JPS59158967A - Method of condensing refrigerant in refrigeration cycle - Google Patents

Method of condensing refrigerant in refrigeration cycle

Info

Publication number
JPS59158967A
JPS59158967A JP3202083A JP3202083A JPS59158967A JP S59158967 A JPS59158967 A JP S59158967A JP 3202083 A JP3202083 A JP 3202083A JP 3202083 A JP3202083 A JP 3202083A JP S59158967 A JPS59158967 A JP S59158967A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
water
groundwater
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3202083A
Other languages
Japanese (ja)
Inventor
藤本 敏明
隆芳 村木
古瀬 誠
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP3202083A priority Critical patent/JPS59158967A/en
Publication of JPS59158967A publication Critical patent/JPS59158967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷凍機の通年運転方法、特に冷凍サイクルに
おける冷媒凝縮方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for operating a refrigerator year-round, and particularly to a method for condensing refrigerant in a refrigeration cycle.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の冷凍機の運転においては、凝縮器は、薫蒸式凝縮
器を用いるか水冷式凝縮器を用(・るかの何れかの方法
が採用されている。蒸発式凝縮器の場合は、凝縮温度は
外気温度プラス5C程度であるから、夏季の運転におい
ては35C〜40C1冬季の運転においてはIOC程度
である。また、冷却水として地下水を用いる水冷式凝縮
器の場合は、地下水の温度が夏季、冬季とも大差がなく
約15Cであるため、凝縮温度は夏季、冬季の運転を通
じて25C程度である。
In the operation of conventional refrigerators, either a fumigation condenser or a water-cooled condenser is used for the condenser.In the case of an evaporative condenser, Since the condensing temperature is about 5C above the outside air temperature, it is about 35C to 40C in summer operation and about IOC in winter operation.In addition, in the case of a water-cooled condenser that uses groundwater as cooling water, the temperature of groundwater is Since there is no big difference between summer and winter, which is about 15C, the condensing temperature is about 25C throughout the summer and winter operations.

ところで、冷凍機の運転において凝縮温度の相違は冷凍
能力、所要動力に大きな相違を生ずる。
By the way, when operating a refrigerator, a difference in condensing temperature causes a large difference in refrigerating capacity and required power.

次にこれを説明するに、冷媒としてフロン22を使用す
るレシプロ型2段圧縮式冷凍機において吐出量合計(V
H+VL、ただ1. vHは高段側、VLは低段側の吐
出量をそれぞれ示す)100F7//Hであり、冷媒の
蒸発温度が一35Cの一定の場合には、冷媒の凝縮温度
に対する冷凍能力等は次の表のとおりである。
Next, to explain this, the total discharge amount (V
H+VL, only 1. (vH indicates the discharge amount on the high stage side, VL indicates the discharge amount on the low stage side) 100F7//H, and when the evaporation temperature of the refrigerant is constant at -35C, the refrigerating capacity etc. for the condensation temperature of the refrigerant are as follows. As shown in the table.

この表に示すように、冷凍機の運転において、冷媒の凝
縮温度は低ければ低い程、冷凍能力は大きくなり、所要
動力は小さくなる利点がある。凝縮温度が10Cと45
Cでは1日本冷凍トンの冷凍能力を得るためK100:
178という所要動力の差が生ずる。
As shown in this table, there is an advantage in operating a refrigerator that the lower the condensation temperature of the refrigerant, the greater the refrigeration capacity and the lower the required power. Condensing temperature is 10C and 45
In C, K100:
This results in a difference in required power of 178.

従来の冷凍機では、すべて最高凝縮温度の夏季を標準に
して能力と動力が決定され運転が行なわれている。した
がって、従来の冷凍機の運転の場合、蒸発式凝縮器を使
用するものにおいては、夏季には何とかもっと凝縮温度
を低くすることができないかという問題点があり、地下
水利用の水冷式凝縮器を使用するものにおいては、冬季
に何とかもつと凝縮温度を低くすることができないかと
(・5問題点があった。
All conventional refrigerators are operated with capacity and power determined based on the highest condensing temperature in summer. Therefore, when operating conventional refrigerators that use evaporative condensers, there is the problem of whether or not it is possible to somehow lower the condensing temperature in the summer. I was wondering if it would be possible to somehow lower the condensing temperature of the equipment I use in the winter (I had 5 problems).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、冷媒の凝縮を行なうにあたり、年間を
通じて外気の温度と地下水の温度の何れか温度の低い方
のものに切替えて利用することにより、年間を通じて所
要馬力を低減し、凝縮温度を下げるようにし、前記従来
技術の問題点を解決するにある。
The purpose of the present invention is to reduce the horsepower required throughout the year and reduce the condensing temperature by switching to the lower of the outside air temperature or the underground water temperature to condense the refrigerant throughout the year. The purpose is to solve the problems of the prior art.

