JPS59159675A - Inverter circuit - Google Patents

Inverter circuit

Info

Publication number
JPS59159675A
JPS59159675A JP58031572A JP3157283A JPS59159675A JP S59159675 A JPS59159675 A JP S59159675A JP 58031572 A JP58031572 A JP 58031572A JP 3157283 A JP3157283 A JP 3157283A JP S59159675 A JPS59159675 A JP S59159675A
Authority
JP
Japan
Prior art keywords
semiconductor switch
circuit
primary winding
capacitor
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58031572A
Other languages
Japanese (ja)
Other versions
JPH0161027B2 (en
Inventor
Takahiro Hara
隆裕 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Life Solutions Ikeda Electric Co Ltd
Original Assignee
Ikeda Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Electric Co Ltd filed Critical Ikeda Electric Co Ltd
Priority to JP58031572A priority Critical patent/JPS59159675A/en
Publication of JPS59159675A publication Critical patent/JPS59159675A/en
Publication of JPH0161027B2 publication Critical patent/JPH0161027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To increase the output variable range by connecting a semiconductor switch in series with a resonance capacitor connected in parallel with the primary winding of an oscillation transformer and operating it ON and OFF reversely to the main semiconductor switch. CONSTITUTION:An inverter circuit is formed by connecting the primary winding 4 of an oscillation transformer 3 and a main transistor 2 in series with a DC power source 1, and a series circuit of a resonance capacitor 6 and a transistor 9 in parallel with the primary winding 4, a mian transistor 2 is controlled ON or OFF by a drive circuit, and a transistor 9 is operated ON or OFF reversely thereto. Accordingly, when the transistor 2 is turned ON, the charging current of the capacitor 6 is not flowed thereto, and when the transistor 2 is turned OFF, the output can be produced by the resonance of the primary winding 4 and the capacitor 6, the ON period is shortened to the resonance period, thereby varying the output in a wide range.

Description

【発明の詳細な説明】 零発明け、インパーク回路に関し、効率を良好にすると
共に、負荷動力の可変範囲を広くすることを目的とした
ものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an impark circuit, and aims to improve efficiency and widen the variable range of load power.

第1図は従来のインパーク回路を示し、(1)は直流電
源、f2iはトランジスタからなる半導体スイッチで、
ドライ1回路t81 vcよジオン、オフされる。
Figure 1 shows a conventional impark circuit, where (1) is a DC power supply, f2i is a semiconductor switch consisting of a transistor,
Dry 1 circuit t81 VC is turned off.

(31は発振トランスで1次巻線(4)と2次巻線(5
)七を有する。+71 ij負負荷あるー 上記構成において、半導体スイッチ(2)か1441回
路(8)によりオンすると、直流電源(1)より共振コ
ンデンサ(6)が図示の方向に充電されると共に、発振
トランス(3101次巻線【4)に直流電源Illの電
圧Eが印加され、2次巻線(5)に電圧が発生し、負荷
(7)に負荷電力を供給しYいる。1次巻線C41に流
れる電流は、この1次巻線(4)の自己インダクタンス
Lと直流電源+11の電圧Eとにより決定される直線的
に増加する電流と、2次巻線(5)に流れる電流を1次
換算しまた電流の和となる。半導体スイッチ(2)は一
定時間オンした後、ドライ1回路(8)によりオフにな
り、半導体スイッチ(2)の電流は0になるが1次巻線
(4)に蓄積されている慣性電流により、この1次巻線
(4)の電流は直ぐVcDにならずにコンデンサ(31
に流れ、半導体スイッチ[21がオンして、いた時と逆
方向にコンデンサ(6)を充電する。そしてコンデンサ
C6)の充電電圧が高くなるにつれて電流が低下し、こ
のコンデンサ(6)の電圧が最大に々つた時点で0にな
り、その後5コンデンサ+61 K蓄積された電荷li
1次巻線を介して放電し、この1次巻線に以前と逆方向
の電流を流す。つ貰り、1次巻線(41とコンデンサ【
6)とから成る共振回路が共振する。また同時に発振ト
ランス[3+に発生する電圧により負荷(7)に9荷1
η力全供給する。その後、半導体スイッチ(21が再び
オ′ンし、以後は前述と同様の動作が繰返される。
(31 is an oscillation transformer with a primary winding (4) and a secondary winding (5)
) has seven. +71 ij There is a negative load - In the above configuration, when the semiconductor switch (2) or the 1441 circuit (8) is turned on, the resonant capacitor (6) is charged in the direction shown by the DC power supply (1), and the oscillation transformer (3101 The voltage E of the DC power supply Ill is applied to the secondary winding (4), a voltage is generated in the secondary winding (5), and load power is supplied to the load (7). The current flowing in the primary winding C41 is determined by the self-inductance L of the primary winding (4) and the voltage E of the DC power supply +11, and the current that increases linearly in the secondary winding (5). The flowing current is converted into a primary value and becomes the sum of the currents. After the semiconductor switch (2) is on for a certain period of time, it is turned off by the dry 1 circuit (8), and the current in the semiconductor switch (2) becomes 0, but due to the inertia current accumulated in the primary winding (4). , the current in this primary winding (4) does not reach VcD immediately, but instead flows into the capacitor (31
The semiconductor switch [21] is turned on, and the capacitor (6) is charged in the opposite direction. Then, as the charging voltage of capacitor C6) increases, the current decreases, and when the voltage of this capacitor (6) reaches its maximum, it becomes 0, and then the accumulated charge li of 5 capacitors + 61 K
A discharge occurs through the primary winding, causing a current to flow through this primary winding in the opposite direction. I received one, the primary winding (41 and the capacitor [
6) resonates. At the same time, the voltage generated in the oscillation transformer [3+ causes the load (7) to
η Supply all power. Thereafter, the semiconductor switch (21) is turned on again, and the same operation as described above is repeated.

