JPS5915609A - Steam turbine controller - Google Patents

Steam turbine controller

Info

Publication number
JPS5915609A
JPS5915609A JP12539882A JP12539882A JPS5915609A JP S5915609 A JPS5915609 A JP S5915609A JP 12539882 A JP12539882 A JP 12539882A JP 12539882 A JP12539882 A JP 12539882A JP S5915609 A JPS5915609 A JP S5915609A
Authority
JP
Japan
Prior art keywords
circuit
steam
signal
output
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12539882A
Other languages
Japanese (ja)
Other versions
JPS622123B2 (en
Inventor
Hiroya Sato
佐藤 碩哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12539882A priority Critical patent/JPS5915609A/en
Publication of JPS5915609A publication Critical patent/JPS5915609A/en
Publication of JPS622123B2 publication Critical patent/JPS622123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/14Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To clear up the cause of a pressure drop, by providing a device, which holds a control valve to no load opening even after the recovery of pressure and manually opens the valve, to a pressure drop preventing device detecting the pressure drop of inlet steam of a steam turbine and throttling the control valve. CONSTITUTION:Deviation between signals from a speed detector 13 and a speed setter 15 and a signal of a load limiter 19 of a turbine 4 are input to a low value preferential circuit 18, and a control valve 3 is opened and closed by a low value signal of said circuit 18. A main steam pressure detector 27 is provided to a steam pipe, and deviation from a set pressure 28 is input to the low value preferential circuit 18. An automatic follow up circuit 34A following to an output of a limit circuit 31 is provided. Even if steam pressure is decreased, an integrator 40 follows to the output of the circuit 31, however, if the pressure is restored and the output of the circuit 31 is increased, a comparator 41 opens a contact 35, and integrating action is stopped, while an output of low value preferantial circuits 32, 18 becomes an output of the integrator 40, then the control valve is held to be throttled, and the valve is reopened by a manual switch 38.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気タービン′へq50蒸気圧力低下による
冷気もしくは水の流入を防止するために前記入口蒸気圧
力が所定値よりも低下した時蒸気加減弁を絞り込む入ロ
蒸気圧力低下防止制御装置N’fx設けた蒸気タービン
制御装置に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a system for controlling steam control when the inlet steam pressure falls below a predetermined value in order to prevent cold air or water from flowing into the steam turbine' due to a q50 steam pressure drop. This invention relates to a steam turbine control device equipped with an inlet steam pressure drop prevention control device N'fx that throttles a valve.

〔発明の技術的背景〕[Technical background of the invention]

火力発電プラントにおけるボイラ故障や地熱発電プラン
トに卦けるフラッシャ井戸側の故障によって蒸気タービ
ンの入口蒸気圧力が急激に低下する場合があり、この圧
力低下が起こると蒸気タービンに冷気もしくは水が流入
するおそれがある。
A boiler failure in a thermal power plant or a flasher well failure in a geothermal power plant can cause a sudden drop in the steam pressure at the inlet of the steam turbine, and if this pressure drop occurs, there is a risk that cold air or water may flow into the steam turbine. There is.

この冷気もしくは水の流入?防止するために前述の入口
蒸気圧力低下防止制御装置(以下これ會[IPRJと称
する)を設けることはすでに提案されている。
Is this cold air or water flowing in? In order to prevent this, it has already been proposed to provide the above-mentioned inlet steam pressure drop prevention control device (hereinafter referred to as IPRJ).

このIPRH1蒸気タービンの入口蒸気圧力を一般的に
は主蒸気止め弁の前の配管部分で検出I7、その検出圧
力が所定値よりも低下したら蒸気加減弁を絞り込む信号
を発し、蒸気加減弁を絞り込んでも圧力が回復しない場
合はさらにそれ1g下のある所定i直までの圧力低下に
より蒸気加減弁を無負荷開度まで絞り込むようにするも
ので、その−具体例を第1図に示す。
The inlet steam pressure of this IPRH1 steam turbine is generally detected in the piping section in front of the main steam stop valve I7, and when the detected pressure drops below a predetermined value, a signal is issued to throttle the steam regulator valve. However, if the pressure does not recover, the steam control valve is throttled down to the no-load opening by reducing the pressure further to a predetermined point i, which is 1 g below that level.A specific example of this is shown in FIG.

