JPS59156185A - Controlling method of induction motor - Google Patents

Controlling method of induction motor

Info

Publication number
JPS59156185A
JPS59156185A JP58029142A JP2914283A JPS59156185A JP S59156185 A JPS59156185 A JP S59156185A JP 58029142 A JP58029142 A JP 58029142A JP 2914283 A JP2914283 A JP 2914283A JP S59156185 A JPS59156185 A JP S59156185A
Authority
JP
Japan
Prior art keywords
component
motor
voltage
signal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58029142A
Other languages
Japanese (ja)
Inventor
Toshiaki Okuyama
俊昭 奥山
Yuzuru Kubota
久保田 譲
Hidekazu Horiuchi
堀内 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58029142A priority Critical patent/JPS59156185A/en
Publication of JPS59156185A publication Critical patent/JPS59156185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To control the voltage and torque of a motor by detecting a motor voltage, obtaining the parallel component and the perpendicular component to an exciting current, controlling the primary frequency so that the parallel component becomes zero and correcting the exciting current so that the perpendicular component becomes the prescribed value. CONSTITUTION:A voltage detecting transformer 14 detects a motor voltage, voltage component detectors 15, 16 respectively obtain the parallel component ed and the perpendicular component eq to the exciting current component decided by a motor voltage control system, an oscillator 22 is controlled so that the parallel component ed becomes zero to control the primary frequency, and the exciting current im is controlled by a voltage deviation amplifier 24 and a sample-holding circuit 25 so that the perpendicular component becomes the prescribed value.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導心動機の制御方法に関し、特に電動機の酸
三とトルクを高梢度に制御するための誘導電動機の制御
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling an induction motor, and more particularly to a method for controlling an induction motor for highly controlling the torque and torque of the motor.

〔発明の背景〕[Background of the invention]

誘導電動機の電流を励磁分とトルク発生分に分け、それ
ぞれを独立に制御し、高速応答高#1度な速度制御を行
う、いわゆるベクトル制御が昶られている。べ、クトル
制御においては、各゛電流成分指令に基づいて演算合成
された1次電流指令パターン信号に比例して電動機電流
が制御される。電動機内部において各成分が指令値通り
に制御されるかどうかはすベシ周波数(1欠周波数λの
制御精度が関係する。電流はすベシ周波数を媒体として
励磁分とトルク発生分の各々に分解されると考えられ、
そのためにすべり周波数が適正値でなければ各成分七指
令値通勺に制御することができない。
So-called vector control is popular, in which the current of an induction motor is divided into an excitation component and a torque generation component, each of which is controlled independently to perform speed control with a high speed response and a high speed. In vector control, the motor current is controlled in proportion to a primary current command pattern signal that is calculated and synthesized based on each current component command. Whether each component inside the motor is controlled according to the command value is related to the control accuracy of the subbetical frequency (one missing frequency λ).The current is decomposed into the excitation component and the torque generation component using the subbechi frequency as a medium. It is thought that
Therefore, unless the slip frequency is at an appropriate value, each component cannot be controlled consistently to the command value.

すべ9周波数が適正値でなくなる原因には、電動機の2
次抵抗が温度によυ変動すること及び励磁インダクタン
スが鉄心飽和に、I:F)変動することなどが挙げられ
る。この影響によって負荷変化時にトルクの応答遅れ及
び脈動が生じ、また電動機電圧(磁束)を指令値通りに
制御できないなどの不′具合が生じる。
The reason why all 9 frequencies are not appropriate values is the 2nd frequency of the electric motor.
Examples include that the secondary resistance changes due to temperature, and that the excitation inductance changes due to iron core saturation (I:F). This effect causes torque response delay and pulsation when the load changes, and also causes problems such as the inability to control the motor voltage (magnetic flux) according to the command value.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述した不具合を解決し、2次抵抗及
び励磁インダクタンスが変動しても、すベシ周波数及び
励磁電流を常に適正値に−」御することができる誘導成
@機の制御方法を提供することにある。
The object of the present invention is to solve the above-mentioned problems and to control a control method for an induction generating machine that can always control the overall frequency and excitation current to appropriate values even if the secondary resistance and excitation inductance fluctuate. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは電動機電圧を恢出し、この
電動機電圧の制御系で決定した励磁醸流成分に対する平
行成分と直交成分金それぞれ求め、平行電圧成分が零と
なるように1次周波数を制御すると共に直交重圧成分が
所定値になるよう励磁電流全指令し、回転速度が設定置
より低くなったときには平行電圧成分と直交d圧成分の
大きさを回転速度が設定値の値に保持して由り御金行う
ようにしたことにある。
The feature of the present invention is to calculate the motor voltage, obtain the parallel component and orthogonal component to the excitation flow component determined by the motor voltage control system, and set the primary frequency so that the parallel voltage component becomes zero. At the same time, the excitation current is fully commanded so that the orthogonal pressure component becomes a predetermined value, and when the rotation speed becomes lower than the set value, the magnitude of the parallel voltage component and orthogonal d pressure component is maintained at the set value. This is because I decided to give money to Yuuri.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実流例金示す。 FIG. 1 shows an example of an actual flow of the present invention.