〔発明の概要〕[Summary of the invention]

本発明は、外気の温度より地下水の温度が低いときは、
冷媒凝縮部忙地下水を流通させ、その顕熱を利用して冷
媒の凝縮を行ない、地下水の温度より外気の温度が低い
ときは、冷媒凝縮部を通風下におき、そこに水を噴霧し
、収水の蒸発潜熱を利用して冷媒の凝縮を行なう1つの
冷凍サイクルにおける冷媒凝縮方法に関する。
According to the present invention, when the temperature of groundwater is lower than the temperature of outside air,
The refrigerant condensing section circulates groundwater and uses its sensible heat to condense the refrigerant.When the temperature of the outside air is lower than the temperature of the groundwater, the refrigerant condensing section is placed under ventilation and water is sprayed there. The present invention relates to a refrigerant condensation method in one refrigeration cycle that condenses refrigerant using the latent heat of vaporization of collected water.

また、本発明は、1つの冷凍サイクルにおいて2種類の
冷媒凝縮部を併置して両冷媒凝縮部を切替使用するもの
であって、外気の温度より地下水の温度が低いときは、
1方の冷媒凝縮部に地下水を流通させ、その顕熱を利用
して冷媒の凝縮を行ない、地下水の温度より外気の温度
が低いときは、他方の冷媒凝縮部を通風下におき、そこ
に水を噴霧し、収水の蒸発潜熱を利用して冷媒の凝縮を
行なう1つの冷凍サイクルにおける冷媒凝縮方法に関す
る。
In addition, the present invention places two types of refrigerant condensing sections side by side in one refrigeration cycle and switches between the two refrigerant condensing sections, and when the temperature of the ground water is lower than the temperature of the outside air,
Groundwater is passed through one refrigerant condensing section, and its sensible heat is used to condense the refrigerant.When the temperature of the outside air is lower than the temperature of the groundwater, the other refrigerant condensing section is placed under ventilation, and the refrigerant is condensed there. The present invention relates to a refrigerant condensing method in one refrigeration cycle in which water is sprayed and refrigerant is condensed using the latent heat of vaporization of collected water.

また、本発明は、外気の温度より地下水の温度が低いと
きは、地下水を冷媒凝縮部に流通させ、その顕熱を利用
して冷媒の凝縮を行ない、地下水の温度より外気の温度
が低いときは、通風中に水を噴霧して収水を蒸発させ、
その蒸発潜熱により該水ン冷却さぜ、このよ5にして冷
却された水を前記の冷媒凝縮部に地下水と切替えて流通
さモ、該冷却水の顕熱な利用して冷媒の凝縮を行な51
つの冷凍サイクルにおける冷媒凝縮方法に関する。
Further, in the present invention, when the temperature of the groundwater is lower than the temperature of the outside air, the groundwater is made to flow through the refrigerant condensing section and the refrigerant is condensed using the sensible heat. sprays water during ventilation to evaporate collected water,
The water is cooled by the latent heat of evaporation, and the cooled water is passed through the refrigerant condensing section instead of ground water, and the sensible heat of the cooling water is utilized to condense the refrigerant. Na51
This invention relates to a refrigerant condensation method in two refrigeration cycles.

