JPS59156506A - Cooling method of work roll in hot rolling - Google Patents

Cooling method of work roll in hot rolling

Info

Publication number
JPS59156506A
JPS59156506A JP18545183A JP18545183A JPS59156506A JP S59156506 A JPS59156506 A JP S59156506A JP 18545183 A JP18545183 A JP 18545183A JP 18545183 A JP18545183 A JP 18545183A JP S59156506 A JPS59156506 A JP S59156506A
Authority
JP
Japan
Prior art keywords
cooling
water
area
roll
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18545183A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamaguchi
喜弘 山口
Masakazu Nakao
中尾 正和
Koro Takatsuka
公郎 高塚
Shohei Murakami
昌平 村上
Yuji Koyama
佑二 児山
Kiyoshi Hirata
平田 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18545183A priority Critical patent/JPS59156506A/en
Publication of JPS59156506A publication Critical patent/JPS59156506A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To improve cooling efficiency and to reduce driving power for cooling water by increasing a cooling area in proportion to a pressure fluctuating ratio simultaneously with reducing the pressure of the cooling water to be sprayed to work rolls from a high to low pressure thereby maintaining specified cooling power. CONSTITUTION:Cooling water from a water storage source 6 is sprayed and supplied via plural spray nozzles 4a-d disposed on the inlet and outlet sides for a rolling material 10 and in a barrel direction to work rolls 1 of a rolling mill to cool said work rolls 1. A specified pressure P1 in a range of 8-30kg/cm<2> is reduced to a pressure P2 in a range of 1-7kg/cm<2> and at the same time a specified direct cooling area on the barrel surface of the rolls 1 is increased in proportion to the pressure fluctuating ratios of both pressures P1 and P2 and the flow of the cooling water is decreased in flow rate density at approximately a specified rate to maintain specified cooling power in the case of spraying said water under the pressure P1 in said direct cooling area and obtaining the specified cooling power.

Description

【発明の詳細な説明】 本発明は熱間圧延機で鋼板を圧延する際にワークロール
を効果的に冷却する圧延機の【1−ル冷却方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rolling mill cooling method for effectively cooling work rolls when rolling a steel plate in a hot rolling mill.

従来から、この種圧延ロールの冷却は、水などの冷却媒
体を高圧噴射ノズルで冷却すべきロールの表面にごく局
部的た噴射して行う、いわゆるヌプレ一方式のものが多
く用いられていたが、それらの冷却能を向上するために
は噴射圧を高くするとか、冷却水量を多くするとかなど
に重きがおかれておシ、いずれも高噴射圧で多量の冷却
媒体を必要とするにも拘らず圧延ロールの冷却効果が必
ずしも十分ではなく、圧延材の成形形状に影響を与え、
また圧延ロールに表面アレが生じてその寿命が短かくな
るなどの欠点があった。
Traditionally, this type of mill roll cooling has often been carried out by using a high-pressure spray nozzle to spray a cooling medium such as water very locally onto the surface of the roll to be cooled, which is the so-called Nupure one-way method. In order to improve their cooling performance, emphasis is placed on increasing the injection pressure and increasing the amount of cooling water, both of which require a high injection pressure and a large amount of cooling medium. However, the cooling effect of the rolling rolls is not always sufficient, which affects the formed shape of the rolled material.
Further, there were drawbacks such as surface roughness occurring on the rolling rolls and shortening their lifespan.

本発明は、上記従来例の欠点を除去すべく、比較的小さ
い駆動エネルギーで作動させた冷却媒体で直接冷却面積
を拡大することによりこの種圧延ロールを効果的に冷却
すると共に、その冷却媒体を案内する構造が簡略化でき
るロール冷却方法を新規に提供せんとするものである。
In order to eliminate the drawbacks of the above-mentioned conventional example, the present invention effectively cools this type of rolling roll by expanding the direct cooling area with a cooling medium operated with relatively small driving energy, and also uses the cooling medium. The present invention aims to provide a new roll cooling method that can simplify the guiding structure.

即ち、本発明のロール冷却方法は、熱間圧延における作
業ロールに該作業ロールの圧延材の入側及び出側で、か
つ、バレル方向に配置された複数のノズルによシ冷却水
を噴射供給せしめて冷却を行うものであって、各ノズル
の噴射圧P2を1〜7 Kg / aAにすると共に、
該各ノズルによる冷却面の水量密度W2が w2=(Pl /P2 )””X5X10’[J/””
”)(但しPl  は従来用いられているロール冷却水
の噴射圧であシP1 =8〜30Kg/i)の条件を満
足するようにし、かつ前記ノズルの冷却水による直接冷
却域が作業ロール胴表面の20%以上となるように広角
噴射せしめるとともに、冷却水量を単位圧延量肖J) 
2. jm3/jan・スタンドあるいはそれ以下とな
るように調整することを特徴とするものであり、さらに
好ましい実施態様としてはバックアップロールによりバ
ックアップされ一方向に回転しながら、圧延材を圧延す
る作業ロールの圧延材と接する領域の前後に上、工夫々
一対の水切板を設けて、該水切板で圧延材から隔離され
・だバックアップロール側のワークロールの表面部分に
多数のノズルで一定量の水を噴射させて冷却するものに
して、該各ノズルを広角噴射させて全ノズルより噴射水
を直接ワークローμに当てる直接冷却域を該ワークロー
ル胴表面の冷却域に対して20%以上にすると共に、該
各ノズルの直接冷却域がワークロールのバレル方向で連
続になるようにし、さらに全ノズルで噴射する水量密度
を上記直接冷却域の全面積の増加とともに減少させて全
水量を大略一定量(単位圧延量肖り2.5m3/lon
・スタンド)あるいはそれ以下に保持すると共に、圧延
材出側の水切板からバックアップロールまでの冷却領域
の噴射水量を反対側の圧延材入側のバックアップロール
から水切板までの冷却領域の噴射水量より大きく、ある
いは等しくなる。
That is, the roll cooling method of the present invention includes jetting and supplying cooling water to a work roll during hot rolling through a plurality of nozzles arranged in the barrel direction on the inlet and outlet sides of the rolled material of the work roll. At least cooling is performed, and the injection pressure P2 of each nozzle is set to 1 to 7 Kg/aA,
The water density W2 on the cooling surface by each nozzle is w2=(Pl/P2)""X5X10'[J/""
(However, Pl is the injection pressure of conventionally used roll cooling water. P1 = 8 to 30 kg/i), and the direct cooling area by the cooling water of the nozzle is the work roll cylinder. A wide-angle jet is applied so that it covers more than 20% of the surface, and the amount of cooling water is reduced per unit rolling amount.
2. jm3/jan stand or less, and in a more preferred embodiment, the work roll is backed up by a backup roll and rotates in one direction, rolling the rolled material. A pair of drain plates are strategically installed above and behind the area that comes into contact with the rolled material, and a fixed amount of water is sprayed from multiple nozzles onto the surface of the work roll on the back-up roll side, which is isolated from the rolled material by the drain plates. Each nozzle is used to spray water at a wide angle so that the direct cooling area in which water is directly applied to the work roll μ from all nozzles is 20% or more of the cooling area on the surface of the work roll body, and The direct cooling area of each nozzle is made continuous in the direction of the barrel of the work roll, and the density of the amount of water injected by all nozzles is decreased as the total area of the direct cooling area increases, so that the total water amount is approximately constant (per unit rolling Weight: 2.5m3/lon
・At the same time, the amount of water jetted in the cooling area from the drain plate on the exit side of the rolled material to the backup roll is lower than the amount of water jetted in the cooling area from the backup roll to the drain plate on the input side of the rolled material on the opposite side. Become greater or equal.

