JPS5915611A - Coal fired combined cycle generating device - Google Patents

Coal fired combined cycle generating device

Info

Publication number
JPS5915611A
JPS5915611A JP12333082A JP12333082A JPS5915611A JP S5915611 A JPS5915611 A JP S5915611A JP 12333082 A JP12333082 A JP 12333082A JP 12333082 A JP12333082 A JP 12333082A JP S5915611 A JPS5915611 A JP S5915611A
Authority
JP
Japan
Prior art keywords
combustor
fluidized bed
gas turbine
gas
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12333082A
Other languages
Japanese (ja)
Inventor
Joji Yamaya
山家 譲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12333082A priority Critical patent/JPS5915611A/en
Publication of JPS5915611A publication Critical patent/JPS5915611A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/061Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed

Abstract

PURPOSE:To improve efficiency of a device, by communicating a heat transfer pipe of a fluidized bed combustor to a gas turbine through a reheat combustor and increasing temperature of gas supplied to the gas turbine to high temperature. CONSTITUTION:A compressor 1 is connected to a gas turbine 3 connected to the first generator 2. The atmospheric air from the compressor 1 is heated by a heat transfer pipe 5 in a fluidized bed combustor 4 and fed into a reheat combustor 12 and the gas turbine 3, and the first generator 2 is rotated. Fuel is fed into the reheat combustor 12 from a coal gasifier 20 and a purifier 21. A steam turbine 23 is rotated by steam heated by a water pipe 7, and electric power is generated by the second generator 24. In this way, since temperature of gas supplied to the gas turbine 3 can be increased to high temperature, efficiency can be improved.

Description

【発明の詳細な説明】 この発明は電力会社に、あるいは工場における自家発電
用等に用いられる石炭たき複合サイクル発電装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal-fired combined cycle power generation device used by electric power companies or for in-house power generation in factories.

従来、大気圧流動床燃焼器を有する複合サイクル発電装
置は、はぼ、?1図に示すような構成によって行われて
いる。同図においてaはガスタービンbに連結されてい
る圧縮機であり、大気圧流動床燃焼器Cの伝熱管dに連
通されており、かつ該伝熱管dはまた前記ガスタービン
bに連通されている。eはガスタービンbに連結されて
いるオー発電機である。
Conventionally, combined cycle power generation equipment with an atmospheric pressure fluidized bed combustor is... This is done using the configuration shown in Figure 1. In the figure, a is a compressor connected to a gas turbine b, which is connected to a heat transfer tube d of an atmospheric pressure fluidized bed combustor C, and the heat transfer tube d is also connected to the gas turbine b. There is. e is an electric generator connected to gas turbine b.

そして前記ガスタービンbの排気管fは、凝縮器Vに連
通したエコノマイザhに連通させである。1は第二発電
機jに連結されている蒸気タービンであり、前記凝縮器
Vに連通されている。
The exhaust pipe f of the gas turbine b communicates with an economizer h which communicates with a condenser V. A steam turbine 1 is connected to a second generator j, and is communicated with the condenser V.

次に、前記エコノマイザhは、前記大気圧流動床燃焼器
0の水管kを介して前記蒸気タービン1に連通されてい
る。tは煙突を示す。
Next, the economizer h is connected to the steam turbine 1 via a water pipe k of the atmospheric fluidized bed combustor 0. t indicates a chimney.

大気は前記圧縮機aにより圧縮され、大気川流動床燃焼
器0に送入され、同燃焼器Cにおける石炭の燃焼により
、伝熱管d内でほぼ900℃に加熱される。この大気圧
流動床燃焼器C内ではその下部に流動層ができ、石炭は
完全に燃焼させられる。 そしてほぼ900℃に加熱さ
れた空!Aい;tガスクービンbに入り、同タービンb
を回転させ、発砲を行う。この場合ガスタービンbの排
空気はまだほぼ4.00℃程度の熱を有するので、エコ
ノマイザhに送り、それによって凝縮器fからもたらさ
れる水の予熱を行う。又蒸気タービン1は、前記流動床
燃焼器Cの、上部の高温部分に設けられた水管kにより
もたらされた蒸気によって回転し、発電を行う。
Atmospheric air is compressed by the compressor a and sent to the atmospheric fluidized bed combustor 0, where coal is burned in the combustor C and heated to approximately 900° C. within the heat transfer tube d. A fluidized bed is formed in the lower part of the atmospheric pressure fluidized bed combustor C, and the coal is completely combusted. And the sky heated to almost 900 degrees Celsius! A; t enters gas turbine b, and the same turbine b
Rotate and fire. In this case, the exhaust air of gas turbine b still has a heat of approximately 4.00° C. and is therefore sent to economizer h, thereby preheating the water coming from condenser f. Further, the steam turbine 1 is rotated by steam brought by a water pipe k provided in the upper high temperature part of the fluidized bed combustor C, and generates electricity.