第1図において、1はゲートターンオフサイリスタなど
のスイッチング素子とダイオードなどで構成さnるPW
Mインバータ、2は誘導電動機、3は回転速度全1旨令
するための速度指令回路、4は速度検出器、5は速度の
指令信号と検出信号の偏差全増巾する速度偏差増巾器、
7は電#1機の励磁電流全指令する励磁電流指令器、8
は加算器、9は加算器8からの励磁電流指令信号l工及
び増巾器5からのトルク鑞流指令信″5ft に基づい
て2相正弦波の′d流指令パターン信号1.  、  
lIを出力する座標変換器、10は信号1781βに基
ついて3相正弦波の電流指令パターン信号I/。
In Figure 1, 1 is a PW consisting of a switching element such as a gate turn-off thyristor, a diode, etc.
M inverter, 2 is an induction motor, 3 is a speed command circuit for commanding the total rotational speed, 4 is a speed detector, 5 is a speed deviation amplification device for amplifying the total deviation between the speed command signal and the detection signal;
7 is an excitation current command device that commands the entire excitation current of the #1 machine, 8
is an adder; 9 is a two-phase sinusoidal flow command pattern signal 1 based on the excitation current command signal 1 from the adder 8 and the torque flow command signal 5 ft from the amplifier 5;
10 is a three-phase sinusoidal current command pattern signal I/ based on the signal 1781β.

iQ*、i、*を出力する相数変換器、11は電動機心
流の瞬時値を検出する電流検出器、12は電流指令パタ
ーン信号と磁流検出信号を比較し、インバータ1のスイ
ッチング素子をオン、オフ制御するためのPWM信号を
出力するヒステリシス特性付の比較器、13tri、ス
イッチング素子にゲート、信号を供給するゲート回路で
ある。なお、11〜13¥′iU相出力に対応した回路
であシ、V相及びW相のそれぞれに対応しては同様の回
路があるが、それらは図示を省略してめる。14は4圧
検出用変圧器、15.16は電動機電圧の直交回転座標
系の各軸成分全偵出する電圧成分検出器、17は回転速
度が「低迷」のとさ「L、J、fた1−高速」のときr
HJの1N $に出力する速度高低判別器、18は回転
速度が「高速Jのとき検出器15の出力信号でそのまま
出力し、また1低速」のときその出力信号全保持記憶し
出力するナンプルホールド回路、19は1ゴ号1t*と
信号1ffi*の比に比例したすべり角周波数指令信号
ω8*を出力するすべり周波数指令回路、20(は信号
ωごとホールド回路18の出力信号全乗算し、すべり周
波数補正信号Δω、を出力する乗算器、21ぼ速I漣検
′出1d号ω。
11 is a current detector that detects the instantaneous value of the motor heart flow; 12 is a current detector that compares the current command pattern signal with the magnetic current detection signal; This is a comparator with hysteresis characteristics that outputs a PWM signal for on/off control, a 13-tri comparator, and a gate circuit that supplies gates and signals to switching elements. Note that although there are circuits corresponding to the 11 to 13\'iU phase outputs, and similar circuits corresponding to the V and W phases, they are omitted from illustration. 14 is a 4-voltage detection transformer, 15.16 is a voltage component detector that detects all axial components of the orthogonal rotational coordinate system of the motor voltage, and 17 is a voltage component detector that detects when the rotational speed is "slow". 1-high speed”
A speed high/low discriminator outputs to 1N $ of HJ, 18 is a number code that outputs the output signal of detector 15 as it is when the rotation speed is high speed J, and stores and outputs the entire output signal when the rotation speed is 1 low speed. A hold circuit 19 is a slip frequency command circuit that outputs a slip angular frequency command signal ω8* proportional to the ratio of the signal 1t* and the signal 1ffi*; a multiplier that outputs a slip frequency correction signal Δω;

並びに上述の信号ω、*及び1d号Δω、を力0算し周
波数指令1J号を出力するカロル器、22は周波数指令
信号に比例した周波数の2相正弦反信号金出力する発振
器、また23は醒動・礪誘導起区力の指令器である。な
お酸三/周波数が一定の場合は加算器21の出力信号が
電圧指令信号となるため指令器は必妾でない。24は酸
三指令信号と検出器16の出力1言号の偏差全増巾する
′電圧偏差増巾器、25は回転速度が「高速」のとき増
巾器24の出力信号をそのまま出力し、また「低速」の
ときその出力信号を保持記憶し出力するサンプルホール
ド回路である。
22 is an oscillator that outputs a two-phase sinusoidal inverse signal with a frequency proportional to the frequency command signal; It is a command device for awakening, inducing and inducing power. Note that when the frequency is constant, the output signal of the adder 21 becomes the voltage command signal, so the command device is not necessary. 24 is a voltage deviation amplifier that amplifies the entire deviation between the three acid command signals and one output word of the detector 16; 25 is a voltage deviation amplifier that outputs the output signal of the amplifier 24 as is when the rotational speed is "high speed"; It is also a sample-and-hold circuit that holds, stores, and outputs the output signal when the speed is "low."