ようにしたことを特徴とするもので、このような本発明
の熱間圧延における作業ロール冷却方法によって、圧延
ロールの良好な冷却効果と、圧延材の正常な圧延効果を
期待し得るものである。
By the work roll cooling method in hot rolling of the present invention, a good cooling effect of the rolling rolls and a normal rolling effect of the rolled material can be expected. .

以下、本発明を図面に示す実施例について詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

第1図において、1は周知の駆動機構で一方向に回転さ
れるワークロール、2は該ワークロール1をバックアッ
プするバックアップロール、3a。
In FIG. 1, 1 is a work roll rotated in one direction by a known drive mechanism, 2 is a backup roll that backs up the work roll 1, and 3a.

3bは上記ワークロー/l/1の左右両側の各表面を仕
切るようにその外周面に接近して設けた一対の水切板、
4a、4b、4C24dは上記ワークロー 1V lの
冷却すべき表面に噴射口を向けてワークロー/L/10
周辺に設けた複数個の噴射水ノズル、5は該各ノズルに
貯水源6の水を圧送するポンプである。従来周知の如く
上下一対のワークロール1の間に圧延材10を挾み込ん
で一定の厚さに圧延する。今ワークロール1の外周面を
第2図に示す如く360°に展開してみると、圧延材1
0と最初A点で接触してB点で圧延材10から離れての
ち0点で圧延材出側の水切板3と対面し、該水切板3a
の工方で、バックアップロール2と接触するまでの0点
からD点に至る間で、噴射水ノズル4a、4bからの噴
射水で冷却され、その後り点からF点までバックアップ
ロール2と接触してのち、今一方の圧延利入側の水切板
3bと対面する迄のE点からF点に至る間で、噴射水ノ
ズノν4Cからの噴射水で冷却され、水切板を出てから
再びA点に戻って圧延材10と接触するようになる。
3b is a pair of draining plates provided close to the outer peripheral surface of the work row /l/1 so as to partition each of the left and right surfaces of the work row/l/1;
4a, 4b, 4C24d are the above-mentioned work rows.
A plurality of water injection nozzles 5 provided around the periphery are pumps that pump water from a water storage source 6 to each nozzle. As is conventionally known, a rolling material 10 is sandwiched between a pair of upper and lower work rolls 1 and rolled to a constant thickness. Now, when the outer peripheral surface of the work roll 1 is expanded at 360° as shown in Fig. 2, the rolled material 1
0 first at point A, then separated from the rolled material 10 at point B, and then faces the draining plate 3 on the rolled material exit side at point 0, and the draining plate 3a
In this method, from point 0 to point D before coming into contact with the backup roll 2, it is cooled by the jet water from the jet water nozzles 4a and 4b, and then it comes into contact with the backup roll 2 from the point after that to the point F. After that, from point E to point F until it faces the drain plate 3b on the rolling gain side, it is cooled by the jet water from the jet water nozzle ν4C, and after leaving the drain plate, it returns to point A. It returns to contact with the rolled material 10.

このような−円周の間でワークロール1の各表面温度は
第2図に示す如く圧延材の加工部(A、B点)では60
0°C程度近くまで上昇するが、圧延材から離れると、
表面の熱はロール内部に吸収され、圧延材出側の水切板
のところ(0点)では、200°C以下に下がシ、圧延
材入側の水切板のところ(F点)では100°C以下に
下がっていることがわかる。したがって、このような圧
延ロールの冷却については、表面温度が200°C以下
の冷却性について検討すればよいことになる。
As shown in Fig. 2, the temperature of each surface of the work roll 1 between the circumferences is 60°C at the processed part of the rolled material (points A and B).
The temperature rises to nearly 0°C, but when it leaves the rolled material,
The heat on the surface is absorbed inside the roll, and the temperature drops below 200°C at the drain plate on the exit side of the rolled material (point 0), and 100°C at the drain plate on the input side of the rolled material (point F). It can be seen that it has fallen below C. Therefore, regarding cooling of such a rolling roll, it is sufficient to consider the cooling performance when the surface temperature is 200° C. or less.

第1図の如き圧延機で、ワークロール1の表面温度15
0°Cに対する冷却水の冷却能を示すものとして、第3
図に示す如く、横軸に冷却水の流量密度W(単位面積当
シ、単位時間当りに衝突する冷却水量)と縦軸に熱流束
9(単位面積当シ、単位時間尭シに奪取する冷却熱量)
の関係をみると両対数グラフにおいて大略−次関数、す
なわち傾斜した直線になる。なお、薄い加熱された鋼板
が静止水中を高速で短時間通過するときの冷却能(へお
よび浸漬冷却時の冷却能(ハ)は、流量密度が定義でき
ないため、第3図では横軸に平行な線で示している。
In a rolling mill as shown in Fig. 1, the surface temperature of the work roll 1 is 15.
The third figure shows the cooling ability of cooling water at 0°C.
As shown in the figure, the horizontal axis shows the cooling water flow rate density W (the amount of cooling water colliding per unit area, per unit time), and the vertical axis shows the heat flux 9 (the amount of cooling water taken per unit area, unit time). amount of heat)
Looking at the relationship, it becomes approximately a -order function in a log-logarithmic graph, that is, a sloping straight line. Note that the cooling capacity when a thin heated steel plate passes through still water at high speed for a short time (C) and the cooling capacity (C) during immersion cooling are expressed parallel to the horizontal axis in Figure 3 because the flow rate density cannot be defined. It is indicated by a line.