このように上記従来の装置は大気圧流動床燃焼器0にお
いて、ガスタービンb用の空気と、蒸気タービンi用の
水の両方を加熱でき、好ましい。
In this way, the above-mentioned conventional device can heat both the air for the gas turbine b and the water for the steam turbine i in the atmospheric pressure fluidized bed combustor 0, which is preferable.

ところがこのような従来の装置は一方において次のよう
な難点を有している。即ち上記装置は大気圧流動床燃焼
器Cにおいて加熱された空気を直接ガスタービンbに送
って回転させるためその空気温度は大気圧流動床燃焼器
Oを構成するtA判番こより制限され、その上限はほぼ
950℃にとどまるのである。
However, such conventional devices have the following drawbacks. That is, in the above device, the air heated in the atmospheric pressure fluidized bed combustor C is sent directly to the gas turbine b to rotate it, so the air temperature is limited by the tA number that constitutes the atmospheric pressure fluidized bed combustor O, and its upper limit is remains at approximately 950°C.

このため、ガスタービンbの効率全左右するタービン人
口温度が比較的低く抑えられ、従ってその効率が高くな
らないのである。
For this reason, the turbine temperature, which affects the efficiency of the gas turbine b, is kept relatively low, and therefore the efficiency does not increase.

この発明は上記の状況にかんがみてなされたもので、そ
の目的は前記従来の装置よりも一層効率の高い石炭たき
複合サイクル発″fM、装置を得ることである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a coal-fired combined cycle generator which is more efficient than the conventional apparatus.

この発明について述べると、牙−発電機に、ガスタービ
ンを介して連結させた圧縮機と、前記ガスタービンに連
通し、かつ流動床燃焼器の伝熱管を介して前記圧縮機と
連通させた再熱燃焼器と、第二発電機に連結した蒸気タ
ービンに連通させた凝縮器と、一端を前記凝縮器に連通
し他端を前記蒸気タービンに連通させた前記流動床燃焼
器の水管と、前記再熱燃焼器に連通させた燃料供給装置
から成る石炭たき複合サイクル発′亀装随である。
In the present invention, a compressor is connected to a generator through a gas turbine, and a regenerator is connected to the gas turbine and to the compressor through a heat exchanger tube of a fluidized bed combustor. a thermal combustor, a condenser communicating with a steam turbine connected to a second generator, a water pipe of the fluidized bed combustor having one end communicating with the condenser and the other end communicating with the steam turbine; It is a coal-fired combined cycle generator consisting of a fuel supply system connected to a reheat combustor.

これを実施例を示す図面について詳述する。This will be explained in detail with reference to the drawings showing the embodiments.

矛2図及び牙3図において、lは圧縮機であり牙−発電
機2に連結したガスタービン3に連結されている。そし
てこの圧縮機1の回転により大気は、流動床燃焼器4の
伝熱管5に送入されここにおいて加熱される。なお上記
流動床燃焼器4は一例として大気圧流動床燃焼器が用い
られた。
In Figure 2 and Figure 3, l is a compressor connected to a gas turbine 3 connected to a generator 2. The rotation of the compressor 1 causes the atmospheric air to be introduced into the heat transfer tubes 5 of the fluidized bed combustor 4 and heated there. Note that, as the fluidized bed combustor 4, an atmospheric pressure fluidized bed combustor was used as an example.

この流動床燃焼器4はほぼ、i’41Wに示すように形
成されており、同図において5は伝熱管であり、6&、
6bはその出入口、7は水管、8は石炭投入口、9は石
炭燃焼用空気の入口、10は同排出口である。又11は
灰取り出口を示す。
This fluidized bed combustor 4 is approximately formed as shown in i'41W, in which 5 is a heat exchanger tube, 6&,
6b is its inlet/outlet, 7 is a water pipe, 8 is a coal inlet, 9 is an inlet for coal combustion air, and 10 is an outlet. Further, 11 indicates an ash removal outlet.

石炭は投入口8から投入され、燃焼して前記水管7及び
伝熱管5を加熱する。
Coal is input from the input port 8 and burns to heat the water tube 7 and the heat transfer tube 5.

