JPS59157538A - Analyzer applicable with standard adding method - Google Patents
Analyzer applicable with standard adding methodInfo
- Publication number
- JPS59157538A JPS59157538A JP3166183A JP3166183A JPS59157538A JP S59157538 A JPS59157538 A JP S59157538A JP 3166183 A JP3166183 A JP 3166183A JP 3166183 A JP3166183 A JP 3166183A JP S59157538 A JPS59157538 A JP S59157538A
- Authority
- JP
- Japan
- Prior art keywords
- data
- sample
- quadrant
- screen
- display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D18/00—Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
- G01D18/008—Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00 with calibration coefficients stored in memory
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Indicating Measured Values (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は標準添加法を適用し得る分析計に係9、特に検
量線をグラフ表示する表示部を備えた分析計に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an analyzer to which a standard addition method can be applied, and more particularly to an analyzer equipped with a display section for graphically displaying a calibration curve.
標準添加法は、試料の組成が不明確で、測定時の化学干
渉あるいは物理干渉の影響を除去するととが難しく、通
常の検量線法では精度良く定量できない場合に、有効な
定量法として知られている。The standard addition method is known as an effective quantitative method when the composition of the sample is unclear, it is difficult to remove the effects of chemical or physical interference during measurement, and accurate quantification cannot be achieved using the normal calibration curve method. ing.
この方法はまた試料に含まれる物質の畦が測定限界程度
に微量で、直接測定ではSN比が小さすぎて精度良く測
定できない時の間接測定として利用しても有効である。This method is also effective when used as an indirect measurement when the amount of material contained in the sample is so small as to be at the limit of measurement, and the S/N ratio is too small for direct measurement to be accurate.
′
標準添加法による定量の手順を説明すると、等量に分け
られた分析試料複数個に、異なる濃度の標準物質溶液を
添加し、それぞれの溶液について測定した後、横軸に添
加した標準物質溶液の濃度、縦軸に測定値(例えば吸光
度)をとったグラフ用紙上で各試料のデータをプロット
し、それらの点を平均的に通る直線を引く。この状態を
示したのが第1図であるが、この図において点A、B、
C。′ To explain the procedure for quantification using the standard addition method, standard substance solutions of different concentrations are added to multiple analytical samples divided into equal volumes, each solution is measured, and the horizontal axis shows the added standard substance solution. Plot the data for each sample on graph paper with measured values (e.g., absorbance) on the vertical axis, and draw a straight line that passes through those points on average. This state is shown in Figure 1, where points A, B,
C.
Dが測定点であり、これらの点を平均的に通るように引
かれた直線tが横軸と交わる点と原点との距離x(1か
ら試料の濃度が読み取られる。x(、はグラフ上では負
の値として読み取られるが、これを正に置き換えて求め
る試料の濃度とする。また間接測定として利用する場合
は、信頼性の低い点Aの測定を行わず、測定点B、C,
Dから外挿して点Aおよび濃度XQを読み取る。D is the measurement point, and the distance between the origin and the point where a straight line t drawn to pass through these points on average intersects with the horizontal axis is x(1). This will be read as a negative value, but this will be replaced with a positive value to determine the concentration of the sample.Also, when using it as an indirect measurement, do not measure point A, which has low reliability, but measure points B, C,
Extrapolate from D to read point A and concentration XQ.
この方法は、試料毎にグラフ上に点をプロットして直線
を引かなければならないという面倒さが′ある上に、デ
ータの点をプロットする時、直線を引く時、距離を読み
取る時に入る誤差の個人差のために結果の信頼度がある
程度以上高くなり得ないという大きな欠点をもっている
。さらにグラフの目盛の選び方によって、プロットされ
る点および濃度x、)の位置が変わシ、精度が落ちたシ
、紙面からはみ出17た漫するためにグラフの作シ直し
が必要になる場合もある。This method has the trouble of having to plot points on a graph and draw a straight line for each sample, and is also prone to errors when plotting data points, drawing straight lines, and reading distances. The major drawback is that the reliability of the results cannot be higher than a certain level due to individual differences. Furthermore, depending on how you choose the scale of the graph, the position of the plotted point and concentration x,) may change, resulting in decreased accuracy, or it may be necessary to redraw the graph because it extends beyond the page. .
このような欠点を改良したのが第2図に示した検量線表
示装置で、マイクロコンピュータによる記憶、・演算部
とCR’rによる表示部によって構成される。The calibration curve display device shown in FIG. 2 is an improvement over these shortcomings, and is composed of a microcomputer storage, an arithmetic section, and a CR'r display section.