更に本発明は、外気の温度より地下水の温度が低いとき
は、地下水を冷媒凝縮部に流通させ、その顕熱を利用し
て冷媒の凝縮を行ない、地下水の温度より外気の温度が
低いときは、前記の冷媒凝縮部を通風下におき、そこに
水を噴霧して収水を蒸発させ、その蒸発潜熱により冷媒
の凝縮を行なう1つの冷凍サイクルにおける冷媒凝縮方
法に関する。
Further, in the present invention, when the temperature of the groundwater is lower than the temperature of the outside air, the groundwater is made to flow through the refrigerant condensing section and the refrigerant is condensed using the sensible heat; , relates to a refrigerant condensing method in one refrigeration cycle, in which the refrigerant condensing section is placed under ventilation, water is sprayed thereto, the collected water is evaporated, and the refrigerant is condensed using the latent heat of evaporation.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明を実施例に基づいて説明する。 Next, the present invention will be explained based on examples.

才1図は蒸発式凝縮器と水冷式凝縮器の2種類の凝縮器
を切替使用する実施例6才1)である。
Figure 1 shows Embodiment 6 (1) in which two types of condensers, an evaporative condenser and a water-cooled condenser, are used selectively.

電動機(2)の動力をVベルト(3)により伝達された
圧縮機(1)により、導管(5)から吸入された低圧気
化ガスは圧縮され高圧高温ガスとなり導管(4)に吐出
される。
The low-pressure vaporized gas sucked in from the conduit (5) is compressed by the compressor (1) to which the power of the electric motor (2) is transmitted through the V-belt (3), and is turned into high-pressure, high-temperature gas and discharged into the conduit (4).

外気の温度より井戸水(17)の温度が低いときは、切
替弁(9)を経て高圧高温ガスはシェルアンドチューブ
型の水冷式凝縮器211に入り、ここでポンプCI8で
導管α力を経て送水される井戸水(17)Icよって冷
却管(2zを介して冷却され、凝縮液化して高圧液化ガ
スとなり、導管(至)、切替弁四を通り導管(4υを経
て受液器(6)に到る。器は井戸水a7)の流出管であ
る。
When the temperature of the well water (17) is lower than the temperature of the outside air, the high-pressure, high-temperature gas passes through the switching valve (9) and enters the shell-and-tube type water-cooled condenser 211, where it is pumped by pump CI8 and sent through the conduit α force. The well water (17) Ic is cooled through the cooling pipe (2z), condensed and liquefied into high-pressure liquefied gas, passed through the conduit (to), the switching valve 4, and reached the liquid receiver (6) via the conduit (4υ). The vessel is an outflow pipe for well water a7).

また、井戸水(17)の温度より外気の温度が低いとき
は、切替弁(支))を経て高圧高温ガスは蒸発式凝縮器
名)内の凝縮コイル+261に入り、ここで受水槽(資
)に溜った水をポンプ啜、導管(ハ)を経て散水器(7
)により散水される水と送風機el13により通風され
る空気により冷却され、凝縮液化し高圧液化ガスとなり
、導管卿、切替弁■を通、り導管(4αを経て受液器(
6)に到る。G21は受水槽面内の水の補給管である。
In addition, when the temperature of the outside air is lower than the temperature of the well water (17), the high-pressure, high-temperature gas enters the condensing coil +261 in the evaporative condenser (name of the evaporative condenser) via the switching valve (branch), where it enters the water receiving tank (capital). The water collected in the pump is pumped, passed through the pipe (c) and sent to the sprinkler (7).
) is cooled by the water sprinkled by the blower el13 and the air ventilated by the blower el13, it condenses and becomes a high-pressure liquefied gas.
6). G21 is a water supply pipe within the surface of the water tank.

