JPS59157047A - Preparation of dehydromuscone - Google Patents

Preparation of dehydromuscone

Info

Publication number
JPS59157047A
JPS59157047A JP58030824A JP3082483A JPS59157047A JP S59157047 A JPS59157047 A JP S59157047A JP 58030824 A JP58030824 A JP 58030824A JP 3082483 A JP3082483 A JP 3082483A JP S59157047 A JPS59157047 A JP S59157047A
Authority
JP
Japan
Prior art keywords
hexadecanedione
ring formation
compound
formula
dehydromuscone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58030824A
Other languages
Japanese (ja)
Other versions
JPH0372051B2 (en
Inventor
Mamoru Yamane
山根 守
Hiroshi Okino
沖野 広
Yasukazu Sato
佐藤 保和
Keita Matsushita
景太 松下
Hiromi Ozaki
尾崎 博己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP58030824A priority Critical patent/JPS59157047A/en
Publication of JPS59157047A publication Critical patent/JPS59157047A/en
Publication of JPH0372051B2 publication Critical patent/JPH0372051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate for preparing muscone, a fragrant component of natural musk in high selectivity in high yield and in high purity, by using a specific organozinc compound as a ring formation agent, subjecting 2,15-hexadecanedione to intramolecular ring formation. CONSTITUTION:1mol 2,15-hexadecanedione shown by the formula I is subjected to intramolecular ring formation in the presence of 1-100mol ring formation agent of an organozinc compound such as ethylzinc iodide, n-prppylzinc bromide, etc. shown by the formula II (y is 0<y<=2; R is alkyl, cycloalkyl, aryl, or these groups containing substituent group; X is halogen, halogenoide) based on the compound shown by the formula I at 20-200 deg.C for 0.5-24hr, to give the desired compounds shown by the formulas IIIa, IIIb and IIIc. The organozinc compound is prepared by reacting an organic halide or organic halogenoid with zinc powder whose surface is modified with copper or an alloy of zinc and copper in a solvent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、天然じゃ香の香気成分であるムスコンの製造
上1に要な中間体として知られるデヒドロムスコンの製
造方法、更に詳しくは、2,15−ヘキサデカンジオン
を分子内環化させることによりデヒドロムスコンを製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing dehydromuscone, which is known as an intermediate necessary for the production of muscone, which is an aromatic component of natural musk, and more specifically, 2,15 - A method for producing dehydromuscone by intramolecular cyclization of hexadecanedione.

従来技術 22.5−ヘヤヶデrジオ、を分や内や8.村。Conventional technology 22.5-Hair Gade r Geo, within minutes or 8. village.

ことによりデヒドロムスコンを製造する方法として、辻
等は、2,15−ヘキサデカンジオンを不活性溶剤の存
在下に、特定なm−ffiアルミニウム化合物および第
3級アミンを用いて分子内凍化させる方法を報告してい
る(特開昭55−85536号)0しかし、この方法に
おいては、該方法で用いる有機アルミニウム化合物のケ
トンの縮合における活性が非常に強いため、2.15−
ヘキサデカンジオンを分子内環化させてデヒドロムスコ
ンに変化させる一方、生成したデヒドロムスコンの一部
をも分子間縮合させるので、目的とするデヒドロムスコ
ンの収率の向上には限界がある。また、この方法では上
記有機アルミニウム化合物の調製に際して用いたフェノ
ールのような含酸素化合物或いは反応系に共存させる第
3級アミンが、得られるデヒドロムスコン中に微量残留
し、この微量な不純物を完全に除去することが実際上容
易でないことから、デヒドロムスコンから誘導されるム
スコン自体にも上記含酸素化合物或いは第3級アミンが
混在することになって、ムスコンの香気上の品質を低下
させる原因ともなる。
As a method for producing dehydromuscone, Tsuji et al. described a method in which 2,15-hexadecanedione is intramolecularly frozen using a specific m-ffi aluminum compound and a tertiary amine in the presence of an inert solvent. (Japanese Unexamined Patent Publication No. 55-85536)0 However, in this method, the activity of the organoaluminum compound used in the method in the condensation of ketones is very strong, so 2.15-
While hexadecanedione is intramolecularly cyclized to convert it into dehydromuscone, a portion of the generated dehydromuscone is also intermolecularly condensed, so there is a limit to the improvement in the yield of the desired dehydromuscone. In addition, in this method, trace amounts of oxygen-containing compounds such as phenol used in the preparation of the organoaluminum compounds or tertiary amines coexisting in the reaction system remain in the resulting dehydromuscone, and these trace impurities are completely removed. Since it is practically not easy to remove them, the above-mentioned oxygen-containing compounds or tertiary amines are mixed in the muscone itself derived from dehydromuscone, which causes deterioration in the aromatic quality of muscone. .