第1図においてまず主系統全説明すればボイラ1からの
主蒸気は主蒸気止め弁2および蒸気加減弁3′ft介1
−て直圧タービン4に供給される。蒸気加減弁3はター
ビン光電機負荷に見合った蒸気量を高圧タービン4に供
給する。高圧タービン4で仕事をした蒸気は再熱器5で
加熱され、再熱蒸気止め弁6およびインタセプト弁7′
fr、介して中圧タービン8に流入する。ここで仕事し
た蒸気にさらにクロスオーバ管8Al介して低圧タービ
ン9に流入する。低圧タービン9で仕事した蒸気に復水
器10へと流れ込み、復水される。図示の蒸気タービン
はくシ形のものであって、高圧タービン4、中圧タービ
ン8および低圧タービン9が一軸上に構成され、その軸
出力により発電機11が駆動される。
In Fig. 1, first of all, the main system will be explained.The main steam from the boiler 1 is passed through the main steam stop valve 2 and the steam control valve 3'ft.
- is supplied to the direct pressure turbine 4. The steam control valve 3 supplies the high-pressure turbine 4 with an amount of steam commensurate with the turbine photoelectric machine load. The steam that has done work in the high-pressure turbine 4 is heated in a reheater 5, and is connected to a reheat steam stop valve 6 and an intercept valve 7'.
fr, flows into the intermediate pressure turbine 8 via. The steam worked here further flows into the low pressure turbine 9 via the crossover pipe 8Al. The steam worked by the low pressure turbine 9 flows into the condenser 10 and is condensed. The illustrated steam turbine is box-shaped, and includes a high-pressure turbine 4, an intermediate-pressure turbine 8, and a low-pressure turbine 9 on one shaft, and a generator 11 is driven by the shaft output.

以上の主系統に対して、IPRi含む制御部は次のよう
に構成されている。1ず速;W制御部であるが、まず蒸
気タービンの軸に直結した速度検出用歯車12とその外
周面に対向1.て配設した速度検出用ピックアップ13
とによってタービン回転速度に比例した周波数信号を蒸
気タービンの実際速度信号として得る。この周波数信号
は周波数/゛慮正圧変換器4によって周波数に比例した
アナログ電圧信号にt喚される。速度/負荷設定器15
からの速度/負荷設定信号と周波数/電圧変換514か
らのタービン実際速度信号とが加算器16に導かれ、両
速度の偏差に相当する信号が速度/負荷偏差信号として
出力される、この偏差信号は速度調定率回路17i−よ
びインタセグト弁調定率回路詔に導かれる。
For the above main system, the control section including IPRi is configured as follows. 1st speed: W The control section first includes a speed detection gear 12 directly connected to the shaft of the steam turbine and a 1st speed detection gear 12 facing the outer peripheral surface thereof. Speed detection pickup 13 arranged at
A frequency signal proportional to the turbine rotational speed is obtained as an actual speed signal of the steam turbine. This frequency signal is converted by a frequency/positive pressure converter 4 into an analog voltage signal proportional to the frequency. Speed/load setting device 15
The speed/load setting signal from the frequency/voltage converter 514 and the turbine actual speed signal from the frequency/voltage converter 514 are led to an adder 16, and a signal corresponding to the deviation of both speeds is outputted as a speed/load deviation signal. is led to the speed regulation rate circuit 17i- and the intersegment valve regulation rate circuit.

速度調定率回路17は入力偏差信号に基づいて調速率に
合った蒸気加減弁3の開度を得るだめの開度信号を作り
出し、低置優先回路18に入力する。この低値優先回路
18KI−tさらに負荷制限器19からの負荷制限信号
およびIPR:幻Aからの制限信号も入力され、3人力
信号のうちで最も低値の信号が出力される。この出力信
号は電力増幅器2oによって電力増幅され、電油変換器
21に入力される。「)f。
The speed regulation rate circuit 17 generates an opening degree signal for obtaining the opening degree of the steam control valve 3 that matches the speed regulation rate based on the input deviation signal, and inputs it to the low position priority circuit 18. This low value priority circuit 18KI-t also receives a load limit signal from the load limiter 19 and a limit signal from IPR: Phantom A, and outputs the lowest value signal among the three human power signals. This output signal is power amplified by the power amplifier 2o and input to the electro-hydraulic converter 21. ") f.

油変換器21に入力された電気信号は機械的信号に変換
され、それにより蒸気加減弁油筒22のパイロット弁を
操作17、蒸気加減弁3の開度を所望の開度信号に合う
ように制御する。
The electrical signal input to the oil converter 21 is converted into a mechanical signal, and the pilot valve of the steam control valve oil cylinder 22 is operated 17 to adjust the opening degree of the steam control valve 3 to match the desired opening signal. Control.

調定率回路23は加算器】6からの偏差出力に基づいて
インタセプト弁開度信号を作り出す。この開度信号は電
力増幅器24によって電力増幅され、電池変換器5によ
って機械的信号に変換される。[[電油変換器δからの
機械的開度信号によってインクセグト弁油面カのパイロ
ット弁が操作され、要求開度信号に合った開度にインタ
セプト弁7が制御される。以りが速度Hi制御部である
The regulation rate circuit 23 produces an intercept valve opening signal based on the deviation output from the adder 6. This opening degree signal is power amplified by the power amplifier 24 and converted into a mechanical signal by the battery converter 5. [[The pilot valve for the ink segment valve oil level is operated by the mechanical opening signal from the electro-hydraulic converter δ, and the intercept valve 7 is controlled to an opening that matches the required opening signal. This is the speed Hi control section.

