With this control device, even when the transfer function of the controlled object includes a zero point (which is the root of the numerator polynomial 20 of the transfer function) on the left half of the 8 regions, as is often seen in fluid transport processes, It was necessary to satisfy control specifications. Since the PID control unit itself uses series compensation, the control system after tuning has good responsiveness to changes in the target value, but it was also necessary to improve the ability to suppress disturbances. In other words, it is desirable for a process controller to have both good coordination and suppression properties.

〔発明の目的〕[Purpose of the invention]

この発明は、伝達関数が8領域の左半面にゼロ点を持つ
ような制御対象プロセスに対して、その動特性を同定し
目標値変化に対する連応性と外乱に対する抑制性ともす
ぐれた制御系に制御定数を自動調整(オートチューニン
グ)する機能を有するPID制御装置を提供することを
目的とする。
This invention identifies the dynamic characteristics of a controlled process whose transfer function has a zero point on the left half of the eight regions, and creates a control system that is highly responsive to changes in target values and excellent in suppressing disturbances. An object of the present invention is to provide a PID control device having a function of automatically adjusting constants (auto-tuning).

〔発明の概要〕[Summary of the invention]

この発明は、サンプル制御周期毎にサンプルされた目標
値信号を目標値フィルタにより演算した信号とサンプル
制御周期毎にサンプルされたプロセスの出力信号との偏
差を演算し、その偏差信号を処理する偏差フィルタと、
その偏差フィルタの出力信号をPID演算するPID演
算部とパーシスチントリ・エキサイテイングである同定
信号を発生する同定信号発生部と、この同定信号とさぎ
のPID演算部の出力を加算する加算部と、加算した信
号をホールドするサンプルホールド部とサンプルホール
ド部の出力信号すなわち制御対象プロセスの操作信号に
より制御対象プロセスは駆動され、プロセスの出力信号
となるループにより、制御ループが構成され、さらに、
さきの加算した信号すなわちサンプル制御周期毎に制御
対象プロセスに印加された操作信号とサンプル制御周期
毎のプロセスの出力信号から制御対象プロセスのパルス
伝達関数のパラメータを同定するパルス伝達関数同定部
と、同定されたパルス伝達関数同定部の同定パラメータ
を用いて、制御対象の8領域の極とゼロ点を演算するS
伝達関数演算部と、8伝達関数演算部の出力である制御
対象の8伝達関数パラメータと制御系の応答形状を指定
する係数とサンプル制御周期より、制御系の特性を支配
するPID演算部のPID定数と偏差演算処理する偏差
フィルタの定数と目標値フィルタの定数とを演算する制
御定数演算部と、制御対象プロセスの同定が終了したか
どうかを判定する同定完了判定部とを具備し、閉ループ
制御中に同定信号をサンプル制御周期毎に制御系に注入
しながら、制御対象プロセスのパルス伝達関数を同定し
、同定完了判定部が同定できたと判定された時、同定信
号発生部の同定信号発生を停止させるとともに、制御定
数演算部で演算した定数を用いて、目標値フィルタ、偏
差フィルタ、PID演算部が演算するようにチューニン
グすることのできるサンプル値PID制御装置である。
This invention calculates the deviation between a signal obtained by calculating a target value signal sampled in each sample control period using a target value filter and an output signal of a process sampled in each sample control period, and processes the deviation signal. filter and
A PID calculation unit that performs a PID calculation on the output signal of the deviation filter, an identification signal generation unit that generates an identification signal that is persistently exciting, and an addition unit that adds this identification signal and the output of the rabbit PID calculation unit. , the control target process is driven by the sample hold unit that holds the added signal and the output signal of the sample hold unit, that is, the operation signal of the control target process, and a control loop is constituted by the loop that becomes the output signal of the process, and further,
a pulse transfer function identification unit that identifies parameters of the pulse transfer function of the controlled process from the previously added signal, that is, the operation signal applied to the controlled process in each sample control period and the output signal of the process in each sample control period; Using the identified parameters of the pulse transfer function identification unit, calculate the poles and zero points of the 8 regions of the controlled object.
The PID of the PID calculation unit that governs the characteristics of the control system is determined from the transfer function calculation unit, the 8 transfer function parameters of the controlled object that are output from the 8 transfer function calculation units, the coefficients that specify the response shape of the control system, and the sample control period. Constant and Deviation Calculation Equipped with a control constant calculation unit that calculates constants of a deviation filter and a constant of a target value filter, and an identification completion determination unit that determines whether identification of a controlled process has been completed, closed-loop control is performed. While injecting an identification signal into the control system at every sample control period, the pulse transfer function of the controlled process is identified, and when the identification completion judgment section judges that the identification has been completed, the identification signal generation section starts generating the identification signal. This is a sample value PID control device that can tune the target value filter, deviation filter, and PID calculation unit to perform calculations using the constants calculated by the control constant calculation unit.