この場合伝熱管5内の空気はほぼ900℃程度に加熱さ
れ、次に間管5に連通されている再熱燃焼器12に送入
される。この再熱燃焼器12は一例として牙5図に示す
ように形成されている。同図において13は加熱空気の
入口、14は後述する燃料供給装置につながる燃料の入
口、15は外筒、16 ハ内ftj、17はルーバ、1
8は図示しない圧縮機に連通ずる冷却用空気入口、19
は加熱ガスの出rJである。前記入口13から送入され
た加熱空気は、更に燃料人口14から送入される燃料の
燃焼により再び加熱され、はぼ1150℃〜1200℃
の高温となって、加熱ガス出口19を出、前記ガスター
ビン3に送入され、これを回転させ、前記オー発電機2
を回転して発電を行う。
In this case, the air within the heat exchanger tube 5 is heated to about 900° C. and then fed into the reheat combustor 12 which is communicated with the intermediate tube 5. The reheat combustor 12 is formed as shown in FIG. 5, as an example. In the figure, 13 is a heated air inlet, 14 is a fuel inlet connected to a fuel supply device which will be described later, 15 is an outer cylinder, 16 is an inner ftj, 17 is a louver, 1
8 is a cooling air inlet communicating with a compressor (not shown); 19
is the heating gas output rJ. The heated air introduced from the inlet 13 is heated again by combustion of the fuel introduced from the fuel port 14, and reaches a temperature of approximately 1150°C to 1200°C.
The heated gas reaches a high temperature, exits the heated gas outlet 19, is fed into the gas turbine 3, rotates it, and generates the electric generator 2.
rotates to generate electricity.

次に、前記再熱燃焼器12に送入される燃料について述
べると、この燃料は前記ガスタービン3を所精汚さない
燃料であれば任意に用いて差支えなく、例えば天然ガス
、プロパンガス、軽油等でもよい。文才2図に示すよう
に石炭のガス化装置加、及びこれに連通した浄化装置j
i 21を夫々通って供給された石炭ガスであってもよ
い。
Next, regarding the fuel fed to the reheat combustor 12, any fuel may be used as long as it does not pollute the gas turbine 3, such as natural gas, propane gas, light oil, etc. etc. As shown in Figure 2, there is a coal gasification equipment and a purification equipment connected to it.
It may also be coal gas fed through the i 21 respectively.

なお前記石炭のガス化装置加は固定層式、浮遊層式、流
動層式、溶融我等各種の方式のものが公知であり、これ
ら公知の各種のものを任意に用いてよい。このようにし
て石炭ガスを用いることにより全システムを通じて燃料
を石炭のみにより発電を行うことができよう。ηは燃料
供給装置を示す。
Various types of coal gasifiers are known, such as a fixed bed type, a floating bed type, a fluidized bed type, and a melting bed type, and any of these known types may be used. By using coal gas in this way, it would be possible to generate electricity using only coal as fuel throughout the entire system. η indicates a fuel supply device.

次に乙はオニ発電機Uに連結された蒸気タービンであり
、該タービン囚は凝縮器δを介して前記流動床燃焼器4
の、水管7の一端に連通されており、又該水管7の他端
は前記蒸気タービンおに連通されている。このため前記
水W7中において加熱されて発生した蒸気により、蒸気
タービン囚が回転し、これにより第二発電機勢が回転し
、発電が行われる。なお26は煙突を示す。
Next, B is a steam turbine connected to the Oni generator U, and the turbine is connected to the fluidized bed combustor 4 via the condenser δ.
The water pipe 7 is connected to one end of the water pipe 7, and the other end of the water pipe 7 is connected to the steam turbine. Therefore, the steam generated by heating in the water W7 rotates the steam turbine, thereby rotating the second generator group and generating electricity. Note that 26 indicates a chimney.

次に、この発明の特徴について述べると、それはガスタ
ービン3のための、ガス浄化のエネルギ消費及びその機
器がごく少くてすむことである。
Next, a feature of the present invention is that the energy consumption for gas purification and the equipment for gas purification for the gas turbine 3 can be minimized.

いま、前記圧縮機1からもたらされる空気の温度を35
0℃とし、前記伝熱管5からもたらされる空気湿度を9
00℃とする。
Now, the temperature of the air brought from the compressor 1 is set to 35
0°C, and the air humidity brought from the heat transfer tube 5 is 9°C.
00℃.