次にI P R−:3OAの部分について説明する。ま
ず主蒸気止め弁2の入口側で主蒸気圧力Poi圧力検出
器27によって検出する。この実際圧力信号はIPR:
30Aの圧力設定器部からの設定圧力信号と共に加算器
29に導かれる。この設定圧力は一般に主蒸気圧力PO
が定格値PRの80% (P@)4で低下した状IL―
で蒸気加減5P 3が無負荷開度CvN相当となるよう
にセットされる。加算器29は実際圧力と設定圧力との
間の偏差が正の時のみ、す々わち上記設定値の場合は主
蒸気圧力Poが定格値PFIの80%(Pi)以上であ
る時のみ、その偏差信号を出力する。この偏差信号は圧
力調定率回路間に入力される。圧力調定率回路30は入
力偏差信号に基づいて、主蒸気圧力POが定格値P8の
90% (PA)に低下したところで蒸気加減弁3を全
開CVOから絞り始め、80 % (Pa)の圧力で蒸
気加減弁3が無負荷開度CvNとなり、それ以下に圧力
が低下しても同一無負荷開度CVNを保持するような蒸
気加減弁開度信号を作り出す(第2図参照)。この開変
信号&1蒸気加減弁3を無負荷開度CVN以下に絞り込
才ないようにリミット回路:(1をxmしI P R3
0Aの出カイR号として除外回路33に入力される。除
外回路、33は、主蒸気圧力を下げてタービンヶ始動す
るときIPR30Aの上述の機能全除外する必5四があ
るために設けられている回路部分である。この除外回路
、33ヲ1!J1つた蒸気加減弁開度信号は低値優先回
路18に入力される。
Next, the IPR-:3OA portion will be explained. First, the main steam pressure Poi is detected by the pressure detector 27 on the inlet side of the main steam stop valve 2. This actual pressure signal is IPR:
30A is led to the adder 29 together with the set pressure signal from the pressure setter section. This set pressure is generally the main steam pressure PO
IL- is reduced to 80% of the rated value PR (P@)4.
The steam adjustment 5P3 is set to correspond to the no-load opening CvN. The adder 29 operates only when the deviation between the actual pressure and the set pressure is positive, that is, in the case of the above set value, only when the main steam pressure Po is 80% (Pi) or more of the rated value PFI. The deviation signal is output. This deviation signal is input between the pressure regulation rate circuits. Based on the input deviation signal, the pressure adjustment rate circuit 30 starts throttling the steam control valve 3 from the fully open CVO when the main steam pressure PO drops to 90% (PA) of the rated value P8, and then controls the steam control valve 3 at a pressure of 80% (Pa). A steam control valve opening signal is generated such that the steam control valve 3 reaches the no-load opening CvN and maintains the same no-load opening CVN even if the pressure decreases below that level (see FIG. 2). This opening change signal &1 limit circuit to prevent the steam control valve 3 from being opened below the no-load opening CVN: (1 to xm and I P R3
It is input to the exclusion circuit 33 as the output R number of 0A. The exclusion circuit 33 is a circuit portion provided because it is necessary to exclude all of the above-mentioned functions of the IPR 30A when starting the turbine by lowering the main steam pressure. This exclusion circuit is 33wo1! The J1 steam control valve opening signal is input to the low value priority circuit 18.