次に上記回路の動作を説明する。先ず本発明の概要につ
いて述べる。ベクトル制御の制御原理は次のようである
。すなわち直交回転磁界座標系の1つの軸2d・咄、そ
れに直交する41Iをq軸と仮定し、1次゛電流のci
、q軸成分11d r Fqに関して次式のよう、に制
御すれば、ildは励磁電流i、、に、またlI、はト
ルク発生電流1tに対応させて制御することができる。
Next, the operation of the above circuit will be explained. First, an overview of the present invention will be described. The control principle of vector control is as follows. That is, assuming that one axis 2d of the orthogonal rotating magnetic field coordinate system and 41I perpendicular thereto are the q-axis, the primary current ci
, q-axis component 11d r Fq can be controlled as shown in the following equation, ild can be controlled in accordance with the exciting current i, , and lI can be controlled in correspondence with the torque generating current 1t.

l’+l=N/”儒角元7      ・・・・・・(
1)1 1”°                ・・
・・・・伐)T2 1td ここに、11 :1次電流 ω、:すべり角周波数 T2 :2次時定数 θ:d@に対する1次電流の位相 すなわち、1次電流の大きさ金(1)式に従い制御し、
(2)式に従いすべり角周波数を制御し、かつ1次゛電
流の位相ヲ(3)式に関係して制御するlらば、ild
に応じて磁束φを、また!19に応じてトルクT全各々
独立に制御子ることかできる。このとき次式が示すよう
にトルクTは’+qK対して応答遅几なく市1j御され
る2 T=にφI19             ・・団・(
4)ここに、k:比例定数 次に(1)〜(3)式の関係に従いl111.ω、及び
θを制御するための回路動作について説明する。
l'+l=N/"Confucian angle 7 ・・・・・・(
1) 1 1”°...
....) T2 1td Here, 11 : Primary current ω, : Slip angular frequency T2 : Secondary time constant θ : Phase of the primary current with respect to d@, that is, the magnitude of the primary current (1) control according to the formula,
If the slip angular frequency is controlled according to equation (2), and the phase of the primary current is controlled in relation to equation (3), then ild
Depending on the magnetic flux φ, also! 19, all torques T can be controlled independently. At this time, as shown by the following equation, the torque T is controlled by 1j without response delay with respect to '+qK.
4) Here, k: proportionality constant Next, according to the relationships of equations (1) to (3), l111. The circuit operation for controlling ω and θ will be explained.

先ず、1次電流が(1)式及び(3)式に従い制御され
る回路動作について述べ”る。発振器22は加算器21
からの周波数指令信号に比例した周波数の2札止弦波信
号全出力する。これら信号は互いに90度の位相差をも
ち、後述の電流指令パターン信号の位相基準信号となる
。座標変換器9は醒流指令信号1ffl* 、 t 、
*及び発振器2′2の出方18号に基づいて次式の演算
き行い、2札止弦波の電流指号。
First, the operation of the circuit in which the primary current is controlled according to equations (1) and (3) will be described.
Fully outputs a two-note string wave signal with a frequency proportional to the frequency command signal from. These signals have a phase difference of 90 degrees from each other and serve as a phase reference signal for a current command pattern signal, which will be described later. The coordinate converter 9 receives flow command signals 1ffl*, t,
*Based on the output number 18 of the oscillator 2'2, calculate the following formula to obtain the current index of the 2-note string wave.

さらに相数変換器lOにおいて3相正弦波の電流指令パ
ターン信号1u−1,、が次式に従い取Qこのとさ、I
u−1,は次式のように表わせる。
Furthermore, in the phase number converter lO, a three-phase sinusoidal current command pattern signal 1u-1, , is obtained according to the following formula:
u-1, can be expressed as in the following equation.

i、*==Acos(ωlt+θン i −== ACO3(ω11−”−yr十〇)i、*
= )、、cos ((dl t 十−rc十〇)  
    −・−・(7)ここに、A−1m”+1t” 
#θ−tan−’=1m* 比較器12において電流指令パターン信号1uと電流検
出信号18が比較され、両信号の偏差が所定値以上とな
る場合、比較器12の出力信号極性が反転するという動
作が行われる。この結果、比較器よジGT<)をオン、
オフ制御するためのPWM信号が取り出される。V相及
びW相においても図示しない比較器により同様にしてP
WM信号が取シ出される。この結果、インバータ各相出
力電流は信号!。〜l、に比例するよう制御される。こ
のようにして1゜((比例して11dが、またit9に
比例してilqが制御され、前述した(1)及び(3)
式の関係は満足される。
i, *==Acos(ωlt+θni −== ACO3(ω11−”−yr〇)i,*
= ),, cos ((dl t ten-rc ten)
−・−・(7) Here, A−1m”+1t”
#θ-tan-'=1m* The current command pattern signal 1u and the current detection signal 18 are compared in the comparator 12, and if the deviation between both signals is greater than a predetermined value, the output signal polarity of the comparator 12 is reversed. An action is taken. As a result, the comparator is turned on (GT<),
A PWM signal for off control is extracted. In the V phase and W phase, P is similarly set by a comparator (not shown).
A WM signal is taken out. As a result, the output current of each phase of the inverter is a signal! . It is controlled to be proportional to ~l. In this way, 1゜((11d is controlled in proportion to it, and ilq is controlled in proportion to it9, and the above-mentioned (1) and (3)
The relationship in Eq.

′ 次に、(2)式を満足させる動作について説明する
' Next, the operation that satisfies equation (2) will be explained.

加算器21において、すベシ周波数指令信号(信号i−
に比例)と速度検出信号が加昇され、周波数指令信号が
取シ出される(検出器15、オールド回路18及び乗算
器20の動作については後述)。すなわ5次式に従い電
動機1次角周波数ω1が決定される。
In the adder 21, the total frequency command signal (signal i-
(proportional to), the speed detection signal is increased, and a frequency command signal is taken out (the operations of the detector 15, old circuit 18, and multiplier 20 will be described later). That is, the motor primary angular frequency ω1 is determined according to the quintic equation.