この動作を第2図の波形図を参照し、外から更に詳しく
説明する。但し、fxlJ作を判り易くするために、負
倚(7)を接続[7ない状患で説明する。なお第2図中
、(I2)は半導体スイッチ(2)に流nる電流、(I
4)け1次巻線(4)に流れる電流、C16)はコンデ
ンサ(6)に流れる電流、(■6)はコンデンサ(6)
の充電電圧、(v2)は半導体スイッチ〔2Iの印加室
圧を夫々示す。
This operation will be explained in more detail from the outside with reference to the waveform diagram in FIG. However, in order to make the fxlJ work easier to understand, the negative force (7) will be explained as a connection [7]. In Figure 2, (I2) is the current flowing through the semiconductor switch (2), and (I2) is the current flowing through the semiconductor switch (2).
4) The current flowing in the primary winding (4), C16) is the current flowing in the capacitor (6), (■6) is the current flowing in the capacitor (6)
The charging voltage and (v2) respectively indicate the applied chamber pressure of the semiconductor switch [2I].

半導体スイッチ(2)がtoeてオンすると、コンデン
サ(6)は直ぐに直流電源fi+の電圧Eまで充電され
ると同時に、1次巻線(4)に流れる電流は直線的に増
加し、tlKで半導体スイッチ(2)がオフすると、こ
の時点においてコンデンサ(6)に’、”; CE” 
(但しCU ”−”j’>−9−161)容量)、1 
次巻線t4’rK j4LI 2ノエネルギーが蓄積さ
れており、半導体スイッチ]2)の電流Iまt1以後0
になるが、1次巻線(4)の電流は流れ続け、コンデン
サ(6)を逆方向に充電する。このコンデンサ(6)の
電圧が最大になっ之時t2で1次巻線(4)の電流は0
てなり、1次巻線(4)に蓄積されたエネルギーが0に
なるため、t1〜t2の1次巻線(4)及びコンデンサ
(6)のロスを0とすると、C2ニおいて次式が成立す
る。
When the semiconductor switch (2) is turned on, the capacitor (6) is immediately charged to the voltage E of the DC power supply fi+, and at the same time, the current flowing through the primary winding (4) increases linearly, and at tLK, the semiconductor When the switch (2) is turned off, at this point the capacitor (6) has ',";CE".
(However, CU "-"j'>-9-161) capacity), 1
The energy of the next winding t4'rK j4LI 2 is accumulated, and the current I of the semiconductor switch 2) becomes 0 after t1.
However, the current in the primary winding (4) continues to flow, charging the capacitor (6) in the opposite direction. When the voltage of this capacitor (6) reaches the maximum, the current of the primary winding (4) becomes 0 at t2.
As a result, the energy stored in the primary winding (4) becomes 0, so if the loss in the primary winding (4) and capacitor (6) from t1 to t2 is set to 0, then the following equation can be obtained for C2. holds true.

’/2 CVc2=、’72 CE2+ ’/2 Ll
 ”■は半導体スイッチ(2)のオン期1jlTon、
’ff1BEEK比例するため、f = a TonE
 (Ton=t+ −to)となる。従ってC2におい
て、 Vc E It +”)’−’a”7Fon−)’−−
−−−−−Klとなる。その後、コンデンサ(6)の電
荷は1次巻線C41に逆方向の電流を流し、txVcl
=”いてコンデンサ(6)の電圧HEになり、この時の
1次巻線(4)の電流は一■VCなり、C3−14の聞
手導体スイッチ121 t’i逆方向にオンし、直流電
源H1へ直線的な回生電流が流れ、その後、同様な動作
をする。2次巻線幅1の電圧は1次巻線C41〔コンデ
ンf+61)の/電圧に比例するため、負荷電力を変化
させるには1次I☆線(41〔コンデンサ(6)〕の電
流を変化させる必要がある。半導体スイッチ(2)がオ
ンした時の1次巻線(4)グツ電圧は、直流電源(1)
で決定されるが、半導体スイッチ(2)がオフの時の電
圧は、式+イH’l’従って半導体スイッチ(2)のオ
ン期間Tonを変化さ+i:ろことてより、1次巻線(
41[コンデンサ(6)〕の電圧を゛変化させることが
できる。
'/2 CVc2=,'72 CE2+ '/2 Ll
"■ is the on-period 1jlTon of the semiconductor switch (2),
'ff1BEEK is proportional, so f = a TonE
(Ton=t+-to). Therefore, in C2, Vc E It +")'-'a"7Fon-)'--
------Kl. Thereafter, the charge in the capacitor (6) causes a current in the reverse direction to flow through the primary winding C41, causing txVcl
=" then, the voltage of the capacitor (6) becomes HE, the current of the primary winding (4) at this time becomes 1 VC, the listener conductor switch 121 of C3-14 turns on in the opposite direction, and DC A linear regenerative current flows to the power supply H1, and then the same operation occurs.Since the voltage of the secondary winding width 1 is proportional to the voltage of the primary winding C41 [capacitor f+61], the load power changes. It is necessary to change the current of the primary I☆ wire (41 [capacitor (6)]).When the semiconductor switch (2) is turned on, the voltage of the primary winding (4) is equal to that of the DC power supply (1).
However, the voltage when the semiconductor switch (2) is off is determined by the formula +i H'l' Therefore, the on-period Ton of the semiconductor switch (2) is changed +i: From the center and the center, the primary winding (
41 [capacitor (6)] can be changed.

