JPS59156970A - Refractory brick - Google Patents

Refractory brick

Info

Publication number
JPS59156970A
JPS59156970A JP58028806A JP2880683A JPS59156970A JP S59156970 A JPS59156970 A JP S59156970A JP 58028806 A JP58028806 A JP 58028806A JP 2880683 A JP2880683 A JP 2880683A JP S59156970 A JPS59156970 A JP S59156970A
Authority
JP
Japan
Prior art keywords
refractory
refractory brick
fiber
carbon
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028806A
Other languages
Japanese (ja)
Inventor
鹿野 弘
誠 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP58028806A priority Critical patent/JPS59156970A/en
Publication of JPS59156970A publication Critical patent/JPS59156970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Memory System Of A Hierarchy Structure (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Braking Arrangements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、機械的衝撃と熱衝撃抵抗性に優れた冶金用耐
火れんかに関する。とくに大型の取鍋敷れんが、転炉装
入側れんが、転炉炉底れんが、クンディツシュの湯当り
部等機械的衝撃と熱衝撃抵抗性を要求される部分に好適
な耐火れんかに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metallurgical refractory brick having excellent mechanical shock and thermal shock resistance. In particular, it relates to a refractory brick suitable for parts that require mechanical shock and thermal shock resistance, such as large ladle bed bricks, converter charging side bricks, converter bottom bricks, and kundish hot water contact parts.

取鍋、特に大型取鍋を例に挙げて説明すると、従来より
敷湯当たり部の損傷が大きく、他の部位に比して補修の
頻度が多いため原単価軽減、操業能率向上への大きな障
害となっていた。、この敷寿命を律する湯当たり部の損
傷形態は、溶鋼注入時の機械的衝撃、摩耗、熱衝撃によ
る剥離損耗と目地損耗が主である。
Taking a ladle, especially a large ladle, as an example, the part that touches the hot water is more likely to be damaged than before, and it needs to be repaired more frequently than other parts, which is a major hindrance to reducing unit costs and improving operational efficiency. It became. The forms of damage to the hot water contact area that govern the life of the bed are mainly peeling wear and joint wear due to mechanical shock, abrasion, and thermal shock during pouring of molten steel.

近年、湯当たり部の目地損耗対策として、湯当たり部の
目地なし施工、即ち大型ブロックれんがの適用が試みら
れているが熱衝撃2m械的衝撃による割れ、欠損、およ
び収縮などのトラブルにより充分なメリットが出るには
至っていない。
In recent years, attempts have been made to use large block bricks to prevent joint damage in the hot water contact area, but this has been difficult to achieve due to problems such as cracking, chipping, and shrinkage due to thermal shock and mechanical shock of 2 m. The benefits have not yet been realized.

また、炭素含有れんが特にMgO−C系のれんがの敷湯
当たり部への適用は、電気炉鍋、LP鍋など、比較的容
量の小ざい取鍋において試みられ好成績が得られている
が、・大量の溶鋼が高所から注入される大型取鍋の敷湯
当たり部に対しては機械的衝撃、摩耗抵抗性の点におい
て多くの問題が残されている。
In addition, the application of carbon-containing bricks, especially MgO-C bricks, to the hot water contact area has been attempted with relatively small capacity ladles such as electric furnace ladle and LP ladle, and good results have been obtained. Many problems remain in terms of mechanical impact and abrasion resistance for the hot-water contact part of a large ladle into which a large amount of molten steel is poured from a high place.

本発明は係る個所に通用されるれんがの欠点を改良した
もので、高熱伝導性であり耐熱的スポーリング性に優れ
、かつスラグ、i1′8鋼の侵食を受は難い炭素含有れ
んがの母材に高張力を有する炭素長繊維網を成形時に成
形方向に対して直角に配列せしめ、優れた耐熱的スポー
リング性1機械的強度を付与せしめた耐火れんがを提供
することを目的とする。
The present invention improves the drawbacks of bricks commonly used in such places, and is a base material of carbon-containing bricks that has high thermal conductivity, excellent heat spalling resistance, and is resistant to corrosion by slag and I1'8 steel. The object of the present invention is to provide a refractory brick which has excellent heat resistance, spalling properties, and mechanical strength by arranging a long carbon fiber network having high tensile strength perpendicularly to the molding direction during molding.