本発明者は、従来方法にみられる上述したような問題点
に鑑み、2.15−ヘキサデカンジオンを高い選択性で
分子内環化させて不純物が実質上存在しないデヒドロム
スコンを高収率で製造し得る方法について検討した結果
、本発明をなすに至った。
In view of the above-mentioned problems found in conventional methods, the present inventor has developed a method for producing dehydromuscone, which is substantially free of impurities, in high yield by intramolecular cyclization of 2,15-hexadecanedione with high selectivity. As a result of studying possible methods, the present invention has been completed.

発明の目的 したがって、本発明は、415−ヘキサデカンジオンを
分子内環化させるに際し、環化剤とじて特定な有機亜鉛
化合物を採択することにより、不純物を含まないデヒド
ロムスコンを高収率で製造し得る方法を提供することを
目的とする。
Purpose of the Invention Therefore, the present invention provides a method for producing impurity-free dehydromuscone in high yield by employing a specific organozinc compound as a cyclizing agent during intramolecular cyclization of 415-hexadecanedione. The purpose is to provide a way to obtain.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

発明の構成 本発明の構成上の特徴は、2.15−ヘキサデカンジオ
ンを、不活性溶剤の存在下に、 一般式 %式% (式中yは、0〈y≦2で表わされる実数であり、Rは
アルキル基、シクロアルキル基、アリール基もしくはこ
れらの基に置換基を有するものを表わし、Xはハロゲン
又はハロゲノイドを表わす)で示される有機亜鉛化合物
を用いて分子内環化さ亡ることによりデヒドロムスコン
を得ることにある。
Structure of the Invention The structural feature of the present invention is that 2.15-hexadecanedione is prepared by the general formula % in the presence of an inert solvent, where y is a real number represented by 0<y≦2; , R represents an alkyl group, a cycloalkyl group, an aryl group, or a group having a substituent on these groups, and X represents a halogen or a halogenoid. to obtain dehydromuscone.

本発明による上記分子内環化反応は下記に示す反応式に
従って達成される。
The intramolecular cyclization reaction according to the present invention is achieved according to the reaction formula shown below.

や デヒドロムスコン 本発明で環化剤として用いる有機亜鉛化合物は、上記一
般式中のRがメチル、エチル、プロピル。
In the organozinc compound used as a cyclizing agent in the present invention, R in the above general formula is methyl, ethyl, or propyl.

ブチル、ペンチル、ヘキシルのようなアルキル基;シク
ロペンチル、ヘクロヘキシルのよウナシクロアルキル基
;フェニル、ナフチルのようなアリール基或はこれらの
基にアルキル基、アリール基。
Alkyl groups such as butyl, pentyl and hexyl; cycloalkyl groups such as cyclopentyl and heclohexyl; aryl groups such as phenyl and naphthyl, or alkyl and aryl groups in these groups.

アルコキシ基、ハロゲン等のような基が付加したもの、
Xがフッ素、塩素、臭素およびヨウ素のハロゲン或はシ
アノ、イソシアノ、シアナト、インシアナト、チオシア
ナト、インチオシアナトのようなハロゲノイド(プソイ
ドハロゲン)である化合物を包含するものであり、その
具体例としては、ジメチル唾鉛、ジエチル亜鉛、ヨウ化
エチル亜鉛。
Those with added groups such as alkoxy groups, halogens, etc.
It includes compounds in which X is a halogen such as fluorine, chlorine, bromine, and iodine, or a halogenoid (pseudohalogen) such as cyano, isocyano, cyanato, incyanato, thiocyanato, inthiocyanato, and specific examples thereof include , dimethyl salivary lead, diethylzinc, ethylzinc iodide.