ω1−ω、+ω1          ・・・・・・(
8)ここに、ω−二電気的回転角周波数の検出値ω−:
ナベシ角周波数の指令値 一方、すベシ角周波数の実際値ω、は次火にて示さiす
る。
ω1-ω, +ω1 ・・・・・・(
8) Here, ω-The detected value ω- of the two electrical rotational angular frequencies:
The command value of the horizontal angular frequency and the actual value ω of the horizontal angular frequency will be shown in the next section.

ω工=ω1+ω、         ・・・・・・(9
)ここに、ω2:電気的回転角周波数の実際値ここにお
いて前述したω1がω1に一致するならば、(8)及び
(9)式の関係からω、*−ω、となる。
ωwork=ω1+ω, ・・・・・・(9
) Here, ω2: Actual value of electrical rotational angular frequency Here, if ω1 described above coincides with ω1, then ω, *-ω, from the relationship of equations (8) and (9).

さらにω、*は(10)式に従い決定され−るため、結
局すべd角周波数は(2)式に従うように制御される。
Furthermore, since ω and * are determined according to equation (10), the slip d angular frequency is ultimately controlled to follow equation (2).

′ここに、T2.2次時定数の基準値 以上のようにして(1)〜(3)式の関係が満足される
'Here, the relationships of equations (1) to (3) are satisfied as the T2.secondary time constant is greater than or equal to the reference value.

しかしながら、温度変化に伴う2次抵抗値の変動あるい
は鉄心飽和の影響による励磁インダクタンスの変動によ
)2次時定数が変動するため、一般にはT 2 = T
 x とならずそのため(10ン式に従って制御される
すべり周波数は(2)式を満足させることができない。
However, since the secondary time constant changes (due to changes in the secondary resistance value due to temperature changes or changes in excitation inductance due to the influence of iron core saturation), generally T 2 = T
Therefore, the slip frequency controlled according to the equation (10) cannot satisfy equation (2).

このような制御誤差の影響は、電動機電圧の上昇、トル
ク低丁及びトルク制御時においてトルク脈動などを生じ
させ、電動機とインバータ及び電動機によシ駆動させる
負荷に悪影響を及ぼす。
The influence of such control errors causes an increase in motor voltage, low torque, and torque pulsation during torque control, which adversely affects the motor, the inverter, and the load driven by the motor.

この制御誤差の影響は後述するように成wJ機電圧(磁
束)の変動として検出できるため、その基準値からの変
動をもって藏動磯の1次周波数及び励磁電流を制御する
ことにより制御誤差を補償することができる。また極低
周波運転においては電圧検出が不確実となるため、この
補償方法は効力金欠うが、その場合は、極低周波運転に
入る直前においてそれまでに取り出された2次時定数の
関数信号及び励磁電流の補償信号を保持記憶しておき、
これを用いて前述の制御を行うことにより、補償動作を
連続して行うことがで登る。以下さらに詳しく本発明の
補償原理を説明する。
As described later, the influence of this control error can be detected as a fluctuation in the generator voltage (magnetic flux), so the control error is compensated for by controlling the primary frequency and excitation current of the Kuradoiso using the fluctuation from the reference value. can do. In addition, in very low frequency operation, voltage detection becomes uncertain, so this compensation method is ineffective, but in that case, just before entering very low frequency operation, the function signal of the quadratic time constant extracted up to that point is and the excitation current compensation signal are retained and memorized,
By performing the above-mentioned control using this, the compensation operation can be performed continuously. The compensation principle of the present invention will be explained in more detail below.

第2図は、信号l−及びi、*が一定の場合の、すべり
角周波数ω、に対する電動機磁束の変化を示す。φd及
びφ、はd、q軸の各磁束成分、φはφd、φ、のベク
トル合成磁束である。図(a)は五−が正の定格値、(
b)はi−が零及び(C)はit*が負の定格値の各場
合を示す。図(a)においてX印がφd=φ2 (基準
値)及びφq=’O1”満足する正規の動作点である。
FIG. 2 shows the variation of the motor flux with respect to the slip angular frequency ω when the signals l− and i,* are constant. φd and φ are the magnetic flux components of the d and q axes, and φ is the vector composite magnetic flux of φd and φ. Figure (a) shows the rated value where 5- is positive, (
b) shows the case where i- is zero, and (C) shows the case where it* is a negative rated value. In Figure (a), the mark X is the normal operating point where φd=φ2 (reference value) and φq='O1'' are satisfied.

この動作点のすベシ角周波数ω、は(2)式にて示され
るが、前述した2次時定数の変動によ!り (10)式
に従い制御されるすベシ角周波数ω、が先のω、と一致
しなくなると(すなわちω、が変動すると)、φ、は、
φ、=¥=0となシ正規動作点を境にして極性が変化す
る。そこでφ、〉0のときは1欠周波数f1を1げ、φ
、く0のときは下げるようにしてφ、に応じてω、*を
修正制御すれば動作点は正規の状態に還る。すなわち(
2)式を満足するような運転が行える。図(b)及び(
C)においても上述した制御により同様の運転が行える
The overall angular frequency ω at this operating point is expressed by equation (2), but it is due to the fluctuation of the second-order time constant mentioned above! When the overall angular frequency ω, which is controlled according to equation (10), no longer matches the previous ω (i.e., when ω changes), φ becomes
The polarity changes with the normal operating point as φ,=¥=0. Therefore, when φ,〉0, the missing frequency f1 is incremented by 1, and φ
When , , is 0, the operating point returns to the normal state by lowering it and correcting and controlling ω, * according to φ. That is, (
2) Operation that satisfies the equation can be performed. Figures (b) and (
In C), similar operation can be performed by the above-mentioned control.