処が、式(財))を見てもわかるように、半導体スイッ
チ(′l)のオン期間T○nが一=Dでもコンデンサ(
6)が充電され、電圧VCはEまで充電されるので、オ
ン期間]゛Onを+Oにしても出力電圧を0にできない
However, as can be seen from the equation, even if the on-period T○n of the semiconductor switch ('l) is 1=D, the capacitor (
6) is charged and the voltage VC is charged to E, so the output voltage cannot be reduced to 0 even if the ON period is set to +O.

半導体スイッチ(2jがオフの期間−この半導体スイッ
チ(2)へはE+VCが印加される・出力電圧を広1/
1範囲にわたって可変するには、定格負荷時の電圧Vc
を電圧Eに対して大きくしておかないと、2次巻線(5
)の電圧全定格時に対して充分小さくできない。その結
果、負荷電力の広い変化範囲を得るには、半導体スイッ
チ(2)の耐圧は直済、電漉(11の電圧Eに対して高
くする必要がある。)捷た斧・初tc’において、半導
体スイッチ(2′)がオンした時、コンデンサ(6)に
充電電流が流れるが゛、この時、電流を制限するものが
ないため、大々電流はピーク値が高くなり、半導体スイ
ッチ(2)は流し得る電流が大きいものが必要となり、
ま之半導体スイッチ(2)での電力損が大きくなり効率
が悪くなる。即ち、半導体スイッチ(2)としてオフ時
の耐電圧が高く、オン時の耐ピーク電流の大きいものが
必要であり、不都合である。
Period when semiconductor switch (2j is off) - E+VC is applied to this semiconductor switch (2) - The output voltage is widened to 1/
To vary over one range, the voltage at rated load Vc
If the voltage E is not made large, the secondary winding (5
) cannot be made sufficiently small for the full rated voltage. As a result, in order to obtain a wide variation range of the load power, the withstand voltage of the semiconductor switch (2) needs to be higher than the voltage E of 11. , when the semiconductor switch (2') is turned on, a charging current flows into the capacitor (6), but at this time, since there is nothing to limit the current, the peak value of the current becomes high, and the semiconductor switch (2') ) requires a large current that can flow,
Power loss in the semiconductor switch (2) increases and efficiency deteriorates. That is, the semiconductor switch (2) must have a high withstand voltage when off and a high withstand peak current when on, which is inconvenient.

本発明は、このような従来の問題点に鑑み、1次巻線と
直列の半導体スイッチと逆にオン、オフ動作する別の半
導体スイッチを、共振コンデンサに直列に接続すること
により、効率が良好でかつ負荷電力の可変範囲を広くで
きるインパーク回路を提供するものである。
In view of these conventional problems, the present invention achieves good efficiency by connecting in series to a resonant capacitor another semiconductor switch that operates on and off in the opposite direction to the semiconductor switch connected in series with the primary winding. The present invention provides an impark circuit that is capable of widening the variable range of load power.

以下、図示の実施例について木@1発明から第5発明ま
でを順次説明する。
Hereinafter, the illustrated embodiments will be sequentially described from the first invention to the fifth invention.

第6図は本第1発明の基本回路を示し、そクツ各部の波
形を第4図及び第5図に示す。1次巻線(4)と共振回
路を構成する共振コンデンサtelid、1次巻線14
)と並列接続さ力1、このコンデンサ(6)に、半導体
スイッチ(2)さけ別の半導体スイッチ(91が直列接
続されている。半導体スイッチ(9)は図外のドライブ
回路により半導体スイッチ(2)と逆にオン、オフ動作
するようにイ・1イ成されている。
FIG. 6 shows the basic circuit of the first invention, and FIGS. 4 and 5 show waveforms at various parts thereof. Resonant capacitor telid forming a resonant circuit with the primary winding (4), primary winding 14
) is connected in parallel with the capacitor (6), and another semiconductor switch (91) is connected in series with the semiconductor switch (2). ) is designed so that it operates on and off in reverse.