第3図よシ明らかなように、冷却能即ち冷却熱流束Q 
(Kcal 7’m hr )と流量密度w (17f
n mtn )の関係はその直線の傾斜角度からみてq
父WO,49,6で大略Qcst wo・5で表わされ
ることがわかる。本発明者等はこの結果よシ考察しで、
′使用冷却水が同じ場合、流量密度を少なくし、冷却水
噴流が直接衝突する冷却領域(直接冷却域と名づける)
の面積を増大させることによって効果的な冷却が可能で
ある。という本発明の基本概念の一つを発見した。すな
わち、従来法の冷却能向上のだめの努力は、噴射圧を高
くするとか、冷却水量を多くするとかなどに重きがおか
れていて、直接冷却面積(後述)に対する考慮は払われ
ていなかったが、本発明者等は、従来、考慮されていな
かった直接冷却面積に注目したのである。
As is clear from Figure 3, the cooling capacity, that is, the cooling heat flux Q
(Kcal 7'm hr) and flow density w (17f
n mtn ) is expressed by q from the angle of inclination of the straight line.
It can be seen that the father WO, 49, 6 is approximately expressed as Qcst wo・5. The inventors considered this result and
'If the same amount of cooling water is used, the flow density is reduced and the cooling area where the cooling water jets directly collide (named the direct cooling area)
Effective cooling is possible by increasing the area of . We have discovered one of the basic concepts of the present invention. In other words, efforts to improve the cooling capacity of conventional methods have focused on increasing the injection pressure or increasing the amount of cooling water, but have not taken into consideration the direct cooling area (described later). , the present inventors focused on the direct cooling area, which had not been considered in the past.

例えば、使用冷却水量が一定である場合に流量密度Wを
半分にして直接冷却面積を2倍にした場合を考えると、
流量密度Wが半分となるため冷却能は(1ゾ5= 0.
71、すなわち約29%低下するが、直接冷却面積が2
倍になるので、ロール表面の直接冷却域を通過する時間
が2倍となシ、し〜1.41、すなわち約41%の増加
となるので冷却能が約41%向上することになる。
For example, consider the case where the flow rate density W is halved and the direct cooling area is doubled when the amount of cooling water used is constant.
Since the flow rate density W is halved, the cooling capacity is (1 zo 5 = 0.
71, or about 29%, but the direct cooling area is 2
Since the time to pass through the direct cooling zone on the roll surface is doubled, the amount increases by ~1.41, that is, about 41%, so the cooling capacity improves by about 41%.

ロールの直接冷却面は、ロールの軸方向における展開を
みると、第4図(a)に示す如くロールの軸方向にロー
ルの冷却面と対応して一列横隊に設けた噴射水ノズルか
らの冷却水で冷却される面を指すが、サーマルクラウン
の関係から中央部を多く冷却するようにロールの中央で
冷却能力が高くロールの両端部で冷却能力が低いように
しておシ、かつ、大略ロールの軸方向でみて一定距離毎
にブロック別に特定の区域として分割され、該各分割区
域内では大略同一の直接冷却面として大略同一の冷却効
果が得られるものとしてとらえることが出来る。まだ、
このロールの直接冷却面を、ロールの円周方向における
展開でみると、第4図の)に示す如く、ロールの中央で
ロールの冷却面に対応して設けた特定の例えば1個の噴
射水ノズルからの冷却水で冷却される面を指すが、その
冷却水の分布はスプレーの中央で最も高く、スプレーパ
ターンの両側側部で冷却能力が低くなシ、従って冷却能
としては、特に中央区域における冷却能を効果的に用い
る必要がある。
Looking at the development in the axial direction of the roll, the direct cooling surface of the roll is the cooling from water jet nozzles provided in a row in the axial direction of the roll, corresponding to the cooling surface of the roll, as shown in Figure 4 (a). This refers to the surface that is cooled by water, but due to the thermal crown, the cooling capacity is high in the center of the roll and the cooling capacity is low at both ends of the roll, so that the central part is cooled more. When viewed in the axial direction, each block is divided into specific areas at fixed distances, and each divided area can be regarded as having approximately the same direct cooling surface and providing approximately the same cooling effect. still,
If we look at the direct cooling surface of the roll in the circumferential direction of the roll, as shown in Fig. This refers to the surface that is cooled by the cooling water from the nozzle.The distribution of the cooling water is highest in the center of the spray, and the cooling capacity is lower on both sides of the spray pattern.Therefore, the cooling capacity is particularly low in the central area. It is necessary to use the cooling capacity effectively.

なお、実際のロール表面は、直接冷却域以外の領域でも
、一旦直接冷却域に衝突した噴流状冷却水の反射あるい
は沿い流れによシ冷却される。この間接冷却域での冷却
水の挙゛動は不明であるが、発明者等はこの領域での冷
却能を推定するために、150°Cに加熱された薄い(
厚さ2闘)鋼板を、高速(5〜10m/5ec)で短時
間(80m5ec )静止水中を通過させる実験を行な
った結果、その冷却能は、約4 X 10’ Kcal
/rn2hrテあることカワかった。また従来の冷却法
はワークロールにおける直接冷却戦がその全冷却表面積
の10%程度であり、そこでの流量密度は4〜5 X’
fO’J、A+2m1n(第3図より9に2.8 X 
107Kcal /fn2hr )程度である。今、こ
の種ワークロールにおける直接冷域の冷却能の推定に第
3図の冷却能Qと流量密度Wの関係を用い、冷却水量を
ム定として、直接冷却面積を変化させた時の平均冷却能
(Kcal/lr1.hr)は直接冷却域を増大させる
ことによシ1.冷却能は著しく増大するこ゛とが分る。
Note that the actual roll surface is cooled even in areas other than the direct cooling area by reflection or parallel flow of jet-like cooling water that once collides with the direct cooling area. Although the behavior of the cooling water in this indirect cooling region is unknown, the inventors investigated the cooling water behavior in this indirect cooling region in order to estimate the cooling capacity in this region.
As a result of an experiment in which a steel plate (thickness 2 mm) was passed through still water at high speed (5 to 10 m/5 ec) for a short time (80 m 5 ec), the cooling capacity was approximately 4 x 10' Kcal.
/rn2hr It was cute to have te. In addition, in the conventional cooling method, the direct cooling force on the work roll accounts for about 10% of the total cooling surface area, and the flow density there is 4 to 5 X'
fO'J, A+2m1n (2.8
107Kcal/fn2hr). Now, to estimate the cooling capacity of the direct cooling area of this type of work roll, we will use the relationship between the cooling capacity Q and the flow rate density W shown in Figure 3, and the average cooling when changing the direct cooling area with the cooling water amount as constant. The capacity (Kcal/lr1.hr) can be increased by directly increasing the cooling area. It can be seen that the cooling capacity is significantly increased.