水冷式凝縮器(2!lと蒸発式凝縮器(ハ)は併用する
ことなく、前記のように何れかその一方を使用するもの
である。その使い分けは、その時点で冷媒の凝縮温度が
低くなる側の凝縮器を使用することになる。受液器(6
)を出た高圧液は、ドライヤーフィルタ(力で水分、異
物等が除去され、導管(8)を経て冷媒熱交換器(9)
で冷却され高圧過冷却液となり、膨張弁0ωにより減圧
され低圧低温湿りガスとなり、蒸発器(11)内の蒸発
コイルff21に入る。ここで送風機a3によって送風
される空気により熱を与えられて蒸発し、低圧気化ガス
となり、導管a4Jを経て冷媒熱交換器(9)に入りこ
こで熱交換し、湿りガスは低圧過熱ガスとなり導管(5
)を経て圧縮機(1)に吸込まれサイクルを完了する。
A water-cooled condenser (2!L) and an evaporative condenser (c) are not used together; either one of them is used as described above. The condenser on the other side will be used.The receiver (6
) The high-pressure liquid exits the dryer filter (where moisture, foreign matter, etc. are removed by force, and passes through the conduit (8) to the refrigerant heat exchanger (9).
The liquid is cooled and becomes a high-pressure supercooled liquid, and the pressure is reduced by the expansion valve 0ω to become a low-pressure, low-temperature wet gas, which enters the evaporator coil ff21 in the evaporator (11). Here, the air blown by the blower a3 gives heat and evaporates, becoming a low-pressure vaporized gas, which enters the refrigerant heat exchanger (9) through the conduit a4J, where heat is exchanged, and the humid gas becomes a low-pressure superheated gas and passes through the conduit. (5
) and is sucked into the compressor (1) to complete the cycle.

本実施例によれば、夏季には井戸水利用の水冷式凝縮器
を使用l〜て凝縮温度を25C前後とし、冬季には蒸発
式凝縮器を使用し、凝縮温度を1゜Cとすることができ
るので、両凝縮器の長所を取り入れ、凝縮温度の低下に
よる冷凍能力の増大と所要動力の削減とを図ることがで
きる。ちなみに、夏季に蒸発式凝縮器(ハ)のみを使用
するときは凝縮温度は35C前棟となるから、本実施例
によれば凝縮温度を25C前後まで下げることができる
ことになる。
According to this embodiment, in the summer, a water-cooled condenser using well water is used to set the condensation temperature to around 25C, and in the winter, an evaporative condenser is used to set the condensation temperature to 1°C. Therefore, by incorporating the advantages of both condensers, it is possible to increase the refrigerating capacity and reduce the required power by lowering the condensing temperature. Incidentally, when only the evaporative condenser (c) is used in the summer, the condensing temperature is 35C, so according to this embodiment, the condensing temperature can be lowered to around 25C.

矛2図はシェルアンドチューブ型の水冷式凝縮器のみを
使用し、咳凝和器に流通させる冷却用流体を井戸水また
はクーリングタワー利用の冷却水に切替える実施例1−
2)である。電動機12)の動力1vベルト(3)によ
り伝達された圧縮機(1)により、導管(5)から吸入
された低圧気化ガスは圧縮され高圧高温ガスとなり、導
管(4)に吐出され水冷式凝縮器間に入る。
Figure 2 shows Example 1 in which only a shell-and-tube type water-cooled condenser is used, and the cooling fluid flowing through the cough condenser is switched to well water or cooling water using a cooling tower.
2). The low-pressure vaporized gas sucked in from the conduit (5) is compressed by the compressor (1) to which the power of the electric motor 12) is transmitted by the 1V belt (3), and becomes high-pressure and high-temperature gas, which is discharged to the conduit (4) and condensed in a water-cooled system. Enter the vessel.

外気の温度より井戸水αηの温度が低いと建は、ポンプ
賭で切換弁09、導管■を経て送水される井戸水a?)
Kよって冷却器nを介して高圧高温ガスは冷却され凝縮
液化される。
If the temperature of the well water αη is lower than the temperature of the outside air, the well water a? )
Accordingly, the high pressure and high temperature gas is cooled and condensed into liquid through the cooler n.

また、井戸水(17)の温度より外気の温度が低いとき
は、切替弁09を閉じ切替弁明を開き、クーリングタワ
ー(49により蒸発冷却された水はポンプ(47)1、
  切替弁(4s、導管節を経て水冷式凝縮器ρ1)に
入り、高圧高融ガスを冷却し凝縮液化する。熱交換した
水は冷却管のから流出管いに流出し、切換弁15(9か
らクーリングタワー(451に入り内部の撒水器(様か
ら撒水されて蒸発し、その蒸発潜熱により自身が冷却さ
れて冷却水となり、再びポンプ(4力により送水される
。唯)は井戸水(17)のポンプα印から送水するクー
リングタワー(ハ)への水の補給管である。なお、前記
のよプに切替弁(1!J(ハ)は送水切替用であり、切
換弁(41i51は環水切替用である。
Also, when the temperature of the outside air is lower than the temperature of the well water (17), the switching valve 09 is closed and the switching valve is opened, and the water evaporatively cooled by the cooling tower (49) is pumped (47) 1,
It enters the water-cooled condenser ρ1 via the switching valve (4s, conduit node), cools the high-pressure high-melting gas, and condenses it into liquefaction. The heat-exchanged water flows out from the cooling pipe to the outflow pipe, enters the cooling tower (451) through the switching valve 15 (9), is sprayed with water from the internal water sprinkler (451), evaporates, and is cooled by the latent heat of evaporation. The pump (water is sent by four forces) is a supply pipe for water from the well water pump (17) marked α to the cooling tower (c).In addition, the switching valve ( 1!J (c) is for switching water supply, and the switching valve (41i51 is for switching water circulation).