槙2図における定量分析の手順を説明する。まず用意さ
れた各試料を順に分析計10で測定し、その結果をオン
ラインで接続された測定値入力端子1から記憶部3に送
ると共に、数値キーなどの手段によって濃度値入力端子
2へ標準物質の添加量を送り、相互の入力値を一対のデ
ータとして記憶部3に記憶させていく。全部の試料を測
定し終るまでこれを繰返し、測定終了と共に記憶部3の
データを検量線作成部5、座標軸目盛作成部4へ送って
それぞれ検量線、座標軸の位置および目盛の値を決定し
て表示部6で合成して表示する。この時の表示画面は第
1図のようになる。The procedure for quantitative analysis in Maki 2 diagram will be explained. First, each prepared sample is measured in turn with the analyzer 10, and the results are sent to the storage unit 3 from the measured value input terminal 1 connected online, and the standard substance is sent to the concentration value input terminal 2 by means such as numerical keys. , and the mutual input values are stored in the storage unit 3 as a pair of data. This is repeated until all the samples have been measured, and upon completion of the measurement, the data in the storage section 3 is sent to the calibration curve creation section 5 and the coordinate axis scale creation section 4 to determine the calibration curve, coordinate axis positions, and scale values, respectively. The images are synthesized and displayed on the display unit 6. The display screen at this time will be as shown in FIG.
このような方式によれば、分析者がグラフ紙面上にプロ
ットしたり直線を引く手間が省け、計算精度や個人差の
問題も解決されているが、次のよう々欠点が残されてい
る。すなわち、測定試料を全部測定した後でないと縦軸
、横軸の目盛が決定せず、グラフ化することができない
ため、測定の途中に異常データが含まれていても全部の
試料が測定されてグラフ化されるまで発見できない。ま
た、測定データに従って画面上の座標軸の位置を決める
ので、測定毎に縦軸の位置が変わり、見づらい。Although this method saves the analyst the trouble of plotting on graph paper and drawing straight lines, and solves the problems of calculation accuracy and individual differences, the following drawbacks remain. In other words, the scales for the vertical and horizontal axes cannot be determined and graphed until after all samples have been measured, so even if abnormal data is included during the measurement, all samples will not be measured. It cannot be discovered until it is graphed. Furthermore, since the position of the coordinate axes on the screen is determined according to the measurement data, the position of the vertical axis changes with each measurement, making it difficult to see.
本発明の目的は、測定値をプロットしたのと同じ象限内
で未知試料の成分濃度をグラフ表示できる標準添加法を
適用し得る分析計を提供することにある。An object of the present invention is to provide an analyzer that can apply the standard addition method and can graphically display the component concentration of an unknown sample within the same quadrant in which the measured values are plotted.
本発明は、標準物質を添加した複数試料の測定によって
演算される検量線における外挿部分を反転させることに
より、測定値が表示されている象限と同じ象限内に外挿
部分を画面表示することを特徴とする。The present invention displays the extrapolated portion on the screen in the same quadrant in which the measured values are displayed by inverting the extrapolated portion of the calibration curve calculated by measuring multiple samples to which standard substances have been added. It is characterized by
本発明の望ましい実施例によれば、最初に設定された目
盛(縦軸および横軸)の範囲内でグラフ化が可能になる
ので各試料の測定毎に測定点をCRTfiどの表示画面
上にプロットできる。それ故、途中での異常データの発
見もやり易く、かつ画面の広さを有効に利用できる。According to a preferred embodiment of the present invention, graphing is possible within the initially set scale (vertical and horizontal axes), so the measurement points are plotted on the display screen of a CRTfi for each measurement of each sample. can. Therefore, it is easy to discover abnormal data during the process, and the screen space can be used effectively.
本発明の望ましいのは検量線グラフの第1象限の範囲だ
けを表示有効範囲として選択し、第2象限の部分を座標
軸のところから折り曲げて第1象限の表示画面の中に同
時に表示させる。このようにすることにより、第2象限
の内容が確定する前に座標軸を引くことができ、画面の
目盛も最も添加量の多い試料を測定した時点で決めるこ
とにカリ、最初にこの試料を測定すれば以後の試料の測
定毎に各測定点を画面上にプロットさせることが可能で
、測定作業を能率的に行うととができる。It is desirable in the present invention to select only the first quadrant of the calibration curve graph as the effective display range, and to display the second quadrant at the same time on the display screen of the first quadrant by folding the second quadrant from the coordinate axis. By doing this, the coordinate axes can be drawn before the contents of the second quadrant are determined, and the scale on the screen can be determined at the time when the sample with the highest additive amount is measured. Then, each measurement point can be plotted on the screen each time a sample is measured thereafter, and the measurement work can be carried out efficiently.