すなわち、従来の冷却法での平均冷却能が4’X10 
 Xo、9+2.8X10  Xo、1〜6.4X 1
0  Kca17tn hr  あるいは10  Xo
、9+2.8X10  Xo、1=3.7X106Kc
a17tn hr程度であるのに対し、本発明では(0
,5= (8,3〜’6.9 ) X 10  Kca
l/rn hr (直接冷却面積を50%とした場合)
と推定され、本発明の方法による冷却能が大きいことが
わかる。
In other words, the average cooling capacity in the conventional cooling method is 4'X10
Xo, 9+2.8X10 Xo, 1~6.4X 1
0 Kca17tn hr or 10 Xo
, 9+2.8X10Xo, 1=3.7X106Kc
a17tn hr, whereas in the present invention, (0
,5=(8,3~'6.9)X10Kca
l/rn hr (when direct cooling area is 50%)
It is estimated that the cooling capacity of the method of the present invention is large.

本発明者等は、さらに本発明の効果を確かめるだめに、
ノズルの噴流パターン(直接冷却域の面積)のみを変化
させて冷却板の冷却効果を測る実験を行なった。
In order to further confirm the effects of the present invention, the present inventors
We conducted an experiment to measure the cooling effect of the cooling plate by changing only the nozzle jet pattern (the area of the direct cooling area).

すなわち、第5図(a)の如く一定速度で通過する冷却
板の表面にフルコーンノズルとフラ゛ントスプレーノズ
ルで冷却水を噴射して、夫々の冷却板の温度変化を求め
た。それらの実験条件は、冷却板:5N#It×80朋
 X500  、材質:純銅、冷却板通過速度;3m/
sec、噴射圧: 3 Kg /c1A、冷却水量(試
験片の巾80順に供給される水量):271 /min
 、ノズルと冷却板の距離:90”+冷却開始温度:1
80°Cである。
That is, as shown in FIG. 5(a), cooling water was injected onto the surface of the cooling plate passing at a constant speed using a full cone nozzle and a flight spray nozzle, and the temperature change of each cooling plate was determined. The experimental conditions were: cooling plate: 5N#It x 80 x 500, material: pure copper, cooling plate passing speed: 3m/
sec, injection pressure: 3 Kg/c1A, amount of cooling water (amount of water supplied in order of width 80 of the test piece): 271/min
, Distance between nozzle and cooling plate: 90” + Cooling start temperature: 1
It is 80°C.

上記の条件で冷却実験を行なった結果、第5図(a)の
直接冷却面積の大きい場合(フルコーンノズルを使用し
た場合)には、試験片の温度が30,4°C低下しだの
に対して、第5図中)の直接冷却面積の小さい場合(フ
ラットスプレーノカレを使用した場合)には14.7°
Cしか低下しなかった。したがってこの実験結果からも
、直接冷却面積の増大させることによシ冷却能が大きく
なること力f確君忍された。
As a result of conducting a cooling experiment under the above conditions, the temperature of the specimen decreased by 30.4°C when the direct cooling area was large (when a full cone nozzle was used) as shown in Figure 5(a). In contrast, when the direct cooling area is small (in Figure 5) (when using a flat spray nozzle), it is 14.7°.
Only C decreased. Therefore, from this experimental result, it was confirmed that the cooling capacity could be increased by increasing the direct cooling area.

同様な実験を冷却水量、噴射圧を変化させて行なった。Similar experiments were conducted by varying the amount of cooling water and injection pressure.

、また各々の直接冷却面積より直接冷却域の流量密度を
求めた。実−の結果、間接冷却域の冷却能は1Q5Kc
al/rn2hrであることがわかった。直接冷却域の
冷却能の結果を第6図と第7図、第9図に示す。第6図
は冷却板の冷却表面温度が180°Cで、第7図は冷却
板の冷却表面温度が90°Cの場合であシ、夫々の冷却
水の噴射圧を8Kg/crAとして、冷却水流量密度w
 (J/m2−m1n)と熱流束q (Kcal’、A
+2−hr)の関係をみると、両図とも両対数グラフに
おいて直線関係になって、第6図は9→7×105W0
・4となシ、第7図はq# 5.8 X 10’ Wo
・6 となる。、したがでてこれらの図からも直接冷却
域を増大すると冷却能が著しく向上することが分る。
In addition, the flow density of the direct cooling area was determined from each direct cooling area. As a result, the cooling capacity of the indirect cooling area is 1Q5Kc
It was found that al/rn2hr. The results of the cooling capacity of the direct cooling area are shown in Figures 6, 7, and 9. Figure 6 shows the case where the cooling surface temperature of the cooling plate is 180°C, and Figure 7 shows the case where the cooling surface temperature of the cooling plate is 90°C. Water flow density w
(J/m2-m1n) and heat flux q (Kcal', A
Looking at the relationship between
・4, Figure 7 is q# 5.8 X 10' Wo
・It becomes 6. , but these figures also show that increasing the direct cooling area significantly improves the cooling capacity.

第6図および第7図の関係よシ高温面(180’C)の
方が低温面(90°C)よシ冷却能の絶対値が大きいこ
とから圧延材出側の水切板からバックアップロールまで
の冷却領域の噴射水量を反対側の圧延材入側のバックア
ップロールから水切板までの冷却領域の噴射水量より大
きくなるようにすることが好ましい。
According to the relationship between Figures 6 and 7, the absolute value of the cooling capacity is greater on the high temperature side (180'C) than on the low temperature side (90°C), so from the drain plate on the outlet side of the rolled material to the backup roll. It is preferable that the amount of water injected into the cooling area is set to be larger than the amount of water injected into the cooling area from the backup roll on the opposite side where the rolled material enters to the drain plate.

本発明でいう、直接冷却域と−は、第11図のスプレー
ノズルから噴射して冷却水がロールの表面上に衝突する
場合に冷却水密度曲線でみて、中央て噴射冷却水が拡が
る領域を指すもので、第12図に示す如く、従来の方式
では、その直接冷却域が狭いためにワークロールのバレ
ル方向でみて直接冷却域が非連続で、直接冷却域に入ら
ない所が多数生じるために直接冷却面積が小さくなシワ
−クロールを効率よく冷却できない欠点があったが、本
発明の方式によれば、第13図、第14図、第15図お
よび第16図に示す如くスプレーノズルよシワ−クロー
ルの表面に噴射される冷却水の直接冷却域が拡大される
ためにワークロールの冷却がよシ良好な冷却効果を上げ
得るものである。また、このような直接冷却域は圧延材
の出側で水切板を経て冷却域に入る側においてより大き
な冷却を行うようにすると、よシ効果的な冷却を行なう
ことができるものであシ、いいかえると圧延材の入側て
水切板を出る前での冷却域において多量の冷却水を用い
ても、余り良好な冷却効果を得ることができないもので
ある。
In the present invention, the direct cooling area refers to the area where the injected cooling water spreads out at the center when viewed from the cooling water density curve when the cooling water is injected from the spray nozzle in Fig. 11 and collides with the surface of the roll. As shown in Figure 12, in the conventional method, the direct cooling area is narrow, so the direct cooling area is discontinuous when viewed from the barrel direction of the work roll, and there are many places that do not fall into the direct cooling area. However, according to the method of the present invention, as shown in Figs. Since the direct cooling area of the cooling water sprayed onto the surface of the wrinkled roll is expanded, the work roll can be cooled with a better cooling effect. In addition, in such a direct cooling zone, more effective cooling can be achieved by performing greater cooling on the side where the rolled material enters the cooling zone via a drain plate on the outlet side. In other words, even if a large amount of cooling water is used in the cooling area between the entrance side of the rolled material and before exiting the drain plate, a very good cooling effect cannot be obtained.