〔発明の効果〕〔Effect of the invention〕

本発明による装置では、プロセスの動特性を同定するの
に閉ループ制御中に行なえるので、経済上、品質管理上
、あるいは安全上から有効である。
With the apparatus according to the present invention, the dynamic characteristics of the process can be identified during closed loop control, which is advantageous from an economical, quality control, and safety standpoint.

同定の際、同定信号を用いているが、係数の収束を判定
すると自動的に同定信号の注入を止めるため、プロセス
の乱れは必要最小限にとどめている。
During identification, an identification signal is used, but the injection of the identification signal is automatically stopped when it is determined that the coefficients have converged, so disturbances in the process are kept to the minimum necessary.

また、従来むずかしかったゼロ点を持つプロセスに対し
ても安定な制御系にチューニングできるなど、利するこ
と甚だ大きい。
In addition, it has tremendous benefits, such as being able to tune the control system to be stable even for processes that have a zero point, which was difficult to do in the past.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例について図面を用いて詳細に説
明する。第1図はこの発明に係るPID制御装置を示す
ブロック図である。
An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing a PID control device according to the present invention.

制御対象は化学プラントの温度、流量、圧力などをコン
トロールするように構成されたプロセス(1)で、サン
プルホールド部(2)、目標値r (t)をサンプル制
御周期τ毎にサンプルする第1のサンプラ、第1のサン
プラ(3)で%VX叉qtサンプルされた目標値信号r
 (k) (以下には離散時刻を示すものであり、すな
わち1=1<τであることを示す。)を処理する目標値
フィルタ(4)と、プロセスの出力y(1)をサンプル
周期τ毎にサンプルする第2のサンプラ(5)と、サン
プルされた出力y (k)と目標値フィルタ(4)の出
力hr(k)との備差を演算する偏差演算器(6)を偏
差演舞器(6)の出力である偏差e (k)を演算する
偏差フィルタ(7)と備差フィルタ(7)の出力信号e
The controlled object is a process (1) configured to control the temperature, flow rate, pressure, etc. of a chemical plant, and a sample hold section (2), a first sample holding section (2), which samples the target value r (t) at every sample control period τ. sampler, the target value signal r sampled by %VX or qt by the first sampler (3)
(k) (The following indicates discrete time, that is, 1 = 1 < τ.) A target value filter (4) that processes the process output y (1) with a sampling period τ A second sampler (5) samples each time, and a deviation calculator (6) calculates the difference between the sampled output y (k) and the output hr (k) of the target value filter (4). The output signal e of the deviation filter (7) and the difference filter (7) that calculate the deviation e (k) which is the output of the device (6)
.