第1図のI P R3OAの・:・υ作を吊3図を・月
)α1−7々がら^シε明する。主蒸気圧力Poがt1
時点で低下し始め、t2時点で定格値の90%相当値P
Aまで低下するとI P R30Aの出力iま蒸気加減
弁3の開1jf債号を全開CVoから減少し始める。t
3時点で出力Aが1・七度制御部(つまり速If調定率
回路17)あるいは負荷制限器19からの制限信号Bよ
りも小さくなると低値優先回路18の作用により出力A
が蒸気加減弁3の開度信号となり、蒸気加減弁3の開I
U″CVは、この時点t3から減少し始める。この絞り
込み動作によって主蒸気圧力POの低下が正寸り、ボイ
ラ側の故障回復等によって主蒸気圧力POが上昇E7始
めると、IPR:3OAの出力Aも増加1.始め、蒸気
加減弁開度CVも上昇(す々わち蒸気加減弁3も開1&
)  してい〈。t4時点で出力Aは・車度制程中部あ
るいは負荷制限器19からの制限信号Bよりも大きくな
なり、蒸気加減弁3の開度信号は出力Bに移行し、蒸気
加減弁3はこの時点で動きが正寸る。t6時点で主蒸気
圧力POが90%(PA)に達すると、IPR:30A
の出力Aは全開CVo信号となり、t6時点で主蒸気圧
力Poが定格Iliに到達し、以後この状態を1巷続す
る。
In Figure 1, the IPR3OA's . Main steam pressure Po is t1
It starts to decrease at point t2, and at point t2, the value P equivalent to 90% of the rated value
When it decreases to A, the output i of the IPR30A starts to decrease from the fully open CVo of the steam control valve 3. t
When the output A becomes smaller than the limit signal B from the 1.7 degree control section (that is, the speed If adjustment rate circuit 17) or the load limiter 19 at time 3, the low value priority circuit 18 acts to reduce the output A.
becomes the opening degree signal of the steam regulating valve 3, and the opening I of the steam regulating valve 3
U''CV starts to decrease from this point t3. This throttling operation causes the main steam pressure PO to drop to an exact extent, and when the main steam pressure PO starts to rise E7 due to failure recovery on the boiler side, the output of IPR: 3OA A also increases 1. At the beginning, the steam control valve opening CV also increases (suddenly, the steam control valve 3 also opens 1&
) Doing〈. At time t4, the output A becomes larger than the limit signal B from the middle of the vehicle speed limit or the load limiter 19, and the opening signal of the steam control valve 3 shifts to the output B, and the steam control valve 3 at this point The movement is accurate. When the main steam pressure PO reaches 90% (PA) at time t6, IPR: 30A
The output A becomes a fully open CVo signal, and the main steam pressure Po reaches the rated Ili at time t6, and this state continues for one period thereafter.

〔背景技術の問題点〕[Problems with background technology]

第1図に示す従来のIPR30Aは蒸気加減弁3の入口
蒸気圧力に応じて蒸気加減弁3を直線特性で絞り込むも
のであり、入口蒸気圧力が回復すれば当然族環加減弁3
を開くことになる。しかし、蒸気加減弁3の入口蒸気圧
力の低下1−.1ボイラやフラッシャタンクあるいは他
の装置部分の故障によって生ずる場合が多く、そのよう
な場合、故障原因を明らかにしない11で圧力の回復と
共に蒸気加減弁3を開いて蒸気タービンの負荷をJ’+
¥加させたのでに再度同1子なトラブルを繰返すおそれ
がある。
The conventional IPR 30A shown in FIG. 1 narrows down the steam control valve 3 according to the inlet steam pressure of the steam control valve 3 with a linear characteristic, and when the inlet steam pressure recovers, naturally the group control valve 3
will open. However, the decrease in the steam pressure at the inlet of the steam control valve 3 1-. 1 This is often caused by a failure in the boiler, flasher tank, or other equipment parts, and in such cases, the steam control valve 3 is opened as soon as the pressure is restored in 11 without clarifying the cause of the failure, and the load on the steam turbine is reduced to J'+.
Since the child has been given an additional ¥, there is a risk that the child will have the same trouble again.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述の欠点を除去し、入口蒸気圧力の低
下に際してIPRの作用により蒸気加減弁を絞り込んだ
後、圧力が回復したときに生じ得る上述のトラブルを未
然に防止し得る蒸気タービン制御装置を提供することK
ある。
An object of the present invention is to provide a steam turbine control system that eliminates the above-mentioned drawbacks and prevents the above-mentioned troubles that may occur when the pressure is restored after the steam control valve is throttled by the action of IPR when the inlet steam pressure decreases. Providing equipment
be.

〔発明の、概要〕[Summary of the invention]

この目的を権威するために本発明は、蒸気タービンの入
口蒸気圧力が低下した時、IPHによって蒸気加減弁を
無負荷開度捷で絞り込むための構成はそのままとし、そ
の後入口蒸気圧カが回1MシてもIPHの機能を無効と
して蒸気加減弁を無歳荷開度に1呆持(7、入口蒸気圧
力低下の原因を究明して問題が無いと判断された時に手
動で蒸気加〆或弁を開き、元の正常運転状態に復帰させ
るように1−だものである。
In order to achieve this objective, the present invention maintains the structure for throttling the steam control valve by no-load opening by IPH when the inlet steam pressure of the steam turbine decreases, and then the inlet steam pressure is reduced to 1 M Even if the IPH function is disabled, the steam control valve is held at the open position for one moment (7. When the cause of the inlet steam pressure drop is investigated and it is determined that there is no problem, the steam control valve can be manually turned off. 1- to open and return to the original normal operating state.