完成された検量線も画面の折り曲げによって重複部分が
発生せず、求める濃度値を示す位置を座標軸上で正の値
で読み取れるので、読み取り間違いが生じ難い。また、
第1..2象限の両方を表示する従来の方式に比べて、
プロットされた点相互の表示分解能が高くなる。The completed calibration curve does not have overlapping parts due to folding of the screen, and the position indicating the desired concentration value can be read as a positive value on the coordinate axes, so reading errors are less likely to occur. Also,
1st. .. Compared to the traditional method of displaying both quadrants,
The display resolution of plotted points becomes higher.
以下、図面によって本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.
第3図は本発明の一実施例を示す図である。原子吸光光
度計がどの試料測定部10からの測定値および操作パネ
ル11の数値キーなどからの濃度値が、入力端子1,2
から入って記憶部3に記憶される。最初に測定される最
も標準物質添加量の多い試料のデータが確立した時点で
、このデータを基に座標軸・目盛作成部4で座標軸と目
盛を作成し、その結果座標軸表示データ41をCR,T
からなる表示部6に送って、その時のプロットデータ3
1と共に表示する。その後被検成分と同種の標準物質を
添加した試料の測定が行われる毎に各測定点を画面の中
にプロットして行き、最後のデータが確立した時点で全
データを検量線作成部5に送って、すべての点を平均的
に通る直線を作る。FIG. 3 is a diagram showing an embodiment of the present invention. The atomic absorption spectrophotometer receives the measured values from the sample measuring section 10 and the concentration values from the numerical keys on the operation panel 11 through the input terminals 1 and 2.
, and is stored in the storage unit 3. When the data of the sample to be measured first with the highest addition amount of standard substance is established, the coordinate axes and scales are created in the coordinate axes/scale creation section 4 based on this data, and as a result, the coordinate axes display data 41 are CR, T
The plot data 3 at that time is sent to the display section 6 consisting of
Displayed together with 1. After that, each measurement point is plotted on the screen each time a sample containing the same type of standard substance as the test component is measured, and when the final data is established, all data is transferred to the calibration curve creation section 5. to create a straight line that passes through all points on average.
その検量線を反転合成部7で第2象限の部分を第1象限
の中り折如返した形に加工し、表示部6の既にプロット
されているデータの上に重ねて表示させる。この時の反
転合成部7で作られる検量線71は、元の検量線の式を
(1)式とした時(2)式で与えられる。The calibration curve is processed by the inversion synthesis section 7 into a shape in which the second quadrant is folded back into the first quadrant, and is displayed superimposed on the data already plotted on the display section 6. The calibration curve 71 created by the inversion synthesis section 7 at this time is given by equation (2) when the equation of the original calibration curve is defined as equation (1).
x=ay+b ・・・(1)x =
l a y+b l −(2)ここ
でXは濃度、yは測定値、a、bは係数を示す。x=ay+b...(1)x=
l a y + b l - (2) where X is the concentration, y is the measured value, and a and b are coefficients.
第4図はこのようにして作成された画面の例である。第
4図から明らかなように、XoO値がこの画面の範囲内
で読み取れるためには点Aの測定値が縦軸の半分の位置
より下に々いといけない。FIG. 4 is an example of a screen created in this way. As is clear from FIG. 4, in order for the XoO value to be read within the range of this screen, the measured value at point A must be below the halfway position on the vertical axis.
このことは外挿によって求められるXQの精度を維持す
る上で必要であり、一般の標準添加法における条件とも
一致する。点Aが縦軸の上方に位置し、XQがこの画面
よりはみ出すような場合には目盛を修正して再プロット
するので々く、標準物質の添加量を増した試料を作り直
して測定をやシ直す。このように本実施例によれば先に
あげた特徴を有する上に添加量の適否の判断が測定の途
中で適格にでき、無駄な測定を回避することの可能な標
準添加法用の検量線表示ができる。This is necessary to maintain the accuracy of XQ determined by extrapolation, and also coincides with the conditions in the general standard addition method. If point A is located above the vertical axis and XQ protrudes from this screen, the scale will be corrected and plotted again, making it easier to re-prepare the sample with an increased amount of the standard substance added to make the measurement easier. fix. As described above, according to this example, in addition to having the above-mentioned characteristics, the calibration curve for the standard addition method can be used to judge the appropriateness of the addition amount during the measurement, and can avoid unnecessary measurements. Can be displayed.