前記のようにして凝縮液化した高圧液は、受液器(6)
を経てドライヤーフィルタ(7)で水分、異物等が除去
され、導管(8)を経て冷媒熱交換器(9)で冷却され
高圧過冷却液となり、膨張弁00により減圧され低圧低
@湿りガスとなり、蒸発器u1J内の蒸発コイル(12
1に入る。ここで送風機(131によって送風される空
気により熱を与えられて蒸発し、低圧気化ガスとなり、
導管圓を経′C冷媒熱交換器(9)に入り、ここで熱交
換して湿りガスは低圧過熱ガスとなり、導管(IQを経
て圧縮機(1)に吸込まれサイクルを完了する。
The high pressure liquid condensed and liquefied as described above is transferred to the liquid receiver (6).
After passing through the dryer filter (7), moisture and foreign substances are removed, and the liquid passes through the conduit (8) and is cooled in the refrigerant heat exchanger (9) to become a high-pressure supercooled liquid, which is then depressurized by the expansion valve 00 and becomes a low-pressure, low@humid gas. , evaporator coil (12
Enter 1. Here, the air blown by the blower (131) gives heat and evaporates, becoming a low-pressure vaporized gas.
The humid gas enters the C refrigerant heat exchanger (9) through the conduit circle, where it exchanges heat and becomes a low-pressure superheated gas, which is sucked into the compressor (1) via the conduit (IQ) to complete the cycle.

本実施例によれば、夏季には井戸水を使用して凝縮温度
を25C前後とし、冬季にはクーリングタワーを使用し
て凝縮温度を15Cにすることができるので、井戸水と
クーリングタワー利用の冷却水の両冷却水の長所を取り
入れ、凝縮温度の低下による冷凍能力の増大と所要動力
の削減とを図ることができる。ちなみ忙、本実施例を使
用しないときは、冬季には凝縮温度が257r前後とな
る。
According to this embodiment, the condensation temperature can be raised to around 25C using well water in the summer, and 15C using the cooling tower in the winter, so both well water and cooling water using the cooling tower can be used. By incorporating the advantages of cooling water, it is possible to increase the refrigerating capacity and reduce the required power by lowering the condensing temperature. By the way, when this example is not used, the condensation temperature is around 257r in winter.

次に、才3図の実施例(才3)について説明する。本実
施例は、蒸発式凝縮器をその本来の蒸発式凝縮器の作動
機能と、外気温より低い井戸水の撒水のみとの何れかを
利用する冷媒凝縮方法であって、電動機(2)の動力な
■ベルト(3)により伝達された圧縮機、(1)により
、導管(5)から吸入された低圧気化ガスは圧、縮され
高圧高温ガスとなり導管(4)に吐出され、蒸発式凝縮
器内の凝縮コイルr261に入る。
Next, an example of the 3-year-old figure (3-year-old) will be described. This embodiment is a refrigerant condensing method that utilizes either the original operating function of the evaporative condenser or only the sprinkling of well water that is lower than the outside temperature. The low-pressure vaporized gas sucked in from the conduit (5) is compressed and compressed by the compressor (1) transmitted by the belt (3), becomes a high-pressure high-temperature gas, and is discharged to the conduit (4), where it is sent to the evaporative condenser. It enters the condensing coil r261 inside.