こりJ場合、半導体スイッチf2i (91が互いに逆
にオン、オフ動作するため、半導体スイッチ(2)がオ
ンしている時tO°〜t1°には半導体スイッチ(9)
がオフとなり、コンデンサ(6)は直流電源(1)によ
り充電されず、このコンデンサ(6)の両端電圧はOの
才せテある。従って、半導体スイッチ+21にはコンデ
ンサ(6)の充電電流が流f′L麿いので、第4図の如
く1次巻線(4)の自腕イングククンスしにより直線的
に増加する電流が流れるのみである。半導体スイッ4−
12)がオフし之時tダにおける電圧Vcは、+ CV
c2= + L l2 VC”” r I−r a”l”o nCL となる。半導体スAツチ(2)がオフしている期間t+
’〜t口゛は1次@ @ (411コンデンザ(6)と
が共振しており、その共振周期(はLCにより決定され
、オン期間′ro nを共振周期に対して短かくするこ
とにより5出力電圧は広い範囲にわたって可変できる。
In the case of stiffness J, the semiconductor switch f2i (91 turns on and off in reverse to each other, so when the semiconductor switch (2) is on, the semiconductor switch (9)
is turned off, the capacitor (6) is not charged by the DC power supply (1), and the voltage across the capacitor (6) is equal to O. Therefore, since the charging current of the capacitor (6) flows at a rate f′L in the semiconductor switch +21, only a current that increases linearly due to the self-increasing force of the primary winding (4) flows as shown in Fig. 4. It is. Semiconductor switch 4-
12) is turned off, the voltage Vc at tda is +CV
c2=+L l2 VC"" r I-r a"l"onCL. Period t+ during which the semiconductor switch (2) is off
' ~t mouth is resonating with the primary @ @ (411 capacitor (6), its resonance period (is determined by LC, and by shortening the on period 'ron with respect to the resonance period) The output voltage can be varied over a wide range.

例えば半導体スイッチ+21のオン期間Ton 全%に
した場合には、第4図の波形に対して第5図の波形に示
すようfなり、電圧Vcけ昼となる。
For example, when the on-period Ton of the semiconductor switch +21 is set to % of the total, the waveform shown in FIG. 5 becomes f as shown in the waveform shown in FIG.

第6図は本第2発明の基本回路を示し、その各部の波形
を@7図に示す。これでは、共振コンデンサ(6)は半
導体スイッチ(2)と並列接続され、そのコンデンサ(
61K、半導体スイッチ(2)と逆にオン。
FIG. 6 shows the basic circuit of the second invention, and the waveforms of each part are shown in FIG. In this, the resonant capacitor (6) is connected in parallel with the semiconductor switch (2) and the capacitor (
61K, semiconductor switch (2) is turned on in the opposite direction.

オフ動作する半導体スイッチ(9)が直列接続されてい
る。
Semiconductor switches (9) that are turned off are connected in series.

第7図11コンデンサ(6)が電圧Eまで充電されてい
る時に半導体スイッチ12)がオンするようにした場合
の波形を示す。この場合、コンデンサ(6)が第6図の
極性で充電されている時、半導体スイッチ(2)をto
I+でオンさせても、そのオン期間Ton 中は半導体
スイッチ(9)カオフであるため、コンデンサ(61、
半導体スイッチ(2)、半導体スイッチ(9)のルーブ
て波高値の高い電流が流れることはない。
FIG. 7 shows waveforms when the semiconductor switch 12) is turned on when the capacitor (6) is charged to the voltage E. In this case, when the capacitor (6) is charged with the polarity shown in Figure 6, the semiconductor switch (2) is turned to
Even if it is turned on by I+, the semiconductor switch (9) is off during the on period Ton, so the capacitors (61, 61,
Current with a high peak value does not flow through the loops of the semiconductor switch (2) and the semiconductor switch (9).

第8図は木gX!J3発明の基本回路を示し、1次巻枳
14)<、直流電源tl+に逆方向のダイオード(10
)と共振コンデンサ(6)との直列回路が並列接続され
、そのダイオードtlD) K半導体スイッチ(9)が
並列接続さtl、ている。この場合にも、半導体スイ゛
ンチ+21 i91は互いに逆にオン、オフ動作するよ
うに構成されている。従って、半導体スイッチ(21が
オンしていても、半導体スイッチ(9)がオフし、また
ダイオード(10)が電源i11に対して逆方向である
ため、コンデンサ(6)を介して半導体スイッチ(2)
に電流が流れることはない。この場合、半導体スイ゛ン
チ(9)としては片方のみオン、オフできる片方向半導
体スイ・ソチを使用できる利点がある。
Figure 8 is wood gX! The basic circuit of the J3 invention is shown, with the primary winding 14)<, a reverse diode (10
) and a resonant capacitor (6) are connected in parallel, and the diode (tlD) K semiconductor switch (9) is connected in parallel. In this case as well, the semiconductor switches +21 and i91 are configured to turn on and off in opposite directions. Therefore, even if the semiconductor switch (21) is on, the semiconductor switch (9) is off, and since the diode (10) is in the opposite direction to the power supply i11, the semiconductor switch (21) is connected to the semiconductor switch (21) through the capacitor (6). )
No current flows through. In this case, the semiconductor switch (9) has the advantage of being a unidirectional semiconductor switch that can turn on and off only one side.