′一方、正規動作点における電動機磁束φ2は次式にて
示される。
'On the other hand, the motor magnetic flux φ2 at the normal operating point is expressed by the following equation.

φ2;φd ””Mjta          明・・(11)した
がって、もし励磁インダクタンスMが鉄心飽和の影響等
によジ変動すると、電動機磁束(′に圧)を指令値に保
てないが、この場合は励磁電流指令信号io*を、φd
の基準値からの変動に応じて修正することに屯り、Mの
変動の影響を補償することができ/)。
φ2;φd ””Mjta Bright...(11) Therefore, if the excitation inductance M fluctuates due to the influence of iron core saturation, etc., the motor magnetic flux (pressure at ') cannot be maintained at the command value, but in this case, the excitation Current command signal io*, φd
It is possible to compensate for the influence of fluctuations in M by making corrections according to fluctuations in M from the reference value.

以上が(2)式を満足させ、かつ磁束(′、を圧ンを指
令値に保つための補償原理である。次に第1図の回路に
おける上記の関係の動作につき説明する。
The above is the compensation principle for satisfying equation (2) and maintaining the magnetic flux (') at the command value.Next, the operation of the above relationship in the circuit shown in FIG. 1 will be explained.

電圧成分検出器15.16に2いて、(12)式に従い
成動機誘導起亀力の2軸分分すなわち励磁電流位相基準
信号に対して同位相の成分ed及び90度位相差の成分
e、が各々検出される。
The voltage component detectors 15 and 16 detect two axes of the prime mover induced motive force according to equation (12), that is, a component ed with the same phase and a component e with a 90 degree phase difference with respect to the excitation current phase reference signal. are detected respectively.

ここに、ed:検出器15の出力信号 e、:検出器16の出力信号 V C=va Vu−V、:電動機各相電圧 rt:1次抵抗 tl、L2’ : 1次及び2次漏れインダクタンス iB : t・に比例したd@眠流 iハ、1【に比例したq軸電流 上述の演算は、電動機電圧の検出信号、発振器22の出
力信号、加算器21がら取シーさnる周波数指令信号ω
1及び・電流指令信号i:、  i−に基づいて、乗算
器及び加算器を用いて行えることは明らかである。な2
式の右辺第2項は電動機の漏nインピーダンス降下の影
響を補償するためのものである。
Here, ed: output signal e of the detector 15,: output signal V C=va Vu-V of the detector 16,: motor phase voltage rt: primary resistance tl, L2': primary and secondary leakage inductance iB: d @ sleep current proportional to t, q-axis current proportional to 1 The above calculation is based on the motor voltage detection signal, the output signal of the oscillator 22, and the frequency command obtained from the adder 21. signal ω
1 and current command signal i:, i-, it is clear that this can be done using multipliers and adders. Na2
The second term on the right side of the equation is for compensating for the influence of the leakage impedance drop of the motor.

信号e、及びe、と前述したφd、φ、とは次式の関係
がある。
The signals e and e and the aforementioned φd and φ have the following relationship.

Q4==−ω1φ。Q4==-ω1φ.

e、=ω1φ、              ・・・・
・・(13)すなわち、edによシφ、相当の信号が、
またe、によシφd相当の信号が検出される。1d号e
dは、ホールド回路18及び乗算器20を介して加算器
21に加えられる。このとき、edぷ負(φ、〉0)の
場合は加算器21の出力信号が犬、すなわちインバータ
出力周波数が上昇する極性にて加算される。このように
して前述した原理に従い常にed=o(φ、二〇)とな
るようにω1が′制御され、すべり角周波数ω6は正規
動作点の値に制御される。このとき、乗算器20よシ出
力されるすべり角周波数の補償信号Δω、は、(2)式
Vこで示されるω、と(lO)式にて示さ几るω、*の
差分に相当することから、次式にて表わされる。
e, = ω1φ, ...
...(13) That is, the signal corresponding to ED is
Also, a signal corresponding to e and φd is detected. 1d No.e
d is added to an adder 21 via a hold circuit 18 and a multiplier 20. At this time, in the case of ed negative (φ, >0), the output signals of the adder 21 are added with a polarity that increases the inverter output frequency. In this manner, ω1 is controlled so that ed=o(φ, 20) at all times according to the above-described principle, and the slip angular frequency ω6 is controlled to the value of the normal operating point. At this time, the compensation signal Δω of the slip angular frequency outputted from the multiplier 20 corresponds to the difference between ω shown in equation (2) V and ω shown in equation (lO). Therefore, it is expressed by the following formula.