〔発明の実施例〕[Embodiments of the invention]

第4図膠、仁びI″1′モ5図は本斧明の一実かu15
すを示すものであろ−ここで第1図と同じ構成部分は同
じ符号で示され′Cい/8゜第4図は装置の全体構成を
ブロック図で表現I−たものであり、第5図にキの′)
3′部の、より詳細な回路構成を示−tものである−こ
の装置の特徴は、IPR30Aの出力段をなすIJ ミ
ツト回路;31と除外回路33との間に低値優先回路:
32ケ介挿し、この低値優先回路32にリミット回路:
31の出力信号のVlかに後述の自動追従回路34Aの
出力信号を入力し、内入力信号のうちの低値すなわち低
レベルのものを1糸外回路、33に悸〈ようにしたこと
にあるー IPR3(I Aにおいてけ、定電圧源28aおよびそ
の定′1(う;圧を分圧するポテンショメータ28bか
ら成る圧力設定器28から′解圧の形で与えられる設定
圧力信号と、圧力検出器27からの検出信号との偏差の
4M号が加祿器29′f介して圧力調定率回路、30に
入力される。加′W器29および圧力調定率回路30i
l−j演算増幅器:30aを中心として一体的に構成さ
れ、演算増幅器:30aとその入力側に設けられた演鋒
抵(]官9a。
Figure 4 Glue, Nibi I''1'mo Figure 5 is Kazumi Honcho Akira u15
Here, the same components as in Figure 1 are designated by the same reference numerals. Figure 4 is a block diagram representing the overall configuration of the device; (in the figure)
A more detailed circuit configuration of the 3' section is shown below.The features of this device include: an IJ circuit that forms the output stage of the IPR30A; a low-value priority circuit between 31 and the exclusion circuit 33;
Insert 32 pieces and add a limit circuit to this low value priority circuit 32:
The output signal of the automatic tracking circuit 34A, which will be described later, is input to Vl of the output signal of 31, and the low value of the inner input signal, that is, the low level one, is sent to the 1 thread outer circuit and 33. A set pressure signal given in the form of a pressure release from a pressure setting device 28 consisting of a constant voltage source 28a and its constant voltage source 28a and a potentiometer 28b that divides the pressure, and a pressure detector 27 4M of the deviation from the detection signal from the heater 29'f is input to the pressure adjustment rate circuit 30.The heater 29' and the pressure adjustment rate circuit 30i
l-j The operational amplifier 30a is integrally formed with the operational amplifier 30a as the center, and the amplifier resistor 9a is provided on the input side of the operational amplifier 30a.

29b、帰還回路に設けられた演算抵抗;30 b、お
よび出力側に設けられたインバータ;30cからtj2
つている。演算増幅器;幻aおよび演算抵抗29 a 
+ :’−95+30 b Kよって両人力の偏差をも
とに[7て圧力調定率の演1′(を行う。リミット回路
31 i1蒸気加減弁全開(第2図CVo ) k ヨ
び罎負荷開IK (氾2 図CVII )のレベルを設
定するのに用いられる。リミット回@:31の出力信号
は低11α優先回路32 K入力されるが、この低l1
li慶先回路32へのもう一つの入力? r4+るため
に自動i盲従回路34Aが設けられている。
29b, operational resistor provided in the feedback circuit; 30b, and inverter provided on the output side; 30c to tj2
It's on. Operational amplifier; phantom a and operational resistance 29a
+ : '-95 + 30 b K Therefore, based on the deviation of both manual forces, [7] Calculate the pressure adjustment rate (1'). Limit circuit 31 i1 Steam control valve fully open (Fig. 2 CVo) k Yobi load open It is used to set the level of IK (Flood 2 Figure CVII).The output signal of limit times @:31 is input to the low 11α priority circuit 32K, but this low l1
Another input to the circuit 32? An automatic i blind follower circuit 34A is provided for r4+.