本発明に使用する母材としては、MgO、CaO。The base materials used in the present invention include MgO and CaO.

AQ203+ Cr2O31S+02 +  ZrO2
+MgOAQ2031 AQ203−5i02系等の任
意の耐火物に適用できるが、とくにMgO−C系耐大物
のような炭素含有耐火物にAQ、 ’Mg系の金属2食
金粉を添加して、熱間における強度と耐摩耗性を強化し
たものは、れんがの機械的かつ熱的衝撃に対する抵抗性
を向上させる点でとくに好ましい。
AQ203+ Cr2O31S+02 + ZrO2
+MgOAQ2031 It can be applied to any refractory such as AQ203-5i02 series, but in particular, adding AQ, Mg-based metal bi-metallic powder to carbon-containing refractories such as MgO-C-based large-sized refractories improves hot strength. Bricks with enhanced abrasion resistance are particularly preferred in terms of improving the resistance of bricks to mechanical and thermal shock.

炭素長繊維網の母材中への配置は、成形方向に対して直
角方向に適当な深さに埋め込んで成形するのが望ましい
。また炭素繊維網を2層以上配置する場合には、第1層
の設置面での断面平面図(第2図のII線での切断面)
として第1図に示すように耐火物母材(1)中に、炭素
繊維網(2)および下層の繊維網(2’)(点線で示す
)を交叉して配置するとさらに耐用力を増大することか
できる。
The long carbon fiber network is preferably placed in the matrix by embedding it at an appropriate depth in a direction perpendicular to the molding direction. In addition, when arranging two or more layers of carbon fiber networks, a cross-sectional plan view of the installation surface of the first layer (cut surface taken along line II in Figure 2)
As shown in Fig. 1, if the carbon fiber network (2) and the lower layer fiber network (2') (indicated by dotted lines) are arranged in a crosswise manner in the refractory base material (1), the durability can be further increased. I can do it.

さらに、多層配置させる場合には、繊維の方向を順次交
差させ、かつ、第1図の■−■線による断面図である第
2図に示すように冷端側(3)になる程炭素繊維網(2
)の母材(11中での配置間隔を小さくするのが補強上
より効果的である。
Furthermore, when arranging multiple layers, the directions of the fibers are made to intersect one after another, and as shown in FIG. 2, which is a cross-sectional view taken along the line ■-■ in FIG. Net (2
) in the base material (11) is more effective in terms of reinforcement.

また本発明に用いる炭素繊維としてはレーヨン系、ピ・
ノチ系、アクリルニトリル系、リグニンポバール系など
があるが、その目的から少なくとも50 kg /−以
上の張力を有するものが必要である。
In addition, the carbon fibers used in the present invention include rayon-based, pi-
There are noti type, acrylonitrile type, lignin poval type, etc., but for the purpose, it is necessary to have a tensile strength of at least 50 kg/- or more.

そして、繊維網として層状にれんが中に配置した際、外
部から応力が働いた時に即座にその張力で補強作用が出
来る様な状態、即ち、たるみがない状態で保持されてい
ることが望ましい。
When the fiber network is arranged in layers in a brick, it is desirable that the fiber network be maintained in such a state that when stress is applied from the outside, it can immediately be reinforced by the tension, that is, in a state without sagging.

そのためには以下の様な手段を取る必要がある。To achieve this, it is necessary to take the following measures.

1)成形時に金枠に繊維網を固定し、張力を与えた状態
で母材と共に同時成形を行なう。
1) During molding, the fiber mesh is fixed to the metal frame and molded simultaneously with the base material under tension.

2)予め該繊維網を樹脂で固化し、充分な強度をもたせ
て同時成形を行なう。
2) The fiber network is solidified with a resin in advance to give it sufficient strength and simultaneously molded.

以下に本発明を実施例に基づいて説明する。The present invention will be explained below based on examples.

第1の実施例はアルミナ系耐火物に炭素繊維網を配置し
た場合の機械的な強度を見たものであり第2の実施例は
マグネシア系耐火物に適用して作っ°たれんがを溶鋼鍋
敷場当り部に使用した場合を示すものである。
The first example examines the mechanical strength when a carbon fiber network is placed on an alumina-based refractory, and the second example is a molten steel ladle using bricks made by applying it to a magnesia-based refractory. This shows the case where it is used for the floor area.