第5図はマイクロコンピュータを用いて検量線を作成す
る場合の実施例の動作フローを示す図である。FIG. 5 is a diagram showing the operational flow of an embodiment in which a calibration curve is created using a microcomputer.
以上の説明から理解されるように、本発明によれば、標
準物質を添加した試料の測定値を画面上にプロットした
のと同じ象限内で、未知試料の成分濃度をグラフ表示で
きるので、測定の都度画面」二のグラフの横軸又は縦軸
を移動させなくても標準添加法の検量線の作成が可能と
なる。As can be understood from the above explanation, according to the present invention, the component concentration of an unknown sample can be displayed graphically in the same quadrant in which the measured values of the sample to which the standard substance has been added are plotted on the screen. It is possible to create a calibration curve for the standard addition method without having to move the horizontal or vertical axes of the graph in screen 2 each time.
第1図は従来の標準添加法を説明するための図、第2図
は第1図の方法をCRT画面上で実行する場合に予想さ
れる図、第3図は本発明の一実施例を説明するための図
、第4図は実施例のCRT画面上に表示される検量線例
を示す図、第5図は検量線を画面表示する場合の動作フ
ロー図である。
3・・・記憶部、4・・・座標軸・目盛作成部、5・・
・検量線作成部、6・・・表示部、7・・・反転合成部
、1o・・・試料測定部、Xo・・・横軸上の交点から
原点までのi ノ 図
12図
5 /
策J 図
4
第4図
′45 図
AイA錫入力さ水E 成分5痕オn濃度見メLりl;お
す克
1ift :! A f= 51/L /l ’
pA芋千 1 ;I’J jl &。
象=p゛1定4j左メεりl二にすL
J奮61所膿屋−則を僅。開方ま
ζどTと/Iグl氷r良!=−t’riット着ノ・13
/l千kT ftテノA・・入hノ〜 11丁 7Tン
tIJv−jzすL * +4 し7= b=
/= 711Z77)−阪鋼I/lFigure 1 is a diagram for explaining the conventional standard addition method, Figure 2 is a diagram that would be expected when the method in Figure 1 is executed on a CRT screen, and Figure 3 is an illustration of an embodiment of the present invention. FIG. 4 is an explanatory diagram showing an example of a calibration curve displayed on a CRT screen according to the embodiment, and FIG. 5 is an operation flowchart for displaying a calibration curve on the screen. 3...Storage unit, 4...Coordinate axis/scale creation unit, 5...
- Calibration curve creation section, 6...Display section, 7...Inversion synthesis section, 1o...Sample measurement section, Xo...I from the intersection on the horizontal axis to the origin Figure 12 Figure 5 J Figure 4 Figure 4 '45 Figure A A Tin input water E Ingredients 5 traces on concentration check L; A f=51/L/l'
pAimosen 1 ;I'J jl &. Elephant = p゛1 constant 4j left side ε ri l 2 L J Struggle 61 place pusuya - rule is slightly. Opening mode T and/I ice r good! =-t'rit arrival no. 13
/l 1,000kT ft Teno A...enter hノ~ 11th 7TtontIJv-jzsu L * +4 し7= b=
/= 711Z77) - Hanko I/l
Claims (1)
分の測定値に基づいて検量線を演算する演算部と、濃度
値と複数の測定値の関係を検量線として画面上にグラフ
表示する表示部とを備えた標準添加法を適用し得る分析
計において、上記検量線の外挿部分を反転させ、測定値
が表示されている象限と同じ象限内に外挿部分を表示せ
しめるように上記表示部に信号を入力する手段を設けた
ことを特徴とする標準添加法を適用し得る分析計。1. A sample measurement section, a calculation section that calculates a calibration curve based on the measured values of the test components of the sample from this sample measurement section, and a graph on the screen that shows the relationship between the concentration value and multiple measured values as a calibration curve. In an analyzer capable of applying the standard addition method, which is equipped with a display section that displays, the extrapolated portion of the calibration curve is inverted so that the extrapolated portion is displayed in the same quadrant as the measured value is displayed. An analyzer to which a standard addition method can be applied, characterized in that a means for inputting a signal to the display section is provided.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3166183A JPS59157538A (en) | 1983-02-25 | 1983-02-25 | Analyzer applicable with standard adding method |
DE19843406223 DE3406223A1 (en) | 1983-02-25 | 1984-02-21 | Analyser for the standard addition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3166183A JPS59157538A (en) | 1983-02-25 | 1983-02-25 | Analyzer applicable with standard adding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59157538A true JPS59157538A (en) | 1984-09-06 |
JPH044543B2 JPH044543B2 (en) | 1992-01-28 |