この自動追従回路34 A fは、捷ず演算増幅器34
dと加俺入力用演算抵抗、34 a 、 3−1 b 
、帰還回路に設けられた演算抵抗:34 c、および演
算抵抗34 bに(α列に設けられたインバータ;34
eにより加a器;34が構成され、ここでIPR3OA
の出力信号つまりリミット回路:31の出力信号と後述
の、晴分賭40の出力・同号との差が演V1される。そ
の演算結果ケ表わすg号は互いに並列にji9続された
ブレーク接点35゜36ヲ介して加4器:37の一方の
入力端に導かれ、その他方の入力y偏には手動設定器;
39からの圧力設定信号が手動スイッチ38 (N!l
えば押しボタンスイッチ)を介して導かれる。手動設定
器:39は、圧力設定器z8ど基本的には同一構成を持
っており、定電圧源;39aとその定l梶圧を分圧する
ポテンショメータ;39bとから1に、つている。加′
算器37および積分器40は演算増幅器40aを中心と
し、それにtr++算入力相入力用演算抵抗7 a 、
 37 b kよび積分コンデンサ40bを付加して構
成されている0 積分器40の出力信号Cま、すでに述べたように加t3
器:34に導かれろと共に、自動追従回路、34Aの出
力として低値1憂先回路、32の第2の入力として用い
られ、さらに比較器4■の第1の入力として用いられる
。比l?12器41の第2の入力としてリミット回路3
1の出力信号が用いられる。比較器411−t、46分
器40の出力とリミット回路:(1の出力とを比較し、
後者が前者エリも小さいときは接点35を1イ1じたま
才とL7、主蒸気圧力が上昇し、リミット回路;31の
出力が増加し始めると前者よりも後者の方が犬きくなる
ことにより接点:35を開く。
This automatic tracking circuit 34 A f is an operational amplifier 34 without switching.
d and arithmetic resistor for inputting input, 34a, 3-1b
, the calculated resistor 34c provided in the feedback circuit, and the calculated resistor 34b (inverter provided in the α column; 34
34 is configured by e, where IPR3OA
The difference between the output signal of the limit circuit 31, that is, the output signal of the limit circuit 31, and the output of the equal bet 40, which will be described later, is expressed as V1. The signal g representing the calculation result is led to one input end of the adder 37 through break contacts 35 and 36 connected in parallel with each other, and the other input y is connected to a manual setting device;
The pressure setting signal from 39 is sent to manual switch 38 (N!l
e.g. via a push button switch). The manual setting device 39 basically has the same configuration as the pressure setting device Z8, and is connected to the constant voltage source 39a and the potentiometer 39b for dividing the constant pressure. Add
The multiplier 37 and the integrator 40 are centered around an operational amplifier 40a, and include an operational resistor 7a for inputting the tr++ calculation input phase.
The output signal C of the integrator 40, which is configured by adding 37 b k and an integrating capacitor 40b, is added to t3 as described above.
The output of the automatic follow-up circuit 34A is used as the second input of the low value 1 priority circuit 32, and is further used as the first input of the comparator 4. Comparison? Limit circuit 3 as the second input of 12 device 41
1 output signal is used. Compare the output of comparator 411-t and 46 divider 40 with the output of limit circuit: (1,
When the latter is also small in the former, contact 35 is connected to L7, the main steam pressure rises, and when the output of limit circuit 31 starts to increase, the latter becomes louder than the former. Contact: Open 35.

接点:36は比較器42によって開閉制御される。比較
器42は、低値優先回路、32の出力と速度調定率回路
17の出力とを比較し、後者よりも前者の方が大きけれ
ば接点36を閉じ、その逆の場合は接点;36全開く。
The opening and closing of the contact point 36 is controlled by a comparator 42. The comparator 42 compares the output of the low value priority circuit 32 with the output of the speed regulation rate circuit 17, and if the former is larger than the latter, it closes the contact 36, and in the opposite case, the contact 36 is fully opened. .

第4図および第5図の装置4の動作を接点35.36の
動作に着目して寸とめると次のようになる。
The operation of the device 4 shown in FIGS. 4 and 5 can be summarized as follows by focusing on the operations of the contacts 35 and 36.

モード1)主蒸気圧力Poが定格値の90%(P駒以上
でリミット回路:31の出力が上限値にあるとき、すな
わちIPRが実質的に動かない場合は、接点35゜:う
6ともに閉じており、積分器・↓Oはリミット回路、3
1の出力に等しくなるように追従動作−する。
Mode 1) When the main steam pressure Po is 90% of the rated value (P piece or more and the output of limit circuit 31 is at the upper limit value, that is, when IPR does not substantially move, both contacts 35° and 6 are closed. and the integrator ↓O is the limit circuit, 3
Follow-up operation is performed so that the output becomes equal to the output of 1.

モード2)主蒸気圧力POが定格値の90%(PA)以
下に低下し、リミット回路、31の出力が速IW制r卸
部の速度調定率回路17または負荷制限器内からの制限
信号よりも小式くなると比較器42によって1y点:う
6が開かれる。しか]2、この状態でも、積分器40ヲ
含む追従回路が動作している限り積分器40の出力がリ
ミット回路31の出力よりも小さくなることはないので
、接点35は閉じた1寸であり、[4分−器4(]はリ
ミット回路;31の出力に追従し枕ける。
Mode 2) When the main steam pressure PO drops below 90% (PA) of the rated value, the output of the limit circuit 31 is output from the speed regulation rate circuit 17 of the speed IW control section or the limit signal from within the load limiter. When the equation becomes smaller, the comparator 42 opens the 1y point: U6. 2. Even in this state, as long as the follow-up circuit including the integrator 40 is operating, the output of the integrator 40 will not become smaller than the output of the limit circuit 31, so the contact 35 remains closed. , [4 divider 4 (] is a limit circuit; it follows the output of 31 and is closed.

モード3)主蒸気圧力Poが回復し、リミット回路;3
1の出力が増加方向に変化すると積分器40の出力はリ
ミット回路:う1の出力よりも小さくなり、比較器41
け1〆点;35を開く。これにより積分器400Å力が
1りすたれることになるので、積分動作は停止する。
Mode 3) Main steam pressure Po recovers, limit circuit; 3
When the output of limit circuit 1 changes in the increasing direction, the output of integrator 40 becomes smaller than the output of limit circuit 1, and comparator 41
Ke 1〆point; open 35. As a result, one integrator force of 400 Å is lost, so the integration operation is stopped.