(k)を演算するPID演算部(8)と、PID演算部
(8)の出力U。(k)と同定信号発生部(9)の出力
信号である同定信号v (k)とを加算する加算部(+
01と、加算部Q〔の出力U[有])をサンプルホール
ド部(2)へ入力することにより、目標値信号r (t
)にプロセスの出力信号y (t)を一致させる基本的
なPID制御装置が構成されている。さらに%LI(k
)とy[有])とを入力してプロセス(1)のパルス伝
達関数を同定するパルス伝達関数同定部(1ηとパルス
伝達関数同定部αυの出力であるパルス伝達関数の係数
とサンプル制御周期τより、プロセス(1)の8領域の
伝達関数の分母多項式と分子多項式の係数を演算するS
伝達関数演算部azと、S伝達関数演算部(121の出
力であるS伝達関数の分子多項式と分母多項式の係数と
制御系の応答形状係数αと実際に制御動作を行なうサン
プル制御周期τ′を入力してPl、D演算部(8)と備
差フィルタ(力と目標値フィルタ(4)で用いる制御定
数を演算する制御定数演算部a3とチューニング開始信
号8πk)と8伝達関数演算部(121の出力を処理し
て、チューニング動作すなわち同定信号発生部(9)と
パルス伝達関数同定部αυと制御定数演算部03)の動
作次に本発明の装置の各構成部分についてさらに詳細に
説明する。まず、安定なゼロ点を持つプロセス(1)に
対して、目標値フィルタ(4)、偏差フィルタ(7)と
PID演算部(8)の各演算部で用いる係数類は、制御
ループが安定になるような値が設定されている状態でサ
ンプル制御周期τ毎に閉ループ制御が行なわれている。
(k) and the output U of the PID calculation unit (8). (k) and the identification signal v (k) which is the output signal of the identification signal generation section (9).
01 and the output U of the adder Q [present]) to the sample and hold unit (2), the target value signal r (t
A basic PID controller is constructed to match the output signal y (t) of the process to ). Furthermore, %LI(k
) and y [exist]) to identify the pulse transfer function of process (1). From τ, calculate the coefficients of the denominator polynomial and numerator polynomial of the transfer function of the 8 regions in process (1).
The transfer function calculation unit az and the coefficients of the numerator polynomial and denominator polynomial of the S transfer function which are the outputs of the S transfer function calculation unit (121), the response shape coefficient α of the control system, and the sample control period τ′ for actually performing the control operation are Input Pl, D calculation section (8), difference filter (control constant calculation section a3 that calculates control constants used in force and target value filter (4) and tuning start signal 8πk), and 8 transfer function calculation section (121 The tuning operation, that is, the operation of the identification signal generation section (9), the pulse transfer function identification section αυ, and the control constant calculation section 03).Next, each component of the apparatus of the present invention will be explained in more detail. First, for process (1) that has a stable zero point, the coefficients used in each calculation section of target value filter (4), deviation filter (7), and PID calculation section (8) are such that the control loop is stable. Closed-loop control is performed every sample control period τ with values set such that τ.

チューニング開始信号8T(k)により、同定信号完了
判定部(14)は各演算ブロックに対して、同定開始信
号l8(k)を出力する。これを受けて、同定信号発生
部(9)はパージスティングエキサイテイング[Per
siatently Exciting(P、B、))
な信号であるM系列信号V (k)をサンプル制御周期
τ毎に発生する。v (k)がP、E、であるので、加
算部萌でPID演算部(8)の出力uoOctと加算さ
れた信号u (k)もPJ、となる。u (k)がP、
i! 、であるので、IEEF!Trans、on A
utomatic Control、 1976年+1
2月。
In response to the tuning start signal 8T(k), the identification signal completion determination section (14) outputs an identification start signal l8(k) to each calculation block. In response to this, the identification signal generator (9) generates a purging exciting [Per
siatently Exciting (P, B, ))
An M-sequence signal V (k), which is a typical signal, is generated every sample control period τ. Since v (k) is P, E, the signal u (k) added to the output uoOct of the PID calculation unit (8) by the addition unit Moe also becomes PJ. u (k) is P,
i! , so IEEF! Trans, on A
automatic Control, 1976+1
February.

Identifiability Condition
 l’or Linear Multi−yarria
ble System Operating unde
r Feedback。
Identity Condition
l'or Linear Multi-yarria
ble System Operating unde
r Feedback.

(837〜840)、 T、86derstr5mら著
に記載の定理により、閉ループ制御中にプロセス(1)
への操作信号U(k)とプロセスの出力y (k)から
、プロセス(1)のパルス伝達関数が同定可能となる。
(837-840), by the theorem described in T, 86derstr5m et al., process (1) during closed-loop control.
The pulse transfer function of process (1) can be identified from the operation signal U(k) to and the output y(k) of the process.

そこで、先き程の同定開始信号I 8(k)によりパル
ス伝達関数同定部aυは、プロセス11)のパルス伝達
関数の係数の同定を始める。プロセス(1)のモデルを
第1式のように与える。
Therefore, the pulse transfer function identification unit aυ starts identifying the coefficients of the pulse transfer function in process 11) using the identification start signal I8(k). The model of process (1) is given as the first equation.