この種圧延ロールの冷却で直接冷却域は広い程、その冷
却効果が増大するが、゛その十分な平均冷却能を得るに
は、その直接冷却域を該ワ°−クロール胴表面の冷却域
に対して20%以上にすることが好ましい。すなわち、
ワークロールの間接冷却域の冷却能をI Q5Kcal
/rrI2−hrの一定にして、その直接冷却面積の冷
却域全域に対する比率(%)と平均冷却能(Kcal、
ztn2・hr)の関係は、圧延機出側(高温側)を対
象として第8図に示す如くなる。
The wider the direct cooling area for cooling this type of roll, the greater the cooling effect.However, in order to obtain a sufficient average cooling capacity, the direct cooling area must be placed in the cooling area of the surface of the work roll body. It is preferable to make it 20% or more. That is,
The cooling capacity of the indirect cooling area of the work roll is IQ5Kcal.
/rrI2-hr constant, the ratio (%) of the direct cooling area to the entire cooling area and the average cooling capacity (Kcal,
ztn2·hr) is as shown in FIG. 8 for the rolling mill outlet side (high temperature side).

第8図において、実線は冷却水の噴射圧が8h/−で冷
却水流量密度4 Q l/m1n−cviの場合、点線
は冷却水の噴射圧が8KiI/crAで冷却水流量密度
201/kn i n−鋸の場合、一点鎖線は冷却水の
噴射圧が8Kg/−で冷却密度I Q l /fnin
−cmの場合、二点鎖線は冷却水の噴射圧が16h/−
で冷却密度401/m i n−αの場合を夫々示すが
、いずれの場合もその直接冷却面積が20%以上を越え
ると、平均冷却能が飛躍的に増大することが分る。たと
えば従来法の直接冷却域の全冷却域に対する割合は10
%程度であるが、本発明の如くこれを20%以上に拡大
するとその平均冷却能は大略35%上昇することが分る
。また、たとえば間接冷却域を4×l Q6Kcal/
fn2hr (間接冷却域の冷却能の上限値)とした場
合の推定であるが、この場合でも、直接冷却域を増大さ
せることによシ、冷却能は前述の結果よシ30%(8,
3X106/6.4X106 =1.30)上昇するこ
とがわかる。さらに冷却能Qと冷却密度(流量)Wとは
大略Q Qlw  の関係にあるため、直接冷却面積を
増大させることによシ、冷却能を変化させることなく、
冷却水量をたとえば、直接冷却面積を10%から20%
に上昇した場合に冷却密度Wは近似的に(1/1..3
5 )2−0.549となって45.1%減少させるこ
とができる。
In Fig. 8, the solid line indicates a cooling water injection pressure of 8 h/- and a cooling water flow rate density of 4 Q l/m1n-cvi, and the dotted line indicates a cooling water injection pressure of 8 KiI/crA and a cooling water flow rate density of 201/kn. In the case of an i n-saw, the dashed line indicates the cooling water injection pressure of 8 kg/- and the cooling density I Q l /fnin
-cm, the two-dot chain line indicates the cooling water injection pressure of 16h/-
The cases where the cooling density is 401/min-α are shown respectively, and it can be seen that in each case, when the direct cooling area exceeds 20% or more, the average cooling capacity increases dramatically. For example, the ratio of the direct cooling area to the total cooling area in the conventional method is 10
%, but if this is expanded to 20% or more as in the present invention, it can be seen that the average cooling capacity increases by approximately 35%. Also, for example, if the indirect cooling area is 4×l Q6Kcal/
This is an estimate assuming fn2hr (the upper limit of the cooling capacity of the indirect cooling area), but even in this case, by increasing the direct cooling area, the cooling capacity will be reduced by 30% (8,
3X106/6.4X106 = 1.30). Furthermore, since the cooling capacity Q and the cooling density (flow rate) W are approximately in the relationship QQlw, by directly increasing the cooling area, the cooling capacity can be improved without changing the cooling capacity.
For example, increase the amount of cooling water by 10% to 20% of the direct cooling area.
When the cooling density W increases to approximately (1/1..3
5) 2-0.549, which can be reduced by 45.1%.

このような直接冷却域における冷却能の関係を噴射圧P
でみると、その噴射圧P(Kg/i)と熱流束q (K
ca17tn2−hr)の関係は、冷却水流量密度Wを
下室にした場合(ここてはW−101/m2・m1n)
 、第9図に示すように両対数グラフ上で一定角度で傾
斜また直線状になる。第9図で、実線は冷却面温度が1
80°Cの場合でq ’= 2.2 Xl 07 Po
・174の関係になシ1.嫁線は冷却面温度が90°C
の場合で9″=f9×10 P の関係になシ、大略q
 cc po・2とみなすと、前記した如く冷却能Qは
流量密度WとQQCwo・4″“6の関係にあるため、
冷却水のワークロールに対する冷却効果、すなわち冷却
能は噴射圧への依存性よりも水量密度へ、の依存性が大
きいことがわかる。この結果より、冷却水の噴射圧を大
巾に低くしても冷却水量をやや多くすれば、冷却能を低
下させることなく、所定の冷却効果を得ることができ、
しだがって冷却水を噴射させる駆動動力を低下させて省
力化を計ることが可能である。噴射圧の低圧下の関係を
みるたメニ、QocP” wo・5オヨU WcX:P
 W I) 関係を用いる。但しQは冷却能、Pは噴射
圧、Wは流量密度、Wは消費電力である。従来用いられ
ているロール冷却水の噴射圧をPl 、流量密度をWl
  とし、このときの冷却能を91、消費電力をWlと
する。
The relationship between the cooling capacity in such a direct cooling region is expressed as the injection pressure P
Then, the injection pressure P (Kg/i) and heat flux q (K
ca17tn2-hr) is the relationship when the cooling water flow rate density W is set to the lower chamber (here W-101/m2・m1n)
, as shown in FIG. 9, becomes sloped or linear at a constant angle on the logarithmic graph. In Figure 9, the solid line indicates that the cooling surface temperature is 1.
At 80°C, q' = 2.2 Xl 07 Po
・174 relationships 1. The cooling surface temperature of the bride line is 90°C.
In the case of 9″=f9×10 P, approximately q
If considered as cc po・2, as mentioned above, the cooling capacity Q has a relationship with the flow rate density W of QQCwo・4″″6,
It can be seen that the cooling effect of the cooling water on the work rolls, that is, the cooling capacity, is more dependent on the water volume density than on the injection pressure. From this result, even if the injection pressure of the cooling water is significantly lowered, by slightly increasing the amount of cooling water, it is possible to obtain the desired cooling effect without reducing the cooling capacity.
Therefore, it is possible to save labor by reducing the driving power for injecting the cooling water. Looking at the relationship between low injection pressure and QocP” wo・5OyoU WcX:P
W I) Use relationships. However, Q is the cooling capacity, P is the injection pressure, W is the flow rate density, and W is the power consumption. The injection pressure of conventionally used roll cooling water is Pl, and the flow rate density is Wl.
The cooling capacity at this time is 91, and the power consumption is Wl.