9.9図は本第4発明の基本回路を例示し、これでは半
導体スイッチ(9)はコンデンサ(6)の充電電圧によ
って、半導体スΔツチ(2)とは逆関係でオン。
Figure 9.9 illustrates the basic circuit of the fourth invention, in which the semiconductor switch (9) is turned on by the charging voltage of the capacitor (6) in an inverse relationship to the semiconductor switch (2).

オフするように構成されている。即ち一第4図のtI’
−【3°の間、コンデンサ(6)が第9図に示す極性に
充電されているので、抵抗(il)ra=介して、半導
体スイッチ(9)を構成するトランジスタ(+21にベ
ース電流が流れ、このトランジスタ(121dKオンす
る。そI−てt口°をずぎてトランジスタ(12)が蓄
積ギヤ11アによりオンしていると、コンデンサ(6)
の極性が反転してA点の電圧がエミッタよりも低くなり
、ダイオードθ艶を介して逆ベース電流が流れることに
よりオフする。この場合には、半導体スイ゛ンチ(9)
のドライブ回路が簡単となる。なお半導体スイッチ(2
)(9)と1.では、トランジスタ、FET、GTO等
か使用可能であり、また負荷としては、抵抗負荷に限ら
ず、インダクタンス及び直流電源等に用いる整流器と平
滑コンデンサでも使用可能である。
Configured to turn off. That is, tI' in Figure 4
- [3°, since the capacitor (6) is charged with the polarity shown in Figure 9, the base current flows through the resistor (il) ra = to the transistor (+21) that constitutes the semiconductor switch (9). , this transistor (121dK is turned on. Then, when the transistor (12) is turned on by the storage gear 11a, the capacitor (6)
The polarity of is reversed and the voltage at point A becomes lower than that of the emitter, and a reverse base current flows through the diode θ, turning it off. In this case, the semiconductor switch (9)
The drive circuit becomes simple. Note that the semiconductor switch (2
)(9) and 1. In this case, transistors, FETs, GTOs, etc. can be used, and the load is not limited to resistive loads, but also inductances, rectifiers and smoothing capacitors used for DC power supplies, etc. can be used.

第10図灯 本第5発明の基本回路を示し、コンデンサ
(6)の電圧と直流電源fi+の電圧との電圧差により
、半導体スイッチ(9)を構成するトランジスタ(14
)がオン、オフ動作するようにしたものであり、コンデ
ンサ!61の電圧Vcが電圧E、l:り高い期間、即ち
第7図のt、“〜t5°°9間のみトランジスタ(!4
Iがオンする。つまり、この期間t1゛°〜t3゛は、
抵抗(I5)を介してトランジスタ(14jにベース電
流が流れて、トランジスタ(14)がオンする。[7か
し、電圧vcが電圧E、l:りも低くなる七、ダイオー
ド+1ot(+力を介[7て電流が流れるだけであって
、トランジスタ(+4! +dペース電流が流れずにオ
フする。
Figure 10 shows the basic circuit of the fifth invention, in which the voltage difference between the voltage of the capacitor (6) and the voltage of the DC power supply fi+ causes the transistor (14) constituting the semiconductor switch (9) to
) is what makes it work on and off, and the capacitor! The transistor (!4
I turns on. In other words, during this period t1゛°~t3゛,
The base current flows into the transistor (14j) through the resistor (I5), turning on the transistor (14). Only current flows through the transistor (+4!+d), and no current flows through the transistor (+4!+d), which turns it off.

第11鈎は本発明を螢光灯の点灯回路に利用し2【具体
例を示し、発振1・2ンス(31の2′?X巻線(5)
に安定器ヂョーク(+81 S7介し7螢光灯(ilr
)が接続されている。第11図において、直流電源(1
1より抵抗(201ケ介してトランジスタ12+1にベ
ース電流k 流スト、コノトランジスタI21)がオン
する。そして、トランジスタシ1)がオンすると、帰還
巻線1221に発生する電圧で回路(割、抵抗例を介し
てトランジスタi2+! Kベース電流が帰還的に印加
さi]1、この)・ランジスクツりが完全にオンする。
The 11th hook utilizes the present invention in a lighting circuit for a fluorescent lamp.
ballast choke (+81 S7 through 7 fluorescent lights (ILR)
) are connected. In Figure 11, a DC power supply (1
1, the resistor (base current k flows through transistor 12+1 through 201, conotransistor I21) is turned on. Then, when the transistor 1) is turned on, the voltage generated in the feedback winding 1221 causes the transistor i2+! Turn on completely.

この時、トランジスタ+25i 1dオフのままである
。トランジスタ(211のコレクツ電流が一定以−1ニ
になると、トランジスタf2Gがオンし、トランジスタ
1211のベース電流全分流してトランジスタI211
をブフする。即ち、コレクツ電流を電流トランス!27
1で検出し7、整流回路費で整流した後1.ii’; 
?。
At this time, transistor +25i 1d remains off. When the collector current of the transistor (211) reaches a certain value or more, the transistor f2G turns on and the entire base current of the transistor 1211 is diverted to the transistor I211.
Boohoo. In other words, the collect current is converted into a current transformer! 27
After detecting with 1 and 7, and rectifying with the rectifier circuit cost, 1. ii';
? .