ここで夏季等で外気の温度よりも井戸水a力の温度が低
いときは、ポンプ(l(至)、切換弁(L9、導管器、
導管器により送水される井戸水a′Dを撒水器CIより
蒸発式凝縮器(ハ)の通常撒水鎗よりも顕熱冷却するた
めの多量の井戸水を撒水させることにより(送風機は運
転しない)、冷却され凝縮する。
When the temperature of the well water is lower than the outside air temperature, such as during summer, the pump (L), the switching valve (L9, the conduit,
Cooling is achieved by sprinkling the well water a'D, which is sent by the conduit, from the water sprinkler CI to the evaporative condenser (c) with a larger amount of well water for sensible cooling than the normal water sprayer (the blower is not operated). and condenses.

また、冬季等で井戸水a′?)の@度より外気の温度カ
ー低いときは、受水槽12′0の水をポンプ玉、切換弁
(33、導管のを経て撒水益田より撒水される水と送風
除頭〕Kより送風される外気とにより蒸発湿熱により冷
却され凝縮する。G2は受水槽(27)への水の補給管
である。液化凝縮した高圧液化ガスは、導管(ト)を通
り、受液器(6)に入り、更にドライヤーフィルタ(7
)において水分及び異物が除去され、導管(8)を経て
蒸発器(111の方へ流動する。蒸発して低圧気化した
ガスが再び圧縮機(1)に吸込まれるまでの過程は前記
の才1実施例(矛1図)及び才2実施例(才2図)の場
合と同様であるので説明を省略する。なお、同一符号は
同一構造部分を表わすものである。
Also, in winter etc. well water a'? ) When the temperature of the outside air is lower than the temperature of the outside air, the water in the water tank 12'0 is blown from the pump ball, the switching valve (33, water is sprayed from Masuda via the conduit, and the air is blown from the air blower). It is cooled and condensed by the moisture heat of evaporation from the outside air.G2 is a supply pipe for water to the water tank (27).The high-pressure liquefied gas that has been liquefied and condensed passes through the pipe (G) and enters the liquid receiver (6). , and a dryer filter (7
), moisture and foreign matter are removed, and the gas flows through the conduit (8) toward the evaporator (111).The process until the low-pressure gas is sucked into the compressor (1) again is as described above. Since it is the same as that of the first embodiment (Fig. 1) and the second embodiment (Fig. 2), the explanation will be omitted. Note that the same reference numerals represent the same structural parts.

また、本実施例において、凝縮器を本来の蒸発式凝縮器
として使用するか、井戸水を利用した顕熱冷却とするか
の切替は、その時点での凝縮温度が低くなる場合とする
Further, in this embodiment, switching between using the condenser as an original evaporative condenser and using sensible heat cooling using well water is performed when the condensing temperature at that point becomes low.

本実施例は、夏季等に外気温よりも低い@度の水例えば
井戸水C年間を通じて15C〜16C)があればこれケ
使用し、蒸発式凝縮器内の上部の撒水器より多量に撒水
することのみにより冷媒を凝縮液化させ凝縮温度を低く
する。このとき凝縮温度は25Cとなる。また、井戸水
より外気の温度の方が低いときは、本来の蒸発式凝縮器
の作動方式をとる。このとき凝縮温度をIOCとするこ
とができる。このように前記の両冷却方式の長所を取り
入れ、凝縮温度の低下による冷凍能力の増大と所要動力
の削減とを図ることがでをる。
In this embodiment, if there is water with a temperature lower than the outside temperature in the summer (for example, well water (15C to 16C throughout the year)), use this water, and sprinkle a large amount of water from the water sprinkler at the top of the evaporative condenser. The refrigerant is condensed and liquefied by the chisel to lower the condensing temperature. At this time, the condensation temperature becomes 25C. Also, when the temperature of the outside air is lower than the temperature of the well water, the original evaporative condenser operation method is used. At this time, the condensation temperature can be set to IOC. In this way, by incorporating the advantages of both of the above-mentioned cooling methods, it is possible to increase the refrigerating capacity and reduce the required power by lowering the condensing temperature.