そのため低値優先回路32および18の出カイ宵号は積
分器40の出力信号に等しくなり、蒸気加減弁3の開度
を絞ったままの一定状態に保つことになる。
Therefore, the output signal of the low value priority circuits 32 and 18 becomes equal to the output signal of the integrator 40, and the opening degree of the steam control valve 3 is kept in a constant condition.

モード4)主蒸気圧力が回復し、手動によって蒸気加減
弁を開く場合は、千ルjノスイッチ、侶を閉じる。
Mode 4) When the main steam pressure is restored and the steam control valve is opened manually, close the 1,000-hour switch.

手動スイッチ38ヲ閉じている間は積分器40が積分動
作をし続け、蒸気加減弁3は積分器40の出力に従って
徐々に開く。
While the manual switch 38 is closed, the integrator 40 continues to perform the integrating operation, and the steam control valve 3 gradually opens in accordance with the output of the integrator 40.

モード5)積分器40の出力が速度制御部の速度調定率
回路17からの制限信号、あるいは負荷+111限器1
9からの制限信号よりも大きくなると、低値優先回路1
8の作用により、蒸気加減弁3の開度信号は速+h7調
定率回路17あるいは負イdj制限器19からの制限側
号へと移行し、この状態で比較器・12は接点:36を
閉じ、積分器40Iri加算器34の出力に追従動作し
始める。積分器40の出力と)ノミット(!i回路;3
1の出刃とが那(7い状態になると、比較器4Iは接点
35を閉じ、これで正潜運転時の状1″線に回復する。
Mode 5) The output of the integrator 40 is the limit signal from the speed regulation rate circuit 17 of the speed control section, or the load +111 limiter 1
When it becomes larger than the limit signal from 9, the low value priority circuit 1
8, the opening signal of the steam control valve 3 shifts to the speed + h7 regulation rate circuit 17 or the limit side signal from the negative idj limiter 19, and in this state, the comparator 12 closes the contact 36. , the integrator 40Iri begins to follow the output of the adder 34. The output of the integrator 40 and) Nomit (!i circuit; 3
When the blade of 1 is in the 7 state, the comparator 4I closes the contact 35, and the state is restored to the 1" line during normal diving operation.

第4図′3?よび第5図の装j直における主蒸気出方低
下時の動作は第1図の装置4の動作と同一で、あり、し
たがって、主蒸気圧力Po +出力A、出力Bおよび蒸
気加減弁3の開度c’vの相互関係(dit6図に示す
通り、時点t8.t!lt3ヲ経てそれぞれ帳小値とな
るところ捷では第3図と同一である(モード2参照)、
シかし、tz時点で主蒸気)モカPOが回1夏しjりめ
、それに応じてIPR:(OBの出力Aが増加し始めて
も積分器40の動作は停止しているので、蒸気加減弁の
開度信号(d積分器4oの出力Cとなり (モード3参
照)、t;時点で主蒸気圧力Poけ定格値の90% (
P^)まで回復し、出力′Aは蒸気加減弁Ifll循開
度・占弓 (CVo ) となる。L6′時点で手動ス
イッチ、う8を閉じて積分器・1oを積分動作させ、蒸
気加減弁開度信号全増加させる(モード4)。t7時点
で積分器40の出力Cが速度制御部あるい※1負荷制限
器19からの制限信号Bに達すると蒸気加減弁3の開度
信号は出力Bに移行する。この時点から積分器40の出
力CはIPR30Bの出力に追従し始め、ts時点で追
従動作が゛う6了する(モード5)。
Figure 4'3? The operation when the main steam output decreases during the alternation of the equipment shown in FIG. 5 is the same as the operation of the device 4 shown in FIG. Interrelationship of opening degree c'v (as shown in figure dit6, the point where each becomes the minimum value after time t8.t!lt3 is the same as in figure 3 (see mode 2),
However, at the time of tz, the main steam) Mocha PO is reduced once again, and the IPR is adjusted accordingly: (Even if the output A of OB starts to increase, the operation of the integrator 40 has stopped, so the steam The valve opening signal (d becomes the output C of the integrator 4o (see mode 3), and at time t; 90% of the main steam pressure rated value (
P^), and the output 'A becomes the steam control valve Ifll circulation opening degree (CVo). At time L6', the manual switch 8 is closed to cause the integrator 1o to perform an integral operation, and the steam control valve opening signal is fully increased (mode 4). At time t7, when the output C of the integrator 40 reaches the limit signal B from the speed control section or load limiter 19, the opening signal of the steam control valve 3 shifts to the output B. From this point on, the output C of the integrator 40 begins to follow the output of the IPR 30B, and the following operation is completed at the time ts (mode 5).