また噴射圧をP2に下げた時の流量密度をW2、冷却能
を92、消費電力をW2とする。Q1=Q2とした場合
はPl   wl   =P2   w2   よシ冷
却能をやや向上させるために1ν2 = (Pi/P2
)”6W1・・・・・・(3)とすればW2−(P2 
/P1 )0・4 Wl・・・・・・(4) Q2− 
(P2 /P1 )0・2 (W2/町)0・5 Ql
・・・・・・(5)となる。
Further, when the injection pressure is lowered to P2, the flow rate density is W2, the cooling capacity is 92, and the power consumption is W2. When Q1=Q2, Pl wl =P2 w2 In order to improve the cooling capacity slightly, 1ν2 = (Pi/P2
)”6W1・・・・・・(3), then W2−(P2
/P1)0・4 Wl・・・・・・(4) Q2-
(P2 /P1) 0.2 (W2/Town) 0.5 Ql
......(5).

これらの関係を第10図に示す。第10図の(])。These relationships are shown in FIG. (]) in Figure 10.

(2) 、 (3) 、 (4)の各曲線は、上記各式
の(1) 、 (2) 、 (3) 。
The curves (2), (3), and (4) correspond to (1), (2), and (3) in each of the above equations.

(4)に相当し、かつ上方の(5)の曲線はQ2/Ql
の比を示す。Pl 7P2の増加に伴ないW2 /W 
1はほぼ直線的に増加するが、必要動力の低下率はPl
  /P2≦4では非常に大きく、P1/P2と4では
、段々と少なくなっていることがわかる。具体例として
たとえば、Pl = 15 Kg/ Cm−+P2 =
 41(g 10.4〜0.6 個とすればw2 =(15/4)    Xwl  =
(〜2.21)0・” Q1=Q、〜1.14 Ql 
、 W2 =(−L−)5 0°6″−’Wl = (0,45〜0゜59)Wl 
 となる。したがって、噴射圧を15Kg/ctAから
4Kg/ltAに低下させ、冷却水量を1.7〜2.2
倍に増加させることによシ、冷却能は現状もしくは14
%向上させることができる一方、消費電力は55〜41
%減少させることができる。第10図よシ、いたずらに
冷却水量を増加・させ゛ることなく、必要動力の低減を
図るにはPi/P2=2〜7程度が望ましい。
Corresponding to (4), the upper curve (5) is Q2/Ql
shows the ratio of As Pl 7P2 increases, W2 /W
1 increases almost linearly, but the rate of decrease in required power is Pl
It can be seen that when /P2≦4, it is very large, and when P1/P2 and 4, it gradually decreases. As a specific example, Pl = 15 Kg/ Cm-+P2 =
41 (g 10.4 to 0.6 pieces, w2 = (15/4) Xwl =
(~2.21)0・” Q1=Q, ~1.14 Ql
, W2 = (-L-)5 0°6''-'Wl = (0,45~0°59)Wl
becomes. Therefore, the injection pressure was reduced from 15Kg/ctA to 4Kg/ltA, and the amount of cooling water was reduced from 1.7 to 2.2Kg/ltA.
By doubling the cooling capacity, the current cooling capacity or 14
%, while power consumption is 55-41%
% can be reduced. As shown in FIG. 10, in order to reduce the required power without unnecessarily increasing the amount of cooling water, Pi/P2 is preferably about 2 to 7.

従来の熱間圧延機のロール冷却水の噴射圧は10Kg 
/ CJA程度あるいはそれ以上であることを考えると
効果的な噴射圧としては、1〜7Kg/eraである。
The injection pressure of roll cooling water in a conventional hot rolling mill is 10 kg.
/CJA or more, the effective injection pressure is 1 to 7 kg/era.

なお、IKg/ctA以下では、冷却水量がかなシ多く
必要になシ、そのために、配管系、ポンプ、ピット、冷
却塔などの増設費用などが多大になる。
Note that below IKg/ctA, a large amount of cooling water is required, which increases the cost of adding piping systems, pumps, pits, cooling towers, etc.

また、ポンプリロール冷却→ピッ、ト→ポンプ→冷却塔
→ポンプを循環して冷却水は使用されるが、たとえば冷
却塔への送給圧としてIKg/−以上が必要があるため
、全体の必要動力は、ロール冷却のだめの噴射圧を極端
べ小さくしても少なくならないことが考えられる。
In addition, cooling water is used by circulating pump reroll cooling → pit → pump → cooling tower → pump, but for example, the feeding pressure to the cooling tower needs to be at least IKg/-, It is conceivable that the power does not decrease even if the injection pressure of the roll cooling reservoir is extremely reduced.

なお、第6図、第7図および第9図を合せて考えてみる
と、同じ冷却水量でも高温冷却面での冷却能がはるかに
大きいことがわかり、高温冷却面で多量の冷却水を用い
る方がより効果的なことがわかる。
Furthermore, if we consider Figures 6, 7, and 9 together, we can see that even with the same amount of cooling water, the cooling capacity on the high-temperature cooling surface is much greater. It turns out that it is more effective.