臭化プロピル龍鉛、塩化メチル亜鉛、シアン化フェニル
亜鉛、インシアン化トリル亜鉛、チオシアン化2−クロ
ルエチル亜鉛、チオシアン化ベンジル亜鉛等を例示し得
る。
Examples include propyl zinc bromide, methylzinc chloride, phenylzinc cyanide, tolylzinc incyanide, 2-chloroethylzinc thiocyanide, and benzylzinc thiocyanide.

これらの有機亜鉛化合物は、反応系に単独で存在してい
てもよく、又会合した状態で存在していてもよく、更に
反応系中の溶剤と錯体を形成していてもよい。又、上記
有機亜鉛化合物は、後述する方法で調整するとyは種々
の値をとる。これは複数の化合物が会合又は混合してい
るためと推定されるが、いずれも環化剤として用いるこ
とができる。又これと一般式Zn X2 (式中R,X
は前記一般式におけると同じ意味を表わす)で示される
他の亜鉛化合物とが共に反応系に共存していても差支え
ない。
These organic zinc compounds may be present in the reaction system alone or in an associated state, or may further form a complex with the solvent in the reaction system. Moreover, when the above-mentioned organic zinc compound is adjusted by the method described below, y takes various values. This is presumed to be because a plurality of compounds are associated or mixed, and any of them can be used as a cyclizing agent. Also, this and the general formula Zn X2 (in the formula R,
has the same meaning as in the above general formula) may also coexist in the reaction system.

なお、本発明で用いる上記有機亜鉛化合物は、Blai
se試薬のl!l製法として知られる方法に準拠して調
製し得るっ例えば、有機ハロゲン化物もしくは有機ハロ
ゲノイドを、表面を銅で修飾した亜鉛粉末或は亜鉛と銅
との合金と溶媒中で反応させることによ9調製でき、更
にジオルガノ亜鉛とハロゲン化亜鉛或はプソイドハロゲ
ン化亜鉛を反応させるか、もしくはハロゲン化有機マグ
ネシウムとハロゲン化亜鉛或はプソイドハロゲン化亜鉛
を反応させることによっても調製できる。
The organic zinc compound used in the present invention is Blai
l of se reagent! For example, by reacting an organic halide or an organic halide with a surface-modified zinc powder or an alloy of zinc and copper in a solvent. It can be prepared by reacting diorganozinc with zinc halide or pseudozinc halide, or by reacting organomagnesium halide with zinc halide or pseudozinc halide.

本発明において上記有機亜鉛化合物を用いて2.15−
ヘキサデカンジオンを分子内環化させるには、不活性溶
剤、例えばヘキサン、ヘプタン。
In the present invention, using the above organozinc compound, 2.15-
For intramolecular cyclization of hexadecanedione, use an inert solvent such as hexane, heptane.

ベンゼン、トルエン、キシレンのような炭化水素類、ジ
エチルエーテル、テトラヒドロフラン、ジエーテル類、
四塩化炭素、クロロホルム、クロルベンゼンのようなハ
ロゲン化炭化水素等の単独もしくは混合物の存在下で、
有機亜鉛化合物を215−ヘキサデカンジオンに対して
1〜100モル倍禁、好ましくは3〜10モル惜量添加
して行なうとよい。因みに溶剤は不活性であれば広範囲
の種類のものを使用し得る。この際、有機亜鉛化合物の
添加量が少なすぎると2,15−ヘキサデカンジオンの
デヒトロムスゴンへの転化率が低くなり、一方多すぎる
のは経済上から得策ではない0また、2.15−ヘキサ
デカンジオンは、反応系に存在させる不活性溶剤の0.
01〜30重景、好都心くは0.1〜5重量%の掖で用
いるとよく、この量が少なすぎると目的とするデヒドロ
ムスコンの収率が低くて実用的でなく、一方多すぎると
副反応が起って分子内環化反応における選択性が低下す
る。
Hydrocarbons such as benzene, toluene, xylene, diethyl ether, tetrahydrofuran, diethers,
In the presence of halogenated hydrocarbons such as carbon tetrachloride, chloroform, and chlorobenzene alone or in mixtures,
The organic zinc compound may be added in an amount of 1 to 100 moles, preferably 3 to 10 moles, relative to 215-hexadecanedione. Incidentally, a wide variety of solvents can be used as long as they are inert. At this time, if the amount of the organozinc compound added is too small, the conversion rate of 2,15-hexadecanedione to dehytromusgon will be low, while if it is too large, it is not economical. , 0.0% of the inert solvent present in the reaction system.
01-30 In the case of heavy views and urban areas, it is best to use 0.1 to 5% by weight; if this amount is too small, the yield of the desired dehydromuscone will be low and impractical; on the other hand, if it is too large, Side reactions occur and the selectivity in the intramolecular cyclization reaction decreases.