ylk)t X ’js y(k−i)= 鱈+ u(
k−i) +、g(k+ + %θlε(k−i)+2
1.11.t              l+−1・
・・第1式 同定すべき係数から構成されるベクトルθを次式で表現
すると、 含!−(9,、ネl ”、”’ l ’:;m Iへ1
””” jネ、へ、、、、、、、、8. 、a)・・・
第2式 (ここで、Tは転置をあられす。)、パルス伝達関数同
定部αυで演算する拡張最小2乗法に沿った同定方法を
次の第3〜5式により示すことができる。
ylk)t X'js y(k-i)= cod+u(
k-i) +, g(k+ + %θlε(k-i)+2
1.11. t l+-1・
...Equation 1: Expressing the vector θ consisting of the coefficients to be identified using the following equation, Contains! -(9,, nel ”, ”' l ’:; m 1 to I
``”” j ne, he,,,,,,,,8.,a)...
The identification method according to the second equation (here, T is transposed) and the extended least squares method calculated by the pulse transfer function identification unit αυ can be expressed by the following equations 3 to 5.

ε■= yfkl −9)klTθ(k−1)    
     ・・曲用4式%式% χ(k)=β  、   (0,9<β<1)    
 ・・曲用6式程度に設定して用いる。また、ψ(k)
ベクトルは、第1式に対応して、 cp(kU”= (−y(k−+ )、 =−、−y 
(k−m) 、 u (k−1) 、−・、 u(k−
n)。
ε■=yfkl-9)klTθ(k-1)
...Deflection 4 formula% formula% χ(k)=β, (0,9<β<1)
...It is used by setting it to about 6 types for music. Also, ψ(k)
The vector is expressed as cp(kU”= (-y(k-+), =-,-y
(k−m) , u (k−1) , −・, u(k−
n).

ε(k−t)、・・・、ε(k−m) 、 t 〕  
・曲・第7式を用いる。払とP(6)の初期値は、次式
のような値を用いてスタートする。
ε(k-t),..., ε(k-m), t]
・Use the song ・Equation 7. The initial values of payout and P(6) are started using the following values.

ここで、δは10”〜10’程度の正数、■は単位行列
である。第3〜第5式までの一連の演算をサンプル制御
周期毎に実行することにより、同定すべきパラメータθ
はパルス伝達関数同定部aυにより同定される。同定パ
ラメータを用いてプロセス+1)のパルス伝達関数Gp
 fzlは次式のようになる。
Here, δ is a positive number of about 10" to 10', and ■ is a unit matrix. By executing a series of calculations from equations 3 to 5 every sample control period, the parameter θ to be identified is
is identified by the pulse transfer function identification unit aυ. Pulse transfer function Gp of process +1) using identified parameters
fzl is as shown in the following equation.

S伝達関数演算部aのは、パルス伝達関数同定部0Dの
同定係数al(1−1+2+・・・+rn)+ I)l
(1−L2+・・・+ n )から、次式で表現される
伝達関数GpfS)形式に変換される。
The S transfer function calculation section a is the identification coefficient al(1-1+2+...+rn)+I)l of the pulse transfer function identification section 0D.
(1-L2+...+n) is converted into a transfer function GpfS) format expressed by the following equation.

なお、この8伝達関数演算部a2では、第1O式の、分
母=0である固有値が第9式の分母=0の固有値とz=
e  を通じて、1対lに対応するように、更に、第9
式より8領域へ変換された伝達関数の低周波特性が一致
するように、第10式のゼロ点が演算されるよう1ニな
っている。これらによって、プロセス(1)の8低域の
伝達関数Gp (slが10式のように同定されること
になるが、同定の完了については、同定完了判定部(1
4)が係数の修正誤差の収束 (+−1+2+−・+m)+  (JmO,・−、m 
t)     ・+第11式より判定する。
In addition, in this 8-transfer function calculation unit a2, the eigenvalue of the first O equation with a denominator=0 is the same as the eigenvalue of the ninth equation with a denominator=0 of z=
Further, through e, corresponding to 1 to l, the ninth
The zero point of Equation 10 is calculated so that the low frequency characteristics of the transfer functions converted into eight regions match each other according to Equation 10. Through these, the 8 low-frequency transfer functions Gp (sl) of process (1) are identified as shown in equation 10.
4) is the convergence of the coefficient correction error (+-1+2+-・+m)+(JmO,・-,m
t) ・+Determine from Equation 11.