上記実施例に詳記した如く、本発明にかかる圧延機のロ
ール冷却方法はバックアップロールによシバツクアップ
され一方向に回転しながら、熱間の鋼板を圧延するワー
クロールの圧延材と接する領域の前後に一対の水切板を
設けて、該水切板で圧延材から隔離されたバックアップ
ロール側のワークロールの表面部分に対向して多数のノ
ズルで冷却水を噴射させて冷却するものにして、該各ノ
ズルを広角噴射させて全ノズルよシ噴剤水を直接ワーク
ロールに尚てる直接冷却域を該ワークロール胴表面の冷
却域に対して20%以上にすると共に、該各ノズルの直
接冷却域がワークロールのバレル方向で連続して大略均
一になるようにし、かつ各ノズルの噴射圧を1〜7Kg
/−にすると共に該各ノズルの噴射水量釜w2−(P1
/P2)0・29.8×W1(但し、噴射圧P1.P2
の時の噴射水量を夫々w1.w2 とする)を満すよう
にし、さらに全ノズルで噴射する水量を上記直接冷却域
の全面積の増大とともに流量密度を減少させて、全水量
を大略一定量(単位圧延量当り2.5 m”/ ton
・スタンド)あるいはそれ以下に保持すると共に、圧延
材出側の水切板か゛らバックアップロールまての冷却領
域の噴射水量を反対側の圧延材入側のバックアップロー
ルから水切板までの冷却領域の噴射水量よシ大きく、あ
るいは等しくなるようにしたことを特徴とするもので、
ロール冷却面に分散させて可能な限シ冷却面全面に冷却
媒体噴流を衝突させて、冷却する方法であるから、従来
法のように冷却面に局所的に衝突させるのではなく、均
一に分散させる方法であり、まだロール冷却面の高温部
によシ多量の冷却媒体を用いる方法であり、より表面温
度の高い圧延材出側ロール表面の方に多量に冷却媒体を
用い、また、各ロール面を冷却させる場合、より高温の
ロール面に多量の冷却媒体が衝突するように、分布をも
だせて分散させるようにし、さらに圧延材出側のロール
面では水切板近くの面に多量の冷却媒体が衝突するよう
にし、入側のロール面では、バックアップロール近傍の
面に多量の冷却媒体が衝突するようにし、さらにまだ冷
却水の噴射圧を低くし冷却水量をやや多くして、冷却水
噴射用動力を低下させるものでアシ、したがって圧延機
のロールの冷却を効率よく行なうことが出来る上にロー
ル冷却水供給に必要な電力費の低減を図ることができ、
その結果ロールのサーマルクラウンを低減し、製品の形
状改善を図ると共にロール肌あれの防止をしてロールの
寿命を延し得る利点を有するものである。
As described in detail in the above embodiments, the roll cooling method for a rolling mill according to the present invention involves rolling a hot steel plate at the front and rear of the work roll in contact with the rolled material while the work roll is backed up by a backup roll and rotates in one direction. A pair of drain plates are provided in the plate, and a number of nozzles are used to cool the surface of the work roll on the backup roll side isolated from the rolled material by spraying cooling water to the surface of the work roll. The direct cooling area in which the nozzles are sprayed at a wide angle to direct the propellant water onto the work roll is made to be 20% or more of the cooling area on the surface of the work roll body, and the direct cooling area of each nozzle is The injection pressure of each nozzle should be kept approximately uniform continuously in the barrel direction of the work roll, and the injection pressure should be 1 to 7 kg.
/- and the water injection volume pot w2-(P1
/P2) 0.29.8×W1 (However, injection pressure P1.P2
The amount of water injected at the time of w1. w2), and the amount of water injected by all nozzles is increased by increasing the total area of the direct cooling zone and decreasing the flow rate density, so that the total water amount is approximately constant (2.5 m per unit rolling amount). ” / ton
・In addition to maintaining the amount of water jetted in the cooling area from the drain plate on the outlet side of the rolled material to the backup roll to the cooling area from the backup roll to the drain plate on the input side of the rolled material on the opposite side. It is characterized by being larger or equal,
This is a method of cooling by dispersing the coolant onto the roll cooling surface and colliding the cooling medium jets over the entire surface of the cooling surface to the extent possible, so instead of colliding locally with the cooling surface as in the conventional method, it is uniformly distributed. This method uses a large amount of cooling medium on the hot part of the roll cooling surface, and uses a large amount of cooling medium on the surface of the rolled material exit roll where the surface temperature is higher. When cooling the surface, the distribution should be improved so that a large amount of cooling medium collides with the higher temperature roll surface, and the cooling medium should be distributed evenly. Furthermore, on the roll surface on the exit side of the rolled material, a large amount of cooling medium should be cooled on the surface near the drain plate. A large amount of the cooling medium collides with the surface near the backup roll on the entry side roll surface, and the cooling water injection pressure is lowered and the amount of cooling water is slightly increased. It reduces the power for injection, so it is possible to efficiently cool the reeds and therefore the rolls of the rolling mill, and it is possible to reduce the electricity cost required for supplying roll cooling water.
As a result, it has the advantage of reducing the thermal crown of the roll, improving the shape of the product, preventing roll roughness, and extending the life of the roll.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のロール冷却方法を適用する圧延機の要
部を示す説明図、第2図はロール表面の展開位置と表面
温度の関係図、第3図は流量密度と熱流束の関係図、第
4図(a) I (b)は直接冷却面積の展開図、第5
図(a) l (b)は冷却実験説明図、第6図と第7
図は冷却水流量密度と熱流束の関係図、第8図は直接冷
却面積と平均冷却能の関係図、第9図は冷却水の噴射圧
と熱流束の関係図、第10図は噴射圧比と必要動力比冷
却水流量比、冷却能比の関係図、第11図(a) l 
(b) 、 (C)は直接冷却域の説明図、第12図(
ハ)、(至)は従来の噴射ノズルの噴射状態の説明図、
第13図(へ、(B)乃至第16図(5)。 ■)は本発明に用いる噴射ノズルの噴射状態の説明図で
ある。 1・・・ワークロール、3a、3b・・・水切板、4”
+4b、4c、4d・・・噴射水ノズル、訃・・ポンプ
、10・・・圧延材。 特 許 出 願 人 株式会社神戸製鋼所代 理 人 
弁理士 青白 葆 ほか2名第3図 一+邊量支)t 1v(Q /m2rninl第4図(
a) 第5図(a)       第5図(b)(JLI2u
17.。、:、、)−9本避脅第9図 噴射厘p (”/am2) 第8図 fLル洟軸C%) 第:2図(A) 第12図(8) 第1z図(B)。 ( 手続補正書C方式) 昭和59年3月29日 特許庁長官 殿 ■事件の表示 昭和58年特許願第 185451    号2発明の
名称 熱間圧延における作業ロール冷却方法 3補正をする者 事件との関係 特許出願人 4、代理人
Figure 1 is an explanatory diagram showing the main parts of a rolling mill to which the roll cooling method of the present invention is applied, Figure 2 is a diagram showing the relationship between the developed position of the roll surface and surface temperature, and Figure 3 is the relationship between flow rate density and heat flux. Figure 4 (a) I (b) is a developed diagram of the direct cooling area, Figure 5
Figures (a) and (b) are illustrations of the cooling experiment, Figures 6 and 7.
The figure shows the relationship between cooling water flow rate density and heat flux, Figure 8 shows the relationship between direct cooling area and average cooling capacity, Figure 9 shows the relationship between cooling water injection pressure and heat flux, and Figure 10 shows the relationship between injection pressure ratio. Relationship diagram between required power ratio, cooling water flow rate ratio, and cooling capacity ratio, Figure 11 (a) l
(b) and (C) are explanatory diagrams of the direct cooling area, and Fig. 12 (
c) and (to) are explanatory diagrams of the injection state of the conventional injection nozzle;
FIGS. 13(B) to 16(5) (2) are explanatory diagrams of the injection state of the injection nozzle used in the present invention. 1... Work roll, 3a, 3b... Draining plate, 4"
+4b, 4c, 4d... Water jet nozzle, Death... Pump, 10... Rolled material. Patent applicant: Agent of Kobe Steel, Ltd.
Patent attorney Aobai Ao and 2 others Fig. 3 1 + 闊 Quantity sub) t 1v (Q /m2rninl Fig. 4 (
a) Figure 5 (a) Figure 5 (b) (JLI2u
17. . , :,, )-9 evacuation threat Figure 9 Injection p (''/am2) Figure 8 fL axis C%) Figure 2 (A) Figure 12 (8) Figure 1z (B) (Procedural Amendment Form C) March 29, 1980 Commissioner of the Japan Patent Office ■Case Description 1982 Patent Application No. 185451 2 Title of Invention Method for Cooling Work Rolls in Hot Rolling 3 Person Who Makes Amendment Case Relationship between patent applicant 4 and agent