本発明による2、15−ヘキサデカンジオンの分子内環
化反応は、上述した有機溶剤の存在下で上記有機亜鉛化
合物を用いて、20乃至200℃。
The intramolecular cyclization reaction of 2,15-hexadecanedione according to the present invention is carried out at 20 to 200° C. using the above-mentioned organozinc compound in the presence of the above-mentioned organic solvent.

好ましくは50乃至100℃の反応温度で0.5乃至2
4時間、好ましくは1乃至10時間行なうことにより達
成される。なお、反応温度が低いと反応に長時間を要し
、高すぎると副反応が生ずるので好ましくなく、又、反
応時間が短かすぎると反応率が低下し、一方多すぎると
反応上の選択性が低下するので好ましくない。
Preferably 0.5 to 2 at a reaction temperature of 50 to 100°C.
This is achieved by carrying out the process for 4 hours, preferably 1 to 10 hours. Note that if the reaction temperature is too low, the reaction will take a long time, and if it is too high, side reactions will occur, which is undesirable.If the reaction time is too short, the reaction rate will decrease, while if it is too high, the selectivity of the reaction will decrease. This is not preferable because it reduces the

上記反応により、デヒドロムメコンとして3−メチル−
2−シクロペンタデセン−1−オン、3−メチル−3−
シクロペンタデセン−1−オン並びに3−メチレン−シ
クロペンタデカン−1−オンが得られる。これらのデヒ
ドロムスコンは公知の手法により例えばパラジウム系触
媒の存在下に水素添加することによりムスコンにするこ
とができる。
By the above reaction, 3-methyl-
2-cyclopentadecen-1-one, 3-methyl-3-
Cyclopentadecen-1-one as well as 3-methylene-cyclopentadecane-1-one are obtained. These dehydromuscones can be converted into muscones by hydrogenation in the presence of a palladium-based catalyst using a known method.

叙上のように、本発明によると2.i5−ヘキサデカン
ジオンからムスコンの中間体としてのデヒドロムスコン
を有利に製造し得るようになる。以下に実施例を示して
本発明をさらに具体的に説明する。
As mentioned above, according to the present invention, 2. Dehydromuscone as an intermediate for muscone can be advantageously produced from i5-hexadecanedione. EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例1 硫酸銅5gを水20 mAに溶かした水溶液に亜鉛粉末
20.9を浸漬して該亜鉛粉末の表面に金属銅を析出さ
せ、次いでよく乾燥することにより亜鉛。
Example 1 Metallic copper was deposited on the surface of the zinc powder by immersing 20.9 g of zinc powder in an aqueous solution of 5 g of copper sulfate dissolved in 20 mA of water, and then thoroughly dried to produce zinc.

銅粉1911を得た。この亜鉛、銅粉末と、トルエンi
 o o mz 、酢酸エチル5mノ、ヨウ素10 m
A およびヨウ化エチル20mノをフラスコに仕込み、
よく攪拌しながら3時間還流下に反応させてヨウ化エチ
ル亜鉛を生成させた。この反応液を静置して未反応亜鉛
を沈降させ、ヨウ化エチル亜鉛26gを溶液として回収
した。
Copper powder 1911 was obtained. This zinc, copper powder and toluene i
o o mz, ethyl acetate 5 m, iodine 10 m
Charge A and 20 m of ethyl iodide into a flask,
The reaction was carried out under reflux for 3 hours with thorough stirring to produce ethylzinc iodide. This reaction solution was allowed to stand still to allow unreacted zinc to precipitate, and 26 g of ethylzinc iodide was recovered as a solution.