〔発明の効果〕〔Effect of the invention〕

本発明は、従来技術のように蒸発式凝縮器または水冷式
凝縮器の倒れか一方のみを使用して冷媒を凝縮するもの
と異なり、井戸水または外気の冷却手段を切換え利用す
るものであって、冷凍機の使用時点において、冷媒の凝
縮温度がより低(なる側の冷却手段を選択利用するもの
であるから、年間を通じて冷媒の凝縮温度を低く保持す
ることができ、冷凍能力の増大と新装動力の削減をする
ことができるので省エネルギーを図ることができる。
The present invention differs from the prior art in which refrigerant is condensed using either an evaporative condenser or a water-cooled condenser; the present invention switches between well water or outside air cooling means, and At the time of use, the refrigerant condensation temperature is lower (lower cooling means), so the refrigerant condensation temperature can be kept low throughout the year, increasing the refrigerating capacity and increasing the new power. Since it is possible to reduce the amount of energy used, it is possible to save energy.

【図面の簡単な説明】[Brief explanation of drawings]

矛I図ないし矛3図は、本発明のト工ないし才3実施例
の配管系統図である。 (1)・ψ圧縮機、(6)−・受液器、(11)−・蒸
発器、(i7)・・井戸水、el!I)−・冷媒凝縮部
としての水冷式凝縮器、C9・・冷媒凝縮部としての、
蒸発式凝縮器、□□□・・受水槽、CjQ m 会撒水
器、(451・・クーリング昭和58年2月28日
Figures 1 to 3 are piping system diagrams of embodiments of the present invention. (1)・ψ compressor, (6)-・liquid receiver, (11)-・evaporator, (i7)・・well water, el! I) - Water-cooled condenser as a refrigerant condensing section, C9... As a refrigerant condensing section,
Evaporative condenser, □□□...Water tank, CjQ m water sprinkler, (451...Cooling February 28, 1982)

Claims (1)

【特許請求の範囲】 +11  外気の温度より地下水の温度が低いときは、
冷媒凝縮部に地下水を流通させ、その顕熱を利用して冷
媒の凝縮を行ない、地下水の温度より外気の温度が低い
ときは、冷媒凝縮部を通風下におき、そこに水を噴霧し
、収水の蒸発潜熱を利用して冷媒の凝縮を行なう1つの
冷凍サイクルにおける冷媒凝縮方法。 (2)外気の温度より地下水の温度が低いときは、lの
冷媒凝縮部に地下水を流通させ、その顕熱を利用して冷
媒の凝縮を行ない、地下水の温度より外気の温度が低い
ときは、他の冷媒凝縮部を通風下におき、そこに水を噴
霧し、収水の蒸発潜熱を利用して冷媒の凝縮を行な52
種類の冷媒凝縮部を切替使用する1つの冷凍サイクルに
おける冷媒am方法。 (3)  外気の温度より地下水の温度が低いときは、
地下水を冷媒凝縮部に流通させ、その顕熱を利用して冷
媒の凝縮を行ない、地下水の温度より外気の温度が低い
ときは、通風中に水を噴霧して収水を蒸発させ、その蒸
発潜熱により収水を冷却させ、この冷却された水を前記
の冷媒凝縮部に切替流通させ、該冷却水の顕熱を利用し
て冷媒の凝縮を行な51つの冷凍サイクルにおける冷媒
凝縮方法。 (4)外気の温度より地下水の温度が低いときは、地下
水を冷媒凝縮部に流通させ、その顕熱を利用して冷媒の
凝縮を行ない、地下水の温度より外気の温度が低いとき
は、前記の冷媒凝縮部を通風下におき、そこに水を噴霧
して収水を蒸発させ、その蒸発潜熱により冷媒の凝縮を
行な51つの冷凍サイクルにおける冷媒凝縮方法。
[Claims] +11 When the temperature of groundwater is lower than the temperature of outside air,
Groundwater is passed through the refrigerant condensing section, and its sensible heat is used to condense the refrigerant.When the temperature of the outside air is lower than the temperature of the groundwater, the refrigerant condensing section is placed under ventilation and water is sprayed there. A refrigerant condensation method in one refrigeration cycle that condenses refrigerant using the latent heat of vaporization of collected water. (2) When the temperature of the groundwater is lower than the temperature of the outside air, the groundwater is circulated through the refrigerant condensing section in l, and the refrigerant is condensed using the sensible heat; , the other refrigerant condensing section is placed under ventilation, water is sprayed there, and the refrigerant is condensed using the latent heat of vaporization of the collected water.
A refrigerant AM method in one refrigeration cycle that uses different types of refrigerant condensing sections. (3) When the temperature of groundwater is lower than the temperature of outside air,
Groundwater is passed through the refrigerant condensing section, and its sensible heat is used to condense the refrigerant.When the temperature of the outside air is lower than the temperature of the groundwater, water is sprayed during ventilation to evaporate the collected water, and the evaporation A refrigerant condensing method in 51 refrigeration cycles, in which collected water is cooled by latent heat, the cooled water is switched to flow through the refrigerant condensing section, and the refrigerant is condensed using the sensible heat of the cooling water. (4) When the temperature of the groundwater is lower than the temperature of the outside air, the groundwater is circulated through the refrigerant condensing section and the refrigerant is condensed using the sensible heat, and when the temperature of the outside air is lower than the temperature of the groundwater, the A refrigerant condensing method in a 51 refrigeration cycle, in which the refrigerant condensing section of is placed under ventilation, water is sprayed there to evaporate the collected water, and the refrigerant is condensed using the latent heat of evaporation.
JP3202083A 1983-02-28 1983-02-28 Method of condensing refrigerant in refrigeration cycle Pending JPS59158967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3202083A JPS59158967A (en) 1983-02-28 1983-02-28 Method of condensing refrigerant in refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3202083A JPS59158967A (en) 1983-02-28 1983-02-28 Method of condensing refrigerant in refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS59158967A true JPS59158967A (en) 1984-09-08