又前記再熱燃焼器12の出口におけるガス温度を120
0℃とすると、前記流動床燃焼器4における燃料の必要
発熱量と、再熱燃焼器12における燃料の必要発熱量の
比は、 900−350 j 1200−900=550 F 
300となる。即ち再熱燃焼器12においては、MIJ
記流記法動床燃焼器43001550 = 0.55倍
の燃料ですむ。
Further, the gas temperature at the outlet of the reheat combustor 12 is set to 120
Assuming 0°C, the ratio of the required calorific value of the fuel in the fluidized bed combustor 4 and the required calorific value of the fuel in the reheat combustor 12 is: 900-350 j 1200-900 = 550 F
It will be 300. That is, in the reheat combustor 12, MIJ
Flow notation dynamic bed combustor 43001550 = 0.55 times the amount of fuel is required.

これは石炭ガス化装置加で扱う石炭量が、流動床燃焼器
4で扱う石炭量の0.55倍ですむことを示す。このこ
とは、石炭ガス礼装[20に続くガス浄化装置f21で
ガス全浄化するために消費するエネルギは、全体の中で
非常に少いことを示すものである。
This indicates that the amount of coal handled by the coal gasifier is 0.55 times the amount of coal handled by the fluidized bed combustor 4. This shows that the energy consumed for completely purifying the gas in the gas purifying device f21 following the coal gas formal equipment [20] is very small in total.

換言すれば、ここに用いられるガス浄化装[1f20と
しては、サイクロン、又はスクラバー等を用いて充分に
ガスを浄化し、ダストのないものとすることができる。
In other words, the gas purification device [1f20 used here can sufficiently purify the gas using a cyclone, a scrubber, etc., and make it dust-free.

これによってガスタービン3に入る燃焼ガスは1200
℃にも及ぶ高温ガスであるにもかかわらず、所謂汚れの
ないものとなり、ガスタービンのトラブルを防ぐことが
できよう。
As a result, the combustion gas entering the gas turbine 3 is 1200
Even though the gas is hot, reaching temperatures as high as ℃, it will be clean and will prevent gas turbine troubles.

なお前記流動床燃焼器4として大気圧流動床燃焼器?用
いることにより、その排ガスの窒素酸化物の低減が可能
であり、同流動床内での脱硫及びその下流での脱硝が、
比較的容易にできよう。
Is the fluidized bed combustor 4 an atmospheric pressure fluidized bed combustor? By using this, it is possible to reduce nitrogen oxides in the exhaust gas, and desulfurization in the fluidized bed and denitrification downstream of it can be
It would be relatively easy.

この発明は前記の如く構成され、特に流動床燃焼器4の
伝熱管5を、再熱燃焼器12を介してガスター ヒン3
 ニ連通させたことによす、カスタービン3に供給され
るガスの温度を前記従来の装置よりはるかに高温とする
ことができ、大巾に効率を向上させることができる。
This invention is constructed as described above, and in particular, the heat transfer tubes 5 of the fluidized bed combustor 4 are connected to the gas star hinge 3 via the reheat combustor 12.
By communicating with the two, the temperature of the gas supplied to the cast turbine 3 can be made much higher than that of the conventional device, and the efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

1・1図は従来の石炭たき複合サイクル発電装置の、概
略を示すプ四ツク図、矛2図はこの発の他の実施例を示
す才2図に相当する図、才41’4、−A−5図はこの
発明の実施例を示し、牙4図断面文である。 1・・・圧縮機 2・・・第一発電機 3・・・ガスタービン 4・・・流動床燃焼器 5・・・伝熱管 7・・・水管 12・・・再熱燃焼器 n・・・燃料供給装置 23’・・蒸気タービン 冴・・・オニ発電機 δ・・・凝縮機 代理人弁理士 斎 藤   侑 外2名 111!!I U IF12  図
Figure 1.1 is a schematic diagram of a conventional coal-fired combined cycle power generation device, and Figure 2 is a diagram corresponding to Figure 2 showing another embodiment of this invention. Figure A-5 shows an embodiment of the present invention, and is a sectional view of fan 4. 1...Compressor 2...First generator 3...Gas turbine 4...Fluidized bed combustor 5...Heat transfer tube 7...Water tube 12...Reheat combustor n...・Fuel supply system 23'... Steam turbine Sae... Oni generator δ... Condenser Patent attorney Yugai Saifuji 2 people 111! ! I U IF12 Figure

Claims (1)