乗算器20はω、に比例した信号とホールド回た信号と
なる。2次時定数T2は、2次抵抗と2次インダクタン
スの関数であるが、2次抵抗の変動は2次巻線の熱的時
定数に関係した時定数の長い変化であること、また励磁
インダクタンスは磁束弱め制御を行わない中低速運転範
囲においては一定とみなせるので、ホールド回路18の
出力信このため検出器15の出力から乗算器2oの入力
までの回路の応答は遅くてよい。極低速運転時は電圧検
出が不確実となるため前述した補償動作が行えないが、
上述した理由により、以下のようにして補償動作を継続
して行うことができる。すなわち、極低速運転の継続時
間は巻線の熱的時定数に比べ十分に短いのが普通であシ
、この期間中にの期間中はホールド回路18の出力信号
を極低速運転に入る直前の値に保持記憶することにょ9
、補償動作を継続して行うことができる。判別器17は
上述の動作をホールド回路18に行わせるためのもので
、極低速運転範囲に2いてホールド動作を指令する信号
を発生する。
The multiplier 20 produces a signal proportional to ω and a hold signal. The secondary time constant T2 is a function of the secondary resistance and the secondary inductance, but the variation in the secondary resistance is a long change in the time constant related to the thermal time constant of the secondary winding, and the excitation inductance can be regarded as constant in the medium and low speed operating range where magnetic flux weakening control is not performed, so the response of the circuit from the output of the detector 15 to the input of the multiplier 2o may be slow. During extremely low speed operation, the voltage detection becomes uncertain, so the above-mentioned compensation operation cannot be performed.
For the reasons mentioned above, the compensation operation can be performed continuously as follows. In other words, the duration of extremely low speed operation is usually sufficiently short compared to the thermal time constant of the winding, and during this period, the output signal of the hold circuit 18 is changed to the value immediately before entering extremely low speed operation. To store and store the value 9
, the compensation operation can be performed continuously. The discriminator 17 is for causing the hold circuit 18 to perform the above-mentioned operation, and generates a signal instructing the hold operation when the vehicle is in the extremely low speed operating range.

一方、信号e、は増巾器24において周波数指令信号ω
lと突き什わされてその偏差が増巾され、そしてそれは
ホールド回路25と介して加算器8に加えられる。この
結果、ωlとeqは比例するよう制御され、このとき eq/ωl=φd(一定)       ・・・・・・
(15)なる関係が成立し、磁束φdは一定となる。
On the other hand, the signal e is the frequency command signal ω in the amplifier 24.
1, the deviation is amplified, and it is added to the adder 8 via the hold circuit 25. As a result, ωl and eq are controlled to be proportional, and at this time, eq/ωl = φd (constant)...
The relationship (15) holds true, and the magnetic flux φd becomes constant.

一方、磁束弱め運転域[&いては、指令器23からの誘
導起電力指令信号と信号e、が突き合すされ、前述と同
様の動作が行われる。このときはeq=ωlφd (一
定)       ・・・・・・(16)なる関係が成
立し、磁束φdはω1に反比例し磁束弱め制御が行われ
る。
On the other hand, in the magnetic flux weakening operation region [&, the induced electromotive force command signal from the command unit 23 and the signal e are matched, and the same operation as described above is performed. At this time, the relationship eq=ωlφd (constant) (16) is established, the magnetic flux φd is inversely proportional to ω1, and magnetic flux weakening control is performed.

ところで、ホールド回路25よρ出力さ几る励磁電流の
補償信号Δ10は、励磁インダクタンスが規準値M に
おいて前述の磁束φdを生じさせるに必要な励磁電流と
、励磁インダクタンスの実際値Mに対応して必要な励磁
電流の両者の差分に相当することから次式にて示される
By the way, the excitation current compensation signal Δ10 outputted from the hold circuit 25 by ρ corresponds to the excitation current necessary to generate the above-mentioned magnetic flux φd when the excitation inductance is the standard value M, and the actual value M of the excitation inductance. Since it corresponds to the difference between the two required excitation currents, it is expressed by the following equation.

ところで、極低速運転時は電圧検出が不確実となるため
、上述の補償動作が行えないが、磁束弱め制mと行わな
い中低速運転範囲においては、磁束及び励磁インダクタ
ンスMは一定でるるため、(17)式から明らかなよう
にΔi工も一足である。したがって極低速運転時はホー
ルド回路25の出方信号をその運転に入る直前の値に保
持記憶することによシ、補償動作を継続して行うことが
できる。
By the way, during very low speed operation, voltage detection becomes uncertain, so the above-mentioned compensation operation cannot be performed, but in the medium and low speed operation range where magnetic flux weakening control m is not performed, the magnetic flux and excitation inductance M remain constant. As is clear from equation (17), Δi is also one pair. Therefore, during extremely low speed operation, the compensation operation can be continued by holding and storing the output signal of the hold circuit 25 at the value immediately before starting the operation.

このようなホールド回路25の動作は、先述のボールド
回路18の場合と同様に判別器17の信号に応じて行わ
れる。なυ、指令器7及び加算器8を噛゛略し、ホール
ド回路25の出方信号を直接に座標変換器9に加えるこ
とができる。この場合のホールド回路の出力信号は補償
された励磁電流指令i。・Aなるが、前述と同様の制御
が行えることは明らかである。以上のように電圧(磁束
)を制御するため、次のような効果が得られる。
This operation of the hold circuit 25 is performed in accordance with the signal from the discriminator 17, as in the case of the bold circuit 18 described above. The output signal of the hold circuit 25 can be directly applied to the coordinate converter 9 by omitting the command unit 7 and the adder 8. The output signal of the hold circuit in this case is the compensated excitation current command i. -A, but it is clear that the same control as described above can be performed. By controlling the voltage (magnetic flux) as described above, the following effects can be obtained.