制御定数演算部(13)では、制御系の応答形状を指定
する係数αとザンプル制御周期τより、PID演算部(
8)と偏差フィルタ(7)と目標値フィルタ(4)の係
数を同定完了判定部(I4)の固定完了信号5p(h)
により演算する。なお、同定完了により、同定信号発生
部(9)での同定信号の発生及びパルス伝達関数同定部
aυの演算は止まる。
The control constant calculation unit (13) calculates the PID calculation unit (
8), the coefficients of the deviation filter (7) and the target value filter (4) are identified by the fixed completion signal 5p(h) of the completion determination unit (I4).
Calculate by Note that upon completion of the identification, the generation of the identification signal in the identification signal generation section (9) and the calculation of the pulse transfer function identification section aυ are stopped.

次に応答形状係数αにもとづき、制御系の応答仕様を指
定する参照モデルGm(α、σ、s)が決まる。
Next, a reference model Gm (α, σ, s) that specifies the response specifications of the control system is determined based on the response shape coefficient α.

ここでσは、制御系の立ち上りの時間係数であり、これ
は−計時に亮まる。
Here, σ is the time coefficient of the start-up of the control system, which is equal to -time measurement.

まず、△をZ(時間推移演算子)を用いて第12すると
、PID演算部(8)は、次のようにあられせる。
First, when △ is 12th modified using Z (time transition operator), the PID calculation unit (8) generates the following.

また、偏差フィルタ(7)の伝達関数を次式であられす
、 さらに、目標値フィルタ(4)の伝達関数を4!f であられすと、サンプル制〜周期τが小さい時、目標値
r (t)からプロセスの出力y(t)Jでの伝達関数
は、次のように近似できる。
In addition, the transfer function of the deviation filter (7) is expressed by the following equation.Furthermore, the transfer function of the target value filter (4) is expressed as 4! When f is the sample system and the period τ is small, the transfer function from the target value r (t) to the process output y(t)J can be approximated as follows.

ここで、 のように、偏差フィルタの係数Et(t−0+1+・・
・)を設定すると、第16式は、さらに第18式のよう
になる。
Here, the deviation filter coefficient Et(t-0+1+...
), the 16th equation becomes the 18th equation.

この第18式の右辺を参照モデルGm(α、σ、S)の
低周波特性1:おいて一致させるようにC0,C,。
C0, C, so that the right side of this 18th equation matches the low frequency characteristics 1: of the reference model Gm (α, σ, S).

C2を演算する。これらにより、Pより演゛鼻部(8)
、偏差フィルタ(力、目標値フィルタ(4)の係数が決
まることになり、一連の演算を制御定数演算部0国が行
なう。演算された係数を用いて、サンプル制御周期毎に
目標値フィルタ(4)は、第15式を演算し、偏差フィ
ルタ(7)は、第14式を演算し、PID演算部(8)
は13式を演算するのである。
Calculate C2. With these, the nose part (8)
, the coefficients of the deviation filter (force) and the target value filter (4) are determined, and the control constant calculation unit 0 performs a series of calculations. Using the calculated coefficients, the target value filter (4) is calculated for each sample control period. 4) calculates the 15th formula, the deviation filter (7) calculates the 14th formula, and the PID calculation unit (8)
calculates Equation 13.

以上、詳述1−たよりに、閉ループ制御中に制御系に同
定信号を注入し、操作信号U(ト))とプロセス出力y
 (k)とからプロセスの動特性を同定し、その同定結
果に基き、仕様通りの応答形状を持つ制御系にオートチ
ューニングされるのである。この時、同定シたプロセス
のゼロ点については、無理に分母形とせずに、偏差フィ
ルタにより補償し、さらに補償後の伝達特性に於て参照
モデルにマツチングさせているので、ゼロ点を持ってい
るために設計できなかったプロセス1:対しても安定な
制御ができる。
As described above, in detail 1-1, an identification signal is injected into the control system during closed-loop control, and the operation signal U(g)) and process output y are
The dynamic characteristics of the process are identified from (k), and based on the identification results, the control system is auto-tuned to have a response shape that meets the specifications. At this time, the zero point of the identified process is not forced into the denominator form, but is compensated by a deviation filter, and the transfer characteristic after compensation is matched to the reference model, so the zero point is Process 1: Stable control can be achieved even for processes that could not be designed due to