電圧回路29)からの基準電圧と電圧比較器’30+で
比較し、比較出力によってトランジスタ斑にベース電流
を流してオンさせる。するとトランジスタ(211のベ
ース電流が分流し、トランジスタ(211がオフす&一
方、1次巻線(4)に流れてrた電流がコンデンサ(6
)と抵抗を介して流れ、コンデンサ(61を充電すると
共に−トランジスタ1251が帰還巻線131)から抵
抗+321を介して供給されるベース電流によりオンす
る。
It is compared with the reference voltage from the voltage circuit 29) by a voltage comparator '30+, and based on the comparison output, a base current is passed through the transistor to turn it on. Then, the base current of the transistor (211) is shunted, and the transistor (211 is turned off.
) and the resistor, and is turned on by the base current supplied from the capacitor (61 and -transistor 1251 via the feedback winding 131) through the resistor +321.

そして、トランジスタ(251がオンすると、コンデン
サ(6)の電荷がトランジスタ(2句を介して放電する
Then, when the transistor (251) is turned on, the charge in the capacitor (6) is discharged via the transistor (251).

なお、この時1次巻線(4)とコンデンサ(6)は共振
状態である。コンデンサ16)の電圧が0になると、ト
ランジスタ125)がオフする。その時、1次巻線14
1vCは、前述とは逆方向の電流が流れており、トラン
ジスタの)は逆方向にオンし逆電流が流れる。そして、
この送電流が流れ終った後、トランジスタ311が正方
向にオンし、以後繰り返される。
Note that at this time, the primary winding (4) and the capacitor (6) are in a resonant state. When the voltage across the capacitor 16) becomes 0, the transistor 125) turns off. At that time, the primary winding 14
At 1vC, a current flows in the opposite direction to that described above, and the transistor () turns on in the opposite direction, causing a reverse current to flow. and,
After this sending current finishes flowing, the transistor 311 is turned on in the positive direction, and the process is repeated thereafter.

以上実施例に詳述したよt)に本第1発明によれば、直
流電源々発振トランスの1次巻譲と半導体スイッチとを
直列接続し、1次巻線と共振回路を構成する共振コンデ
ンサを備え^インパーク回路においで、1次巻線と共振
コンデンサとを並列接続し、共振コンデンサに、前2半
導体スイッチと逆にオン、オフ動作する別の半纏体スイ
ッチを直列接続しているので、曲者半導体スイッチに大
電流が流れることはなく、効率が良好て゛あり、′−1
:た半導体スイッチのオン期間の制御による負荷電力の
可変範囲も広くできる。
As described in detail in the embodiments above, according to the first invention, the primary winding of a DC power source oscillation transformer and a semiconductor switch are connected in series, and the resonant capacitor constitutes a resonant circuit with the primary winding. In the impark circuit, the primary winding and the resonant capacitor are connected in parallel, and the resonant capacitor is connected in series with another semi-integrated switch that operates on and off in the opposite way to the previous two semiconductor switches. , there is no large current flowing through the curved semiconductor switch, and the efficiency is good.'-1
: The variable range of load power can be widened by controlling the on-period of the semiconductor switch.

また直流?R源と発振トランスの1次巻線と半導体スイ
ッチとを直列接続し、1次@線と共振回路を構成する共
振コンデンサを備えたインパーク回路において、前記半
導体スイッチに共振コンデンサを並列接続し、この共振
コンデンツーに、前記半導体スイッチと逆にオン、オフ
動作する別の半導体スイッチ全直列接続した第2発明に
よっても、第1発[!11と同様の作用効果を奏する。
Direct current again? In an impark circuit including an R source, a primary winding of an oscillation transformer, and a semiconductor switch connected in series, and a resonant capacitor forming a resonant circuit with the primary @ line, a resonant capacitor is connected in parallel to the semiconductor switch, According to the second invention, in which another semiconductor switch, which operates on and off in the opposite manner to the semiconductor switch, is connected in full series to this resonant capacitor, the first [! It has the same effect as No. 11.

またf!;5発り1によれば、直流電源と発振トランス
の1次巻線と半纏体スイッチと全直列接続し、1次春棟
と共振回路を構成する共振コンデンサを備えン℃インハ
ーク回路において−1次巻線に、直流電源に逆方向のダ
イオードと共振コンデンサ々の庫列回路を並列接続し、
このダイオードに、前記半導体スイッチと逆にオン、オ
フ動作fる別の半導体スイッチを並列接続しているので
、前述の効率及び可変範囲の拡大に加えて、別の半導体
スイッチとして片方向型のものを使用できる利点がある
Also f! ;5 According to 1, in the in-hark circuit, the DC power supply, the primary winding of the oscillation transformer, and the semi-integrated switch are all connected in series, and the primary spring ridge and a resonant capacitor forming a resonant circuit are provided. The next winding is connected in parallel with a series circuit of diodes and resonant capacitors in the opposite direction to the DC power supply.
Since this diode is connected in parallel with another semiconductor switch that operates on and off in the opposite direction to the semiconductor switch, in addition to increasing the efficiency and variable range described above, a unidirectional type semiconductor switch can be used as another semiconductor switch. It has the advantage of being able to use