2.15ヘキサデカンジオンの環化 上記により得られたヨウ化エチル亜鉛を含有する溶液2
0mbを、トルエン701ノおよびテトラヒドロ7う7
20 mAと共に冷却器を具えたフラスコに仕込み、フ
ラスコ内の液温を80℃に保持し7cモのに、攪拌下に
、2.15−ヘキサデカンジオン0.254Iiをテト
ラヒドロフラン20mノおよびトルエン701ノに溶解
した溶i 40 anを毎時20℃ノの速さで滴下しな
がら反応を行なった0この滴下が終了後、得られた反応
液を希塩酸で洗浄した後、生成物をガスクロマトグラフ
ィーで定量分析したところ、デヒドロムスコンは反応前
の2.15−ヘキサデカンジオンに対し80モルチの収
率で生成上たことが確認された。
2.15 Cyclization of hexadecanedione Solution 2 containing ethylzinc iodide obtained above
0 mb, toluene 701 and tetrahydro 7
A flask equipped with a condenser was charged with 20 mA, and the temperature of the liquid in the flask was maintained at 80°C. After 7 cm, 0.254 Ii of 2,15-hexadecanedione was added to 20 m of tetrahydrofuran and 701 m of toluene while stirring. The reaction was carried out while dropping the dissolved solution i 40 an at a rate of 20°C per hour. After this dropping was completed, the resulting reaction solution was washed with diluted hydrochloric acid, and the product was quantitatively analyzed by gas chromatography. As a result, it was confirmed that dehydromuscone was produced in a yield of 80 molti based on 2,15-hexadecanedione before the reaction.

実施例2 有機亜鉛化合物の調製 テトラヒドロンラン507anによく脱水した臭化亜鉛
34IIを懸濁させ、室温にて、攪拌しつつ、臭化n−
プロピルマグネシウムの3モル/!テトラヒドロフラン
溶液59mノを滴下し、30分間反応させて臭化n−プ
ロピル亜鉛を生成させた。静置した後テトラヒドロフラ
ン溶液として臭化n−プロピル亜鉛2711が得られた
Example 2 Preparation of organozinc compound Thoroughly dehydrated zinc bromide 34II was suspended in tetrahydrone 507an, and n-bromide was prepared with stirring at room temperature.
3 moles of propylmagnesium/! 59 mL of tetrahydrofuran solution was added dropwise and reacted for 30 minutes to produce n-propylzinc bromide. After standing still, n-propylzinc bromide 2711 was obtained as a tetrahydrofuran solution.

ム15−ヘキサデカンジオンの環化 上記により得られた臭化n−プロピル亜鉛を含有する溶
液20m!をヘプタン80771ノと共に冷却器を具え
たフラスコに仕込み、フラスコ内の液温を90℃に保持
し、これに攪拌下に、2.15−ヘキサデカンジオン1
.016Jをテトラヒドロ7ラン10rIL!およびヘ
プタン30771ノに溶解させた溶液401を毎時Io
nノの速さで滴下しながら反応を行なった。この滴下が
終了後得られた反応液を希塩酸で洗浄した後、生成物を
ガスクロマトグラフィーで定量分析したところ、デヒド
ロムスコンは反応前の入15−ヘキサデカンジオンに対
して65モルチの収率で生成していたことが確認された
20 m of the solution containing n-propylzinc bromide obtained above! was charged with heptane 80771 into a flask equipped with a condenser, the temperature of the liquid in the flask was maintained at 90°C, and 2,15-hexadecanedione 1 was added to this with stirring.
.. Tetrahydro 7 run 10rIL with 016J! and 401 liters of solution dissolved in 30,771 liters of heptane per hour.
The reaction was carried out while dropping at a speed of n. After this dropwise addition was completed, the resulting reaction solution was washed with diluted hydrochloric acid, and the product was quantitatively analyzed by gas chromatography. Dehydromuscone was produced in a yield of 65 molti based on the 15-hexadecanedione used before the reaction. It was confirmed that it was.

出願人 日本鉱業株式会社 代理人宮田広豊Applicant: Japan Mining Co., Ltd. Agent Hirotoyo Miyata

Claims (1)