次に、本発明の装置を用いて、あるゼロ点を持ったプロ
セスに対して、適用した結果を第2図に示す。第2図の
(a)は、プロセス出力のステップ応答であり、ゼロ点
に対応する大きなオーバーシュートが見られる、同定の
結果 となった。分母形に直すと となり、負の係数があるので設計できなかったが、本装
置では、 co””0.0737 + C+=4.40 、C@”
” l 8.2 、E6”’ l + El =50と
設計された。第2図の(b>は、時刻OでOよりlへ目
標値を変化させた時のプロセス出力y (t)の応答で
ある。オーバーシュートのあるプロセスでありながらダ
ンピングの利いた有効な制御系にチュ一二ソグされてい
ることがわかる。
Next, FIG. 2 shows the results of applying the apparatus of the present invention to a process having a certain zero point. FIG. 2(a) shows the step response of the process output, and the identification result showed a large overshoot corresponding to the zero point. If we change it to the denominator form, we could not design it because there is a negative coefficient, but with this device, co""0.0737 + C+=4.40, C@"
"l 8.2, E6"' l + El = 50. In Figure 2, (b>) is the response of the process output y (t) when the target value is changed from O to l at time O.Even though the process has overshoot, it is effective control with damping. It can be seen that the system is connected to the system.

〔発明の他の実施例〕[Other embodiments of the invention]

本実施例の他に、偏差演算器(6)の次にPID演算部
(8)を演算し、その後に偏差フィルタ(力の機能を実
行させても、PID演算部(8)l二偏差フィルタ(7
)の機能を含ませた演算を行なわせても効果は同じであ
る。
In addition to this embodiment, the PID calculation unit (8) is operated next to the deviation calculation unit (6), and then the deviation filter (force function) is executed. (7
) The effect is the same even if the calculation includes the function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示すブロック図、第2
図は、この発明の実施例を用いてチューニングした結果
の応答を示す曲線図である。 (1)・・・プロセス (2)・・・サンプルホールド 13) 、 15)・・・サンプラ (4)・・・目標値フィルタ (6)・・・偏差演算器 (力・・・備差フィルタ (8)・・・PID演算部 (9)・・・同定信号発生部 On・・・加算器 0υ・・・パルス伝達関数同定器 (Lり・・・S伝達関数演算部 (13)・・・制御定数演算部 α荀・・・同定完了判定部
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG.
The figure is a curve diagram showing the response as a result of tuning using the embodiment of the present invention. (1)...Process (2)...Sample hold 13), 15)...Sampler (4)...Target value filter (6)...Difference calculator (power...Difference filter (8)...PID calculation unit (9)...Identification signal generation unit On...Adder 0υ...Pulse transfer function identifier (L)...S transfer function calculation unit (13)...・Control constant calculation section αXu... Identification completion judgment section

Claims (1)

【特許請求の範囲】[Claims] 制御対象となるプロセスをサンプル値制御するPID演
算部を有するものにおいて、前記PID制御演算部で制
御される制御ループ内にパーシスチントリ・エキサイテ
イング信号である同定信号を印加する同定信号発生部と
、目標値信号を演算子を演算する偏差フィルタと、偏差
フィルタで演算された信号をPID演算部に導入し、前
記同定信号発生部で生成した同定信号を前記サンプル値
PID制御演算部の出力に加算する、加算部と、加算し
て得られる操作信号および前記プロセスの制御量をサン
プリングして得られるプロセス信号を入力してこれらの
操作信号とプロセス信号とから、前記プロセスのパラメ
ータを同定するパルス伝達関数同定部と、このパルス伝
達関数同定部で得られるパルス伝達関数の係数から8(
ラプラス演算子)領域の伝達関数の係数を演算するS伝
達関数演算部と、このS伝達関数演算部で演算したいる
係数を演算する制御定数演算部と、チューニング開始信
号と前記8伝達関数の出力である係数を入力し、前記同
定信号発生部と、前記パルス伝達関数同定部と制御定数
演算部の演算動作をコントロールする画定完了判定部を
具備してなる構成としたことを特徴とするサンプル値P
ID制御装置。
An identification signal generation section that applies an identification signal that is a persistent exciting signal into a control loop controlled by the PID control calculation section in a device that includes a PID calculation section that controls a process to be controlled by sample values; , a deviation filter that calculates an operator on the target value signal, and a signal calculated by the deviation filter is introduced into a PID calculation section, and the identification signal generated by the identification signal generation section is outputted from the sample value PID control calculation section. a pulse that inputs an operation signal obtained by the addition and a process signal obtained by sampling the control amount of the process and identifies parameters of the process from these operation signals and the process signal; 8(
an S transfer function calculation section that calculates the coefficients of the transfer function in the region (Laplace operator); a control constant calculation section that calculates the coefficients calculated by the S transfer function calculation section; and a tuning start signal and outputs of the eight transfer functions. The sample value is characterized in that the sample value is configured such that the identification signal generation section and the definition completion determination section control the calculation operations of the pulse transfer function identification section and the control constant calculation section. P
ID control device.
JP3379983A 1983-03-03 1983-03-03 Sample value pid control device Granted JPS59160205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3379983A JPS59160205A (en) 1983-03-03 1983-03-03 Sample value pid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3379983A JPS59160205A (en) 1983-03-03 1983-03-03 Sample value pid control device