(第1の実施例) 表1に示す配合を持つ耐火物を充分に混練したのぢ、こ
れを母材として引張強さ60kg/cJ平均長さ50I
lllIlの炭素繊維からなる繊維網を水平に2層等間
隔に配置して、上下方向に加圧して、80 X 30 
X2011mに成形し、乾燥後還元雰囲気中で1400
℃に加熱焼成し試料を調製した。それぞれの試料をその
まま常温における曲げ試験に供した。また同試料を焼成
後、さらに計気流中で1500°Cで5時間の熱処理を
行い常温まで冷却後曲げ試験に供した。その結果を表1
0下欄に示す。
(First Example) A refractory having the composition shown in Table 1 was sufficiently kneaded, and this was used as a base material to obtain a tensile strength of 60 kg/cJ and an average length of 50 I.
Two layers of fiber networks made of lllIl carbon fibers were arranged horizontally at equal intervals and pressurized in the vertical direction to form a 80 x 30
After drying, it was molded to a size of 1400 x 2011 m in a reducing atmosphere.
A sample was prepared by heating and firing at ℃. Each sample was directly subjected to a bending test at room temperature. After the same sample was fired, it was further heat-treated at 1500°C for 5 hours in an airflow, cooled to room temperature, and then subjected to a bending test. Table 1 shows the results.
0 Shown in the lower column.

表 1 各種マトリックス部配合率と積層品の熱処理後
強度(第2の実施例) 表2に示す配合物を混練して母材となる耐火物を調製し
た。引張強さ6層kg / cnl平均長さ50mmの
炭素繊維からなる繊維網を水平に3層に配置しながら前
記の耐火物母材を成形枠に充填したのちフリクションプ
レスによって500kg / c++1の圧力を加えて
成形し乾燥硬化させて図に示すように、耐火物母材fl
)中に炭素繊維網(2)が等間隔で配置された5oox
 500X 23f)順の大型れんがを得た。このれん
がを330トンの熔鋼鍋敷湯当り部に用いたところ60
回のチャージに耐えることができ、従来のロー石れんが
の5倍1以上の耐用を得た。
Table 1 Blend ratio of various matrix parts and strength after heat treatment of laminate (Second Example) The blends shown in Table 2 were kneaded to prepare a refractory material to serve as a base material. A fiber network consisting of carbon fibers with a tensile strength of 6 layers kg/cnl and an average length of 50 mm was arranged horizontally in 3 layers, and the above refractory base material was filled into a forming frame, and then a pressure of 500 kg/c++1 was applied using a friction press. In addition, it is molded, dried and hardened to form a refractory base material fl as shown in the figure.
) in which carbon fiber networks (2) are arranged at equal intervals
A large brick of 500×23f) was obtained. When this brick was used for the hot water contact part of a 330-ton molten steel pot, the result was 60.
It can withstand multiple charges and has a durability that is more than 5 times longer than conventional raw stone bricks.

表  2Table 2

【図面の簡単な説明】[Brief explanation of drawings]

添付の図は本発明に基づ(炭素繊維網の配置の一実施態
様を示す。第1図は第2図のI−I線による平面断面図
であり、第2図は第1図の■−■線での断面図である。 (1):耐火物母材 (2)、  (2’)  :炭素繊維網(3):冷端側 特許出願人   黒崎窯業株式会社 代理人 手掘 益(はが2名)
The attached drawings show one embodiment of the arrangement of the carbon fiber network based on the present invention. It is a cross-sectional view taken along the -■ line. (1): Refractory base material (2), (2'): Carbon fiber mesh (3): Cold end side Patent applicant Masu Tegori (Kurosaki Ceramics Co., Ltd. agent) (2 people)

Claims (1)