【特許請求の範囲】 2.15−ヘキサデカンジオンを、不活性溶剤の存在下
に、 一般式 %式% (式中yはO<y≦2で表わされる実数であり、Rはア
ルキル基、シクロアルキル基、アリール基°もしくは置
換基を有するこれらの基を表わし、Xはハロゲン又はハ
ロゲノイドを表わす)で示される有機亜鉛化合物を用い
て分子内環化させることを特許とするデヒドロムスコン
の製造方法。
[Claims] 2.15-hexadecanedione is prepared from the general formula % in the presence of an inert solvent, y is a real number represented by O<y≦2, and R is an alkyl group, cyclo A patented method for producing dehydromuscone that involves intramolecular cyclization using an organozinc compound represented by an alkyl group, an aryl group, or a substituent-containing group, where X represents a halogen or a halogenoid.
JP58030824A 1983-02-28 1983-02-28 Preparation of dehydromuscone Granted JPS59157047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030824A JPS59157047A (en) 1983-02-28 1983-02-28 Preparation of dehydromuscone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030824A JPS59157047A (en) 1983-02-28 1983-02-28 Preparation of dehydromuscone

Publications (2)

Publication Number Publication Date
JPS59157047A true JPS59157047A (en) 1984-09-06
JPH0372051B2 JPH0372051B2 (en) 1991-11-15

Family

ID=12314444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030824A Granted JPS59157047A (en) 1983-02-28 1983-02-28 Preparation of dehydromuscone

Country Status (1)

Country Link
JP (1) JPS59157047A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069026A (en) * 2000-08-30 2002-03-08 Takasago Internatl Corp Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
WO2010109650A1 (en) 2009-03-27 2010-09-30 Doya Masaharu Process for production of 3-methyl-cyclopentadecenone, process for production of r/s-muscone, and process for production of optically active muscone
JP2022006517A (en) * 2020-06-24 2022-01-13 正晴 銅谷 Production method of 3-methylcycloalkenones
US11377411B2 (en) 2018-09-25 2022-07-05 Takasago International Corporation Method for producing 3-methylcycloalkenone compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216173B4 (en) 2014-08-14 2016-06-30 Continental Automotive Gmbh High-pressure fuel pump and pressure-influencing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069026A (en) * 2000-08-30 2002-03-08 Takasago Internatl Corp Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
JP4540197B2 (en) * 2000-08-30 2010-09-08 高砂香料工業株式会社 (E) Process for producing 3-methyl-2-cyclopentadecenone
WO2010109650A1 (en) 2009-03-27 2010-09-30 Doya Masaharu Process for production of 3-methyl-cyclopentadecenone, process for production of r/s-muscone, and process for production of optically active muscone
US11377411B2 (en) 2018-09-25 2022-07-05 Takasago International Corporation Method for producing 3-methylcycloalkenone compound
JP2022006517A (en) * 2020-06-24 2022-01-13 正晴 銅谷 Production method of 3-methylcycloalkenones

Also Published As

Publication number Publication date
JPH0372051B2 (en) 1991-11-15

Similar Documents

Publication Publication Date Title
Burkhardt et al. The direct preparation of organocadmium compounds from highly reactive cadmium metal powders
JPS6191193A (en) Silane, manufacture and use
JPS59157047A (en) Preparation of dehydromuscone
JP3337728B2 (en) Method for producing 2-acetylbenzo [b] thiophene
IE51211B1 (en) Process for introducing alkyl radicals into nitrile compounds
US5817837A (en) Tetrathiafulvalene derivative precursors, tetrathiafulvalene derivatives, and processes for producing them
JP2654516B2 (en) Method for producing silicon azide compound
CN109796372B (en) Method for preparing polysubstituted alkenyl amidine
JPS63135393A (en) Production of alkylsilyl cyanide
JP3505766B2 (en) Method for producing optically active α-hydroxyketone derivative
JPH0360832B2 (en)
JP2002536353A (en) Production of N (CF3) 2 anion and its use
JPH04270294A (en) Alpha-methylenecyclopentanone derivative and its production
JPH04224525A (en) Production of 9,9-dialkylfluorene
JP3817351B2 (en) Alcohol manufacturing method
JPS6310754A (en) Production of acyl cyanide
JPS6279A (en) Production of nitrophthalide compound
JPH029835A (en) Preparation of bicyclohumulenone
JPS6228955B2 (en)
KR910003635B1 (en) Process for the preparation of 2-(2-naphthyloxy)propion anilide derivatives
JPS59186927A (en) Manufacture of cyclopropane derivatives
JP2725350B2 (en) Method for producing propargylfuran carbinols
US3161673A (en) Process for the production of cis-3-haloacrylic compounds
JPS62281875A (en) Production of furfuryl alcohol or such
JPH0713065B2 (en) Method for producing furfuryl alcohol