Publications (2)

Publication Number Publication Date
JPS59160205A true JPS59160205A (en) 1984-09-10
JPH0561643B2 JPH0561643B2 (en) 1993-09-06

Family

ID=12396516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3379983A Granted JPS59160205A (en) 1983-03-03 1983-03-03 Sample value pid control device

Country Status (1)

Country Link
JP (1) JPS59160205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292703A (en) * 1985-06-18 1986-12-23 Gijutsu Kenkyu Kumiai Kougiyouro Gijutsu Kenkyusho Process controller
CN110793546A (en) * 2019-11-01 2020-02-14 南京国电南自维美德自动化有限公司 Optimization method and system for inertial equipment adjustment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122068A (en) * 1977-03-31 1978-10-25 Mitsubishi Heavy Ind Ltd Simple forecasting controller
JPS54116580A (en) * 1978-03-01 1979-09-10 Toshiba Corp Process controller
JPS5717009A (en) * 1980-11-17 1982-01-28 Hitachi Ltd Control method for optimum state of plant
JPS5723107A (en) * 1980-07-18 1982-02-06 Toshiba Corp Process controller
JPS5739412A (en) * 1980-08-19 1982-03-04 Toshiba Corp Proportional, integral and differentiating control device of sample value

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122068A (en) * 1977-03-31 1978-10-25 Mitsubishi Heavy Ind Ltd Simple forecasting controller
JPS54116580A (en) * 1978-03-01 1979-09-10 Toshiba Corp Process controller
JPS5723107A (en) * 1980-07-18 1982-02-06 Toshiba Corp Process controller
JPS5739412A (en) * 1980-08-19 1982-03-04 Toshiba Corp Proportional, integral and differentiating control device of sample value
JPS5717009A (en) * 1980-11-17 1982-01-28 Hitachi Ltd Control method for optimum state of plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292703A (en) * 1985-06-18 1986-12-23 Gijutsu Kenkyu Kumiai Kougiyouro Gijutsu Kenkyusho Process controller
CN110793546A (en) * 2019-11-01 2020-02-14 南京国电南自维美德自动化有限公司 Optimization method and system for inertial equipment adjustment and storage medium

Also Published As

Publication number Publication date
JPH0561643B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
EP0256842B1 (en) Adaptive process control system
EP0530170B1 (en) Tuning arrangement for process controllers
US5682309A (en) Feedback method for controlling non-linear processes
EP0710901A1 (en) Multivariable nonlinear process controller
EP0482900B1 (en) Adaptive controller in a process control system and a method therefor
JP2003167605A (en) Controller, temperature control unit, and heat treating equipment
JPH01239603A (en) Process controller
KR20170135708A (en) Flow rate control device and storage medium on which is stored a program for a flow rate control device
JPS59160205A (en) Sample value pid control device
JPH0433102A (en) Model prediction controller
CN109964180B (en) Device and method for determining parameters of a control device
JPH09146610A (en) Multivariable nonlinear process controller
JPH0434766B2 (en)
US5995532A (en) Method using fuzzy logic for controlling a furnace
JPS63116204A (en) Adaptive controller
JPH0519725B2 (en)
US20050177253A1 (en) Controller
JP3277484B2 (en) PID controller
Zhu et al. Nonlinear L 1 Adaptive Control with Feedforward Control Action and Its Application in Wind Tunnel
JP2791011B2 (en) Control parameter setting device for plant control system
JPS58203506A (en) Device for controlling pid of sample value
JPS5955504A (en) Sample value pid controller
Vrána et al. PID contoller autotuning based on nonlinear tuning rules
JPH0410642B2 (en)
Ghani Comparison of various closed tuning rules on PID controller performance (LIQUID FLOW)