【特許請求の範囲】 1、耐火物母体中に、長炭素繊維からなる繊維網を、一
層以上埋設してなることを特徴とする耐火れんが。 2、 耐火物母体が炭素含有耐火物であることを特徴と
する特許請求の範囲第1項に記載の耐火れんが。 3、炭素含有耐火物母体にアルミニウム、マグネシウム
またはこれらの合金粉末を含有せしめてなることを特徴
とする特許請求の範囲第2項に記載の耐火れんが。 4、 炭素繊維が50 kg / cn!以上の引張り
強さを有するものであることを特徴とする特許請求の範
囲第1項に記載の耐火れんが。 5゜長炭素繊維からなる繊維網が、成形方向に配置埋設
してなることを特徴とする特許請求の範囲第1項に記載
の耐火れんが。 6、長炭素繊維からなる繊維網が2層以上埋設されてい
る場合において、各繊維網の繊維方向が交叉するように
配置されていることを特徴とする特許請求の範囲第1項
に記載の耐火れんが。
[Claims] 1. A refractory brick characterized by having one or more layers of fiber networks made of long carbon fibers embedded in a refractory matrix. 2. The refractory brick according to claim 1, wherein the refractory matrix is a carbon-containing refractory. 3. The refractory brick according to claim 2, characterized in that the refractory brick contains aluminum, magnesium, or an alloy powder thereof in a carbon-containing refractory matrix. 4. Carbon fiber weighs 50 kg/cn! The refractory brick according to claim 1, which has a tensile strength of at least 10%. The refractory brick according to claim 1, characterized in that a fiber network made of 5° long carbon fibers is arranged and buried in the forming direction. 6. In the case where two or more layers of fiber networks made of long carbon fibers are embedded, the fiber networks are arranged so that the fiber directions intersect with each other, as set forth in claim 1. Refractory brick.
JP58028806A 1983-02-23 1983-02-23 Refractory brick Pending JPS59156970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028806A JPS59156970A (en) 1983-02-23 1983-02-23 Refractory brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028806A JPS59156970A (en) 1983-02-23 1983-02-23 Refractory brick

Publications (1)

Publication Number Publication Date
JPS59156970A true JPS59156970A (en) 1984-09-06

Family

ID=12258661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028806A Pending JPS59156970A (en) 1983-02-23 1983-02-23 Refractory brick

Country Status (1)

Country Link
JP (1) JPS59156970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215574A (en) * 1987-03-04 1988-09-08 品川白煉瓦株式会社 Monolithic refractory block
JPS6428282A (en) * 1987-07-24 1989-01-30 Hitachi Ltd High-strength sintered composite ceramic material having excellent toughness and corrosion resistance and production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217473A (en) * 1982-06-11 1983-12-17 川崎製鉄株式会社 Carbon-containing refractories

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217473A (en) * 1982-06-11 1983-12-17 川崎製鉄株式会社 Carbon-containing refractories

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215574A (en) * 1987-03-04 1988-09-08 品川白煉瓦株式会社 Monolithic refractory block
JPH0555476B2 (en) * 1987-03-04 1993-08-17 Shinagawa Refractories Co
JPS6428282A (en) * 1987-07-24 1989-01-30 Hitachi Ltd High-strength sintered composite ceramic material having excellent toughness and corrosion resistance and production thereof

Similar Documents

Publication Publication Date Title
KR20100118133A (en) A sintered refractory material based on silicon carbide with a silicon nitride binder
EP2263989A1 (en) Hot spray repairing material
JPS59156970A (en) Refractory brick
Chandra et al. Refractories and failures
JP3016124B2 (en) Molten container and aluminum holding furnace
CN1957099A (en) Rotary drum-type kiln comprising fireproof stirring bodies for remelting aluminium
JPH10206031A (en) Heat insulating lining structure for ladle laying part
JP3679464B2 (en) Multi-layer fireproof lining structure for chaotic cars
JP2003042667A (en) Protective structure of molten metal container
JP3197680B2 (en) Method for producing unburned MgO-C brick
CA1070943A (en) Preshaped blast furnace hearth construction
CN217083308U (en) Composite magnesia-chrome brick
JP2510352B2 (en) Blast furnace tap iron cover covering method
JPS6232150B2 (en)
JP3303039B2 (en) Precast block for electric furnace ceiling
JPS61238909A (en) Lance for treating molten metal
KR100373702B1 (en) Block Molding Using Alumina-Spinel Waste Castable
CA2611360C (en) Insulating refractory lining
JPH0671422A (en) Method for lining bottom part in ladle
JPS5919905B2 (en) Fireproof insulation board
JP3580212B2 (en) Method of manufacturing stave cooler
JPH09301779A (en) Castable refractory, application method therefor and industrial furnace using the same
JPS62263915A (en) Gas blowing lance for treating molten metal
JPH08348Y2 (en) Charcoal fired reinforced kiln
JPH02165863A (en) Lining structure for bottom of ladle of false bottom type