Family
ID=12337325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3166183A Granted JPS59157538A (en) | 1983-02-25 | 1983-02-25 | Analyzer applicable with standard adding method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS59157538A (en) |
DE (1) | DE3406223A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3439761A1 (en) * | 1984-10-31 | 1986-05-07 | Klaus-Peter 6800 Mannheim Becker | METHOD FOR DETERMINING ENDOTOXIN CONCENTRATIONS |
GB2243211A (en) * | 1990-04-20 | 1991-10-23 | Philips Electronic Associated | Analytical instrument and method of calibrating an analytical instrument |
DE19610855A1 (en) * | 1996-03-07 | 1997-09-11 | Geesthacht Gkss Forschung | Calibrating units analysing chemical elements and/or compounds in solutions/liquid mixtures |
DE102014106916A1 (en) | 2013-05-28 | 2014-12-04 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Device for the automated determination of at least two different process parameters |
KR101999260B1 (en) * | 2016-09-30 | 2019-07-12 | 삼성전자주식회사 | Specimen analysis apparatus, and method for measuring thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3912456A (en) * | 1974-03-04 | 1975-10-14 | Anatronics Corp | Apparatus and method for automatic chemical analysis |
US3909203A (en) * | 1974-08-04 | 1975-09-30 | Anatronics Corp | Analysis system having random identification and labeling system |
-
1983
- 1983-02-25 JP JP3166183A patent/JPS59157538A/en active Granted
-
1984
- 1984-02-21 DE DE19843406223 patent/DE3406223A1/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
JPH044543B2 (en) | 1992-01-28 |
DE3406223A1 (en) | 1984-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bates | Definitions of pH scales. | |
US5552997A (en) | Method of calibrating an analytical instrument | |
Bruce et al. | Estimates of precision in a standard additions analysis | |
CN108680523B (en) | Method for measuring object to be measured by using multiple fitting modes to link standard curve | |
Ni et al. | Simultaneous determination of halide and thiocyanate ions by potentiometric precipitation titration and multivariate calibration | |
JPS59157538A (en) | Analyzer applicable with standard adding method | |
CN110501458A (en) | A kind of concentration measuring instrument calibration method, device and concentration measuring instrument | |
JP3537478B2 (en) | A method of measuring the pH value of a test solution with a glass electrode measurement cell and simultaneously calibrating the measurement cell | |
Karayannis | Comparative kinetic study for rate constant determination of the reaction of ascorbic acid with 2, 6-dichlorophenolindophenol | |
JPS63246674A (en) | Automatic analyzer | |
WO2019163281A1 (en) | Automated analyzer and automatic analysis method | |
US10852250B1 (en) | Quantitative test method for striae in optical materials | |
JP3442458B2 (en) | Selection coefficient measurement method and ion concentration measurement device | |
Lahav et al. | Measurement of pH, alkalinity and acidity in ultra-soft waters | |
JP2869610B2 (en) | Calibration method of electrolyte analyzer | |
JP2950534B2 (en) | Method and apparatus for analyzing potassium ion content of salt | |
JP3279756B2 (en) | Quantitative calculator | |
Hansen et al. | Proficiency testing materials for pH and blood gases: the California Thoracic Society experience | |
Seitz et al. | CCQM-P111 study on traceable determination of practical salinity and mass fraction of major seawater components | |
Oulman et al. | A colorimetric method for determining dissolved oxygen | |
JP3311113B2 (en) | Analysis equipment | |
CN117309976A (en) | Method for measuring fluorine content by using fluorine ion selective electrode method | |
JP3096823B2 (en) | Solution concentration measurement method | |
Comer | pH and ion-selective electrodes | |
JPH0777524A (en) | Titration method |