1)晟動機の製作誤差にょシ、励磁インダクタンスMが
設計値に一致しないことがあっても覗励機電圧(磁束)
を常に所定値に制御できる。したがって従来必要であっ
た1、、、の初期調節が不要である。
1) Due to manufacturing errors in the motor, even if the excitation inductance M does not match the design value, the exciter voltage (magnetic flux)
can always be controlled to a predetermined value. Therefore, the initial adjustment of 1, .

22  鉄心飽和の影響によシ、励磁インダクタンスM
が変動することがあっても電動機電圧(磁束)を常に所
定値にi′1ilIf111できる。したがって高精度
な磁束(弱め)電lJ1卸が行える。
22 Due to the influence of iron core saturation, the excitation inductance M
Even if the motor voltage (magnetic flux) may fluctuate, the motor voltage (magnetic flux) can always be kept at a predetermined value i'1ilIf111. Therefore, highly accurate magnetic flux (weakening) electric current lJ1 wholesale can be performed.

3)極低速運転時に分いても、1)2)の補償動作を継
続して行える。
3) Even if the difference occurs during extremely low speed operation, the compensation operations of 1) and 2) can be continued.

以上述べたことから、本発明によれば、2次抵抗及び励
磁インダクタンスがfmしても、すベシ周波数及び励磁
−流を常に適正値に制御することができる。
As described above, according to the present invention, even if the secondary resistance and excitation inductance are fm, the overall frequency and excitation current can always be controlled to appropriate values.

前記実施例においては、e、全検出′しその指令値から
の変動に応じて励磁電流指令信号1□と修正し、eq(
φd)を所定値に制御するものであったが、φとφdは
第2図に示すように類似した関係にあるため、eq(α
φd)の代りに誘導起電力e(−v’e d2+ e 
q”αφ)が所定値となるように制御しても同様の効果
が得られる。このときの制御回路は、電動機電圧の大き
さの検出信号全検出器16の出力信号に代えて増巾器2
4に加えるようにしたとこうが第1図と異なるが他は同
一である。
In the embodiment described above, e, full detection' is corrected to excitation current command signal 1□ according to the variation from the command value, and eq(
φd) was controlled to a predetermined value, but since φ and φd have a similar relationship as shown in Figure 2, eq(α
Instead of φd), induced electromotive force e(-v'e d2+ e
A similar effect can be obtained by controlling q"αφ) to a predetermined value. In this case, the control circuit uses an amplifier to replace the detection signal of the magnitude of the motor voltage with the output signal of all the detectors 16. 2
4 is different from that in FIG. 1, but the rest is the same.

@記実施例においては、ed及びe、に検出しφdは所
定値に、φ、については零となるように制御するもので
あったが、φd及びφ、を演算検出し、直接にφd、φ
、を制御するようにしても同様の制御が行える。第3図
はその実施例の回路構成図である。磁束検出器26は次
式に従い電動機電圧を2相交流信号va、vβに変換し
、それらを積分することによシ磁束φα、φβ(2相交
−流1百号)を検出する。
In the embodiment described in @, ed and e were detected, φd was controlled to a predetermined value, and φ was controlled to be zero, but φd and φ were calculated and detected, and φd, φ
, similar control can be performed by controlling . FIG. 3 is a circuit diagram of this embodiment. The magnetic flux detector 26 converts the motor voltage into two-phase AC signals va and vβ according to the following equation, and detects magnetic fluxes φα and φβ (two-phase AC No. 100) by integrating them.

ここに、Zlは磁束の検出精度を高めるために電動機の
漏れインピーダンス降下の影響を1次電流i(実際値ま
たは指令値ンを用いて補償したことを示す。
Here, Zl indicates that the influence of the leakage impedance drop of the motor is compensated using the primary current i (actual value or command value n) in order to improve the detection accuracy of the magnetic flux.

磁束成分検出器15′及び16′は、次式に従い磁束の
2軸分分すなわち励磁電流位相基準信号に対して同位相
及び90度位相差成分を各々検出φQ:  #  15
’ 信号φ、はホールド回路18に加えられる。ま比信号φ
dは磁束指令回路23′からの磁束指令信号と突き合わ
され、磁來偏差増巾器24′に加えられる。増巾−24
′はφdの変動に応じた信号を出力し、それは加算器8
に加えられる。その他の部品及びその動作は第1図のも
のと同一でるり、本実施例においても前述した補償動作
が行われ、第1図と同一の効果が得られる。なお、φと
φdは前述したように類似の関係にあるため、検出器1
6′の代pにφ(=V5百]7)を検出する磁束量検出
器を用いても同様の制fIlil]企行わせることがで
きる。
The magnetic flux component detectors 15' and 16' detect the two axes of magnetic flux, that is, the same phase and 90 degree phase difference components with respect to the excitation current phase reference signal, respectively φQ: # 15
' The signal φ is applied to the hold circuit 18. ratio signal φ
d is matched with the magnetic flux command signal from the magnetic flux command circuit 23' and applied to the magnetic flux deviation amplifier 24'. Increased width-24
' outputs a signal according to the fluctuation of φd, which is sent to the adder 8
added to. The other parts and their operations are the same as those in FIG. 1, and the compensation operation described above is performed in this embodiment as well, so that the same effects as in FIG. 1 can be obtained. Note that since φ and φd have a similar relationship as described above, the detector 1
Similar control can be achieved by using a magnetic flux detector that detects φ (=V50]7) in place of p of 6'.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば2次抵抗および励磁
インダクタンスが変動してもすべ9周波数と励磁電流を
常に適正値にでき、それも電動機の低速回転時にも安定
に行える。
As explained above, according to the present invention, even if the secondary resistance and excitation inductance vary, all frequencies and excitation current can always be kept at appropriate values, and this can be done stably even when the motor rotates at low speed.