更に第4発明によれば、直流電源と発振トランスの1次
巻線と半導体スイッチとを直列接続し、1次巻線と共振
回路を構成する共振コンデンサを備工たインパーク回路
において、1次巻線に、直流電源に逆方向のダイオード
と共振コンデンサとの直列回路全並列接続し、このダイ
オードに、共振コンデンサの充電電圧により前記半導体
スイッチと逆にオン、オフ動作する別の半導体スイッチ
全並列接続しているので、別の半導体スイッチのドライ
ブ回路の構成が簡単である。
Furthermore, according to the fourth invention, in an impark circuit in which a DC power source, a primary winding of an oscillation transformer, and a semiconductor switch are connected in series, and a resonant capacitor that constitutes a resonant circuit with the primary winding is provided, the primary A series circuit consisting of a diode and a resonant capacitor in the opposite direction to the DC power supply is connected in parallel to the winding, and another semiconductor switch is connected in parallel to the diode, which turns on and off in the opposite direction to the semiconductor switch based on the charging voltage of the resonant capacitor. Because they are connected, the configuration of a drive circuit for another semiconductor switch is simple.

また直流電源と発振トランスの1次巻線と半導体スイッ
チとを直列接続し、1次巻線と共振回路を構成する共振
コンデンサを備えたインバータ回路にお、いて、前記半
導体スイッチに、直流電源に順方向のダイオードと共振
コンデンサとの直列回路を並列接続し、このダイオード
に、直流電源と共振コンデンサの充電電圧との電圧差に
より前記半導体スイッチと逆にオン、オフ動作する別の
半導体スイッチを並列接続し次第5発明によっても第4
発明と同様の効果が得られる。
Further, a DC power source, a primary winding of an oscillation transformer, and a semiconductor switch are connected in series, and an inverter circuit is provided with a resonant capacitor that constitutes a resonant circuit with the primary winding. A series circuit of a forward diode and a resonant capacitor is connected in parallel, and another semiconductor switch is connected in parallel to this diode, which turns on and off in the opposite direction to the semiconductor switch due to the voltage difference between the DC power supply and the charging voltage of the resonant capacitor. As soon as it is connected, the 5th invention also makes the 4th
The same effect as the invention can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す回路図、第2図はそクツ波形図、
第6図は第1発明の基本回路を示す回路図、第4図及び
第5図はその波形図、第6図は第2発明の基本回路を示
す回路図、第7図はその波形図、第8図乃至第10図は
本第6乃至第5発明の基本回路を示す回路図、第11図
は具体例を示す回路図である。 11)・・直流電源、(2)・・・半導体スイッチ、(
3)・・・発振トランス、(4)・・・1次巻線、(6
)・・・共振コンデンサ、(91・・・別の半導体スイ
ッチ。 第2図 第4図 第5図 to′t、’ t; t;  t: 第70図
Fig. 1 is a circuit diagram showing a conventional example, Fig. 2 is an alternative waveform diagram,
6 is a circuit diagram showing the basic circuit of the first invention, FIGS. 4 and 5 are waveform diagrams thereof, FIG. 6 is a circuit diagram showing the basic circuit of the second invention, and FIG. 7 is a waveform diagram thereof, 8 to 10 are circuit diagrams showing basic circuits of the sixth to fifth inventions, and FIG. 11 is a circuit diagram showing a specific example. 11)...DC power supply, (2)...semiconductor switch, (
3)...Oscillation transformer, (4)...Primary winding, (6
)...resonant capacitor, (91...another semiconductor switch.

Claims (1)