【特許請求の範囲】[Claims] 第一発電機(2)に、ガスタービン(3)を介して連結
させた圧縮機(1);前記ガスタービン(3)に連通し
、かつ流動床燃焼器(4)の伝熱管(5)を介して前記
圧縮機(1)と連通させた再熱燃焼器(12) ;牙二
発亀m (24)に連結した蒸気タービン(23)に連
通させた凝縮器(25) ニ一端を前記凝縮器(25)
に連通し、41!、廟11#&i!凝1O慟凧賂11他
端をlt+J記蒸気タービン(2:3)に連通させた前
記流動床燃焼器(4)の水管(7j;前記再熱燃焼器(
12)に連通させた燃料供給袋@ (22)から成るこ
とを特徴とする石炭たき複合サイクル発電装置。
A compressor (1) connected to a first generator (2) via a gas turbine (3); a heat exchanger tube (5) connected to the gas turbine (3) and of a fluidized bed combustor (4); a reheat combustor (12) connected to the compressor (1) through the compressor (1); a condenser (25) connected to the steam turbine (23) connected to the compressor (24); Condenser (25)
41! , Mausoleum 11#&i! The water pipe (7j) of the fluidized bed combustor (4), the other end of which was connected to the steam turbine (2:3); the reheat combustor (
A coal-fired combined cycle power generation device characterized by comprising a fuel supply bag @ (22) communicated with (12).
JP12333082A 1982-07-15 1982-07-15 Coal fired combined cycle generating device Pending JPS5915611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12333082A JPS5915611A (en) 1982-07-15 1982-07-15 Coal fired combined cycle generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12333082A JPS5915611A (en) 1982-07-15 1982-07-15 Coal fired combined cycle generating device

Publications (1)

Publication Number Publication Date
JPS5915611A true JPS5915611A (en) 1984-01-26

Family

ID=14857883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12333082A Pending JPS5915611A (en) 1982-07-15 1982-07-15 Coal fired combined cycle generating device

Country Status (1)

Country Link
JP (1) JPS5915611A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139906A (en) * 1979-04-12 1980-11-01 Sulzer Ag Combined thermal power plant
JPS5652512A (en) * 1979-10-05 1981-05-11 Setsuo Yamamoto Compound cycle plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139906A (en) * 1979-04-12 1980-11-01 Sulzer Ag Combined thermal power plant
JPS5652512A (en) * 1979-10-05 1981-05-11 Setsuo Yamamoto Compound cycle plant

Similar Documents

Publication Publication Date Title
JP3213321B2 (en) Combined cycle thermal power plant combined with atmospheric circulating fluidized bed boiler and gasifier
JP2954972B2 (en) Gasification gas combustion gas turbine power plant
US4288979A (en) Combined cycle power plant incorporating coal gasification
US4468923A (en) Process and plant for generating electrical energy
CN1162643C (en) Combined circular coal-burning power generating system and method adopting partial gasification and air preheating
JPH063071A (en) Device for utilizing heat included in exhaust gas of coal fired boiler forming component of electric power plant
JPS63195333A (en) Gas turbine output device burning hydrous fuel and heat-energy recovery method of hydrous fuel in said gas turbine output device
KR20000075666A (en) Coal fuel gas turbine system
US4238923A (en) Method of low temperature heat utilization for atmospheric pressure coal gasification
JP6839282B2 (en) How to improve the combustion process in cogeneration plants and cogeneration plants
JP2565437B2 (en) Gas turbine device equipped with tube nest combustion type combustor
JP3093775B2 (en) Gas turbine / steam turbine combined cycle system and power generation equipment used to implement the system
ES2337888T3 (en) PROCEDURE FOR CARRYING OUT A HEAT RECOVERY BOILER.
JPS595761B2 (en) A device that converts heat into work
EP0662191B1 (en) Method and plant for producing high steam temperatures when burning problematic fuels
JP2003518220A (en) Operation method of steam turbine equipment and steam turbine equipment operated by this method
JPH06511061A (en) Method for generating electrical energy in an environmentally compatible manner and equipment for implementing this method
US5517818A (en) Gas generation apparatus
JPS5915611A (en) Coal fired combined cycle generating device
JP3008251B2 (en) Method for generating gas for operating a gas turbine in a combined gas / steam power plant and apparatus for implementing the method
JP2003056363A (en) Composite facility of waste incinerating facility and gas turbine generator
JP3782552B2 (en) Power generation equipment
RU2137981C1 (en) Technological power plant for thermal processing of solid waste
RU2124134C1 (en) Combination steam-gas power plant and method of its operation
JPH0323807B2 (en)