な2以上の実施例は、PWM<パルス幅変調)インバー
タへの適用例であるが、他方式インバータであってもそ
の出力周彼数及び出力電圧(電流)が制御可能なもので
あれば本発明を適用することができる。また以上の実施
例は速度制#を行う装置への適用例にづいて述べたが、
信号i−が速度調節器以外のものにより調節される例え
ばトルク制#を行うもの等にも同様に適用できる。
The above two or more embodiments are examples of application to PWM < pulse width modulation) inverters, but this invention applies to other types of inverters as long as their output frequency and output voltage (current) can be controlled. The invention can be applied. In addition, although the above embodiments have been described based on application examples to devices that perform speed control #,
The present invention can be similarly applied to a system in which the signal i- is adjusted by something other than a speed regulator, such as a torque control system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実厖例を示す構成図、第2図は本発
明の詳細な説明するための特性図、第3図は本発明の他
の実施例を示す構成図である。 1・・・インバータ、2・・・誘導電動機、15.16
・・・電圧成分検出器、18.25・・・サンプルホー
ルド回路、24・・・電圧偏差増巾器、22・・・発振
器。 ′応20(こ) 石n 第2口(C) 6
FIG. 1 is a block diagram showing an example of the present invention, FIG. 2 is a characteristic diagram for explaining the present invention in detail, and FIG. 3 is a block diagram showing another embodiment of the present invention. 1... Inverter, 2... Induction motor, 15.16
...Voltage component detector, 18.25... Sample and hold circuit, 24... Voltage deviation amplifier, 22... Oscillator. '020 (Ko) Stone n 2nd mouth (C) 6

Claims (1)

【特許請求の範囲】[Claims] ■、 誘導電動機の回転速産金検出し1次電流の大きさ
と周波板を制御してトルク1流と励磁成流を独立に制御
する誘導心動機の制御方法において、前記誘導電動機の
電動機電圧を検出し、この電動機電圧の制御系で決定し
た励磁1流成分に対する平行成分および改変成分をそれ
ぞれ求め、平行電圧成分が零となるように前記誘導心動
機の1次周波数を制御すると共に直交電圧成分が所定値
となるように前記励@醒流を補正し、前記誘導心動機の
回転速度が設定置より低くなると前記平行酸三成分と直
交電圧成分の大きさを回転速度が設定値のときの値に保
持して制御するようにしたことを%徴とする誘導心動機
の制御方法。
■. In an induction motor control method that detects the rotational speed of the induction motor, controls the magnitude of the primary current and the frequency plate, and independently controls the primary torque flow and the excitation current, the motor voltage of the induction motor is controlled. The motor voltage control system detects the parallel component and modified component for the determined excitation first current component, and controls the primary frequency of the induction motor so that the parallel voltage component becomes zero, and also controls the orthogonal voltage component. When the rotational speed of the induction heart motor becomes lower than the set value, the magnitudes of the parallel acid three components and the orthogonal voltage component are adjusted to be the same as when the rotational speed is at the set value. A method of controlling an inductive heart motor in which the % characteristic is that the control is maintained at a certain value.
JP58029142A 1983-02-23 1983-02-23 Controlling method of induction motor Pending JPS59156185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029142A JPS59156185A (en) 1983-02-23 1983-02-23 Controlling method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029142A JPS59156185A (en) 1983-02-23 1983-02-23 Controlling method of induction motor

Publications (1)

Publication Number Publication Date
JPS59156185A true JPS59156185A (en) 1984-09-05

Family

ID=12268022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029142A Pending JPS59156185A (en) 1983-02-23 1983-02-23 Controlling method of induction motor

Country Status (1)

Country Link
JP (1) JPS59156185A (en)

Similar Documents

Publication Publication Date Title
JPH0334313B2 (en)
US8450955B2 (en) Alternating-current motor control apparatus
EP0535281B1 (en) Apparatus for a universal field oriented controller for an induction machine
KR920000730B1 (en) Control method for induction motors
JPS58123394A (en) Controller for ac motor
JPS61180592A (en) Controller of induction motor
JPS5911271B2 (en) Control method of induction motor
JPH02254987A (en) Method and apparatus for control of induction motor
US6385555B1 (en) Method and device for determining the rotational speed of a polyphase machine operating with field orientation and without a sensor
JPH05308793A (en) Control circuit for power conversion device
JPH07250500A (en) Variable speed controller for induction motor
JPS59156185A (en) Controlling method of induction motor
JP3067660B2 (en) Control method of induction motor
EP0333054B1 (en) Control system for controlling revolution speed of electric motor
JPH0344509B2 (en)
KR950006640A (en) Vector control unit for induction motor
JPS6115582A (en) Controlling method of induction motor
JP3519200B2 (en) Excitation controller for synchronous machine
JPS59156191A (en) Controlling method of induction motor
JPS6332032B2 (en)
JPH11206200A (en) Induction motor control equipment
JPH07118959B2 (en) Induction motor control method
JPH0789760B2 (en) Vector control method of induction motor
JP2000050698A (en) Control equipment of induction motor
JPH0546794B2 (en)