Claims (1)

【特許請求の範囲】[Claims] (1)鋼板の熱間圧延における作業ロールに、該作業ロ
ールの圧延材の入側および出側で、かつノくレル方向に
配置された複数のノカレによシ冷却水を噴射供給せしめ
て冷却を行うものであって、上記作業ロールにノズルか
ら噴射水を8〜30Kg/cTAの範囲内の一定圧力(
Pl)で作業ロール胴表面における一定の直接冷却面積
(A1)に噴射して、一定の冷却能を得ている場合にお
いて、上記圧力(Pl)を1〜7Kg/aAの範囲内に
減圧(P2)スルト同時に上記面積を上記両圧力(pl
)(P2)の圧力変動比に比例して増加し、上記一定の
冷却能を維持させるようにしたことを特徴とする熱間圧
延における作業ロール冷却方法。
(1) A work roll during hot rolling of a steel plate is cooled by injecting cooling water to a plurality of holes arranged in the nozzle direction on the inlet and outlet sides of the rolled material of the work roll. Water is sprayed from a nozzle onto the work roll at a constant pressure within the range of 8 to 30 kg/cTA (
Pl) is injected onto a certain direct cooling area (A1) on the surface of the work roll cylinder to obtain a certain cooling capacity, the above pressure (Pl) is reduced to within the range of 1 to 7 Kg/aA (P2 ) Sult and the above area at the same time as both the above pressures (pl
) A work roll cooling method in hot rolling, characterized in that the cooling capacity increases in proportion to the pressure fluctuation ratio of (P2) and maintains the constant cooling capacity.
JP18545183A 1983-10-03 1983-10-03 Cooling method of work roll in hot rolling Pending JPS59156506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18545183A JPS59156506A (en) 1983-10-03 1983-10-03 Cooling method of work roll in hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18545183A JPS59156506A (en) 1983-10-03 1983-10-03 Cooling method of work roll in hot rolling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8416380A Division JPS579507A (en) 1980-06-20 1980-06-20 Cooling method for work roll in hot rolling work

Publications (1)

Publication Number Publication Date
JPS59156506A true JPS59156506A (en) 1984-09-05

Family

ID=16171025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18545183A Pending JPS59156506A (en) 1983-10-03 1983-10-03 Cooling method of work roll in hot rolling

Country Status (1)

Country Link
JP (1) JPS59156506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3308868A1 (en) 2016-10-17 2018-04-18 Primetals Technologies Austria GmbH Cooling of a roll of a roll stand
US10040715B2 (en) 2008-02-26 2018-08-07 Corning Incorporated Silicate glasses having low seed concentration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040715B2 (en) 2008-02-26 2018-08-07 Corning Incorporated Silicate glasses having low seed concentration
US10626042B2 (en) 2008-02-26 2020-04-21 Corning Incorporated Fining agents for silicate glasses
EP3308868A1 (en) 2016-10-17 2018-04-18 Primetals Technologies Austria GmbH Cooling of a roll of a roll stand
WO2018073086A1 (en) 2016-10-17 2018-04-26 Primetals Technologies Austria GmbH Cooling a roll of a roll stand
US11338339B2 (en) 2016-10-17 2022-05-24 Primetals Technologies Austria GmbH Cooling a roll of a roll stand

Similar Documents

Publication Publication Date Title
RU2352414C1 (en) Feeding method of lubrcating oil while cold rolling
US5701775A (en) Process and apparatus for applying and removing liquid coolant to control temperature of continuously moving metal strip
JPS59156506A (en) Cooling method of work roll in hot rolling
JP3802830B2 (en) Steel sheet descaling method and equipment
JP4654719B2 (en) Method and apparatus for supplying rolling oil in cold rolling
JPS5838603A (en) Roll cooler for hot strip mill
JP2003181517A5 (en)
JP2733776B2 (en) Thin plate continuous casting method and apparatus
JPS59156505A (en) Method for cooling work roll in hot rolling
JP3994582B2 (en) Steel sheet descaling method
JPS5853695B2 (en) Cooling method for steel pipes
JP2000351014A (en) PRODUCTION OF THIN SCALE Cr-CONTAINING HOT ROLLED STEEL PLATE
JP5114677B2 (en) Hot rolling equipment and hot rolling method
JPH0451243B2 (en)
JPS6015008A (en) Method for cooling work roll in hot rolling mill
JPS59229268A (en) Descaling method of continuous casting billet
JPS5950903A (en) Continuous hot rolling device for steel plate
SU900893A1 (en) Rolling roll cooling method
JPS62227510A (en) Cooler for hot rolling roll
JPH04253512A (en) Method for cooling work roll of cold rolling mill
JPS60221115A (en) Cooling method of steel plate
JPH0551372B2 (en)
JP2871392B2 (en) Coolant supply device and supply method for steel strip cold rolling mill
JP3304783B2 (en) Plug cooling method and device
JPH0724509A (en) Cooling method at the time of rolling