Family

ID=12347175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3202083A Pending JPS59158967A (en) 1983-02-28 1983-02-28 Method of condensing refrigerant in refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS59158967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302560A (en) * 1989-05-15 1990-12-14 Sanki Eng Co Ltd Cooling refrigerator for low temperature and high temperature medium
WO1997019301A1 (en) * 1995-11-21 1997-05-29 Yamato Kosan Co., Ltd. Small cooling equipment and small cooling and heating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302560A (en) * 1989-05-15 1990-12-14 Sanki Eng Co Ltd Cooling refrigerator for low temperature and high temperature medium
WO1997019301A1 (en) * 1995-11-21 1997-05-29 Yamato Kosan Co., Ltd. Small cooling equipment and small cooling and heating equipment

Similar Documents

Publication Publication Date Title
US7150160B2 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
US6070423A (en) Building exhaust and air conditioner condenstate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
US6857285B2 (en) Building exhaust and air conditioner condensate (and/or other water source) evaporative refrigerant subcool/precool system and method therefor
CN106705334A (en) Energy recovery double-cold-source high-enthalpy-difference energy storage fresh air handling unit and control method thereof
JPS58500453A (en) Precooling/supercooling system and condenser for it
CN107560019A (en) Dehumidifier
CN107923637A (en) Air-conditioning system
JPS63503161A (en) Absorption refrigeration and heat pump systems
KR20120132035A (en) Dual Heat Pump System Using Chiller
JP2003004321A (en) Refrigerating air conditioner
CN206269310U (en) The energy recovery type big enthalpy difference accumulation of energy Fresh air handling units of double low-temperature receivers
JPH0953864A (en) Engine type cooling device
US3812685A (en) Air conditioning process
CN110284553A (en) A kind of air water machine
JPS59158967A (en) Method of condensing refrigerant in refrigeration cycle
CN108917237A (en) The refrigeration system that one kind of multiple refrigeration modes combine
CN105805970B (en) A kind of heat pump unit and gas-liquid two-phase uniform distribution method
CN113983559A (en) Heat pump type air conditioning system based on solution dehumidification and vacuum regeneration
KR100225502B1 (en) Airconditioner
JP2756362B2 (en) Refrigeration system for cooling both low temperature medium and high temperature medium
CN110410885A (en) A kind of dehumidifier
JP2756361B2 (en) Refrigeration system for cooling both low temperature medium and high temperature medium
KR100208132B1 (en) Refrigerating cycle and coolant control apparatus for air conditioner
KR100241440B1 (en) System Load Reduction Device of Air Conditioning Equipment
CN115560463A (en) Exhaust heat recovery and fresh air precooling reheating heat recovery system