【特許請求の範囲】 1、  直流電源と発振トランスの1次@線と半導体ス
イッチとを直列接続し、1次巻線と共振回路を構成する
共振コンデンサを備えたインパーク回路において、1次
巻線と共振コンデンサとを並列接続し、共振コンデンサ
に、前記半導体スイッチ々逆にオン、オフ動作する別の
半導体スイッチを直列接続したことを特徴とするインパ
ーク回路。 2 直流電源と発振トランスの1次巻線と半導体スイッ
チとを直列接続し、1次巻′線七共振回路を構成する共
振コンデンサを備えたインパーク回′路にお、いて、前
記半導体スイッチに共振コンデンサを並列接続し、この
共振コンデンサに、前記半導体スイッチと逆にオン、オ
フ動作する別の半導体スイッチ゛を直列接続したことを
特徴とするインパーク回路。 & 直流電源と発振トランスの1次巻線と半導体スイッ
チとを直列接続し、1次巻線と共振回路を構成する共振
コンデンサを備えたインバータ回路に分いて、1次巻線
に、直流電源に逆方向のグイオートと共振コンデンサと
り)直列回路を並列接続し、このダイオードに、前記半
導体スイッチと逆にオン、オフ動作する別の半導体スイ
ッチを並列接続したことを特徴とするインパーク回路。 4 直流電源と発振トランスの1次巻線と半導体スイッ
チ七を直列接続し、1次巻線と共振回路を構成する共振
コンデンサを備えたインバータ回路例おいて、1次巻線
に、直流電源に逆方向のダイオードと共振コンデンサと
の直列回路全並列接続し、このダイオードに、共振コン
デンサの充電電圧により前記半導体スイッチと逆にオン
、オフ動作する別の半導体スイッチを並列接続したこと
を特徴とするインパーク回路。 5 直流電源と発振トランスの1次巻線上半導体スイッ
チとを直列接続し、1次巻線と共振回路を構成する共振
コンデンサを備えた4ンバ一ク回路“vc′j、−いて
、前記半導体スイッチに、直流電源に順方向のグイオー
Fと共振コンデンサとの直列回路を並列接続し、このグ
イオードに、直流電源と共振コンデンサの充電電圧との
電圧差により前記半導体スイッチと逆にオン、オフ動作
する別の半導体スイッチを並列接続したことを41&と
するインバータ回路。
[Scope of Claims] 1. In an impark circuit in which a DC power source, a primary @ line of an oscillation transformer, and a semiconductor switch are connected in series, and a primary winding and a resonant capacitor forming a resonant circuit are provided, the primary winding 1. An impark circuit characterized in that a line and a resonant capacitor are connected in parallel, and another semiconductor switch that operates on and off in reverse to the semiconductor switch is connected in series with the resonant capacitor. 2. A direct current power source, a primary winding of an oscillation transformer, and a semiconductor switch are connected in series, and the primary winding is connected to the semiconductor switch in an impark circuit equipped with a resonant capacitor that constitutes a seven-resonance circuit. An impark circuit characterized in that a resonant capacitor is connected in parallel, and another semiconductor switch that operates on and off in the opposite direction to the semiconductor switch is connected in series with the resonant capacitor. & The DC power supply, the primary winding of the oscillation transformer, and the semiconductor switch are connected in series, and the primary winding is divided into an inverter circuit equipped with a resonant capacitor that forms a resonant circuit, and the primary winding is connected to the DC power supply. 1. An impark circuit characterized in that a series circuit (reverse direction gouoto and resonant capacitor) is connected in parallel, and this diode is connected in parallel with another semiconductor switch that operates on and off in the opposite direction to the semiconductor switch. 4 In an example of an inverter circuit in which a DC power supply, the primary winding of an oscillation transformer, and a semiconductor switch 7 are connected in series, and a resonant capacitor that constitutes a resonant circuit with the primary winding is provided, the primary winding is connected to the DC power supply. A series circuit consisting of a reverse diode and a resonant capacitor is all connected in parallel, and this diode is connected in parallel with another semiconductor switch that operates on and off in the opposite direction to the semiconductor switch according to the charging voltage of the resonant capacitor. impark circuit. 5. A four-band circuit "vc'j, -" which connects a DC power supply and a semiconductor switch on the primary winding of an oscillation transformer in series, and is equipped with a resonant capacitor that constitutes a resonant circuit with the primary winding, and the semiconductor switch A series circuit of a forward Gouio F and a resonant capacitor is connected in parallel to a DC power source, and the Gouiode is turned on and off in the opposite manner to the semiconductor switch due to the voltage difference between the DC power source and the charging voltage of the resonant capacitor. An inverter circuit in which 41& is another semiconductor switch connected in parallel.
JP58031572A 1983-02-25 1983-02-25 Inverter circuit Granted JPS59159675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031572A JPS59159675A (en) 1983-02-25 1983-02-25 Inverter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031572A JPS59159675A (en) 1983-02-25 1983-02-25 Inverter circuit

Publications (2)

Publication Number Publication Date
JPS59159675A true JPS59159675A (en) 1984-09-10
JPH0161027B2 JPH0161027B2 (en) 1989-12-26

Family

ID=12334885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031572A Granted JPS59159675A (en) 1983-02-25 1983-02-25 Inverter circuit

Country Status (1)

Country Link
JP (1) JPS59159675A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367428A (en) * 1986-09-04 1988-03-26 エマ−ソン・エレクトリック・カンパニ− Bearing retainer structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367428A (en) * 1986-09-04 1988-03-26 エマ−ソン・エレクトリック・カンパニ− Bearing retainer structure

Also Published As

Publication number Publication date
JPH0161027B2 (en) 1989-12-26

Similar Documents

Publication Publication Date Title
US7515439B2 (en) Low voltage stress power converter
JPS6036710B2 (en) power supply
JPS5950781A (en) Inverter device
WO2023131101A1 (en) Bidirectional direct-current converter and system
JPH113789A (en) Lighting circuit for discharge lamp
JP3101406B2 (en) One-stone current resonance type DC / DC converter
JPS59159675A (en) Inverter circuit
JPH06165486A (en) Dc-dc converter
JPH0588067B2 (en)
JP2538699Y2 (en) Full bridge type inverter
JPS6314213Y2 (en)
JPH09252576A (en) Sunbber circuit of dc-dc converter
JP2619422B2 (en) Power supply
JP3404880B2 (en) Inverter device
JP2573241B2 (en) Discharge lamp lighting device
JPH0710170B2 (en) Series resonance converter
JP3413966B2 (en) Inverter device
SU1760611A1 (en) Single-ended dc voltage converter
JPH0556665A (en) Power supply
KR20220163168A (en) Ac-dc converter and method for power conversion using them
JPH07107742A (en) Series resonance converter
JPH0570392B2 (en)
JP3588909B2 (en) Rectified smooth DC power supply
JPH06233535A (en) Rectifier snubber circuit
JPH08273882A (en) Power supply device