〔発明の効果〕〔Effect of the invention〕

以ト詳述したように本発明によれば、蒸気タービンに供
給される主蒸気圧力の低下によりいったん蒸気加減弁を
絞り込むと、以後主蒸気圧力が回復しても蒸気加減弁を
絞り込んだ状態に保持することができ、その間に圧力低
下の原因を究明し、回頭ないことを確認した上で、主蒸
気圧力を確認しながら蒸気加減弁を開くことができ5し
たがって、ボイラやフラッシャの故障等によって起こり
得る冷気や水の蒸気タービンへの流入を防止し、かかる
冷気や水の流入による二次災害を防止することができる
As described in detail below, according to the present invention, once the steam regulator valve is throttled due to a decrease in the main steam pressure supplied to the steam turbine, the steam regulator valve remains in the throttled state even if the main steam pressure recovers thereafter. During this time, the cause of the pressure drop can be investigated, and after confirming that there is no turning, the steam control valve can be opened while checking the main steam pressure5. It is possible to prevent cold air and water from flowing into the steam turbine, thereby preventing secondary disasters caused by such cold air and water flowing into the steam turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の入口蒸気圧力低下防止制御装置付蒸気タ
ービン制御装置lのブロック図、第2図に第1図におけ
る入口蒸気圧力低下防止制御装置!の特性を示す線図、 第3図は第1図の装作の動作特性を説明するための線i
ス1、 第4図は本発明の一実施例を示すブロック図、第5図は
第4図の装置の要部の具体構成例を示す結線図、 第6図に第4図の装置の動作特性を説明するための線図
である。 3・・・蒸気加減弁、4・・・高圧タービン、:30A
・・・入口蒸気圧力低下防止制御装置、[3・・・速度
検出用ピックアップ、15・・・速度/負荷設定器、1
6. ;49..34゜;37・・・加算渭、17・・
・速;W調定率回路、18..42・・・低値優先回路
、■9・・・負荷制限器、27・・・圧力検出器、公・
・・圧力設定器、30・・・圧力調定率回路、;(1・
・・リミット回路1.33・・・除外回路、:34A・
・・自動追従回路、35、:36・・・ブレーク接点、
38・・・手動スイッチ5,39・・手動設定器540
・・・積分器、41./12・・・比較器−出願人代理
人   猪  股     清妬 1 図 56 図
Fig. 1 is a block diagram of a conventional steam turbine control device with an inlet steam pressure drop prevention control device, and Fig. 2 shows the inlet steam pressure drop prevention control device in Fig. 1! Figure 3 is a diagram showing the characteristics of the device shown in Figure 1.
1. Fig. 4 is a block diagram showing an embodiment of the present invention, Fig. 5 is a wiring diagram showing a specific configuration example of the main parts of the device shown in Fig. 4, and Fig. 6 shows the operation of the device shown in Fig. 4. FIG. 3 is a diagram for explaining characteristics. 3...Steam control valve, 4...High pressure turbine, :30A
...Inlet steam pressure drop prevention control device, [3...Speed detection pickup, 15...Speed/load setting device, 1
6. ;49. .. 34°; 37...Additional angle, 17...
・Speed; W adjustment rate circuit, 18. .. 42...Low value priority circuit, ■9...Load limiter, 27...Pressure detector, public
...Pressure setting device, 30...Pressure adjustment rate circuit; (1.
・Limit circuit 1.33 ・Exclusion circuit: 34A・
...Automatic follow-up circuit, 35, :36...Break contact,
38...Manual switch 5, 39...Manual setting device 540
...integrator, 41. /12... Comparator - Applicant's agent Inomata Kiyoshi 1 Figure 56

Claims (1)

【特許請求の範囲】 1蒸気タービンが所定の回転速度となるよう々蒸気加減
弁開度信号を出力する速度制御回路と、入口蒸気圧力の
低下による蒸気タービンへの冷気もしくけ水の流入を防
止するために前記入口蒸気圧力が所定値よりも低下した
時に蒸気加減弁を絞り込む制御信号を出力fる入口蒸気
圧力低下防止制御装置とを備えた蒸気タービン制御装+
fにおいて、前記入口蒸気圧力が低下して回復した時に
前記入口蒸気圧力低下防止制御装置による前記蒸気加減
弁の開動作を阻止する第1の手段と、前記入口蒸気圧力
の回復時に、絞り込1れた蒸気加減弁を手動制御により
開くための第2の手段とを設けたことを特徴とする蒸気
タービン制御装置。 2前記第1の手段は、前記入口蒸気圧力低下防止制御装
置の出力制御信号を記憶する積分器を含む自動追従回路
と、この自動追従回路に記憶された信号と前記入口蒸気
圧力低下防止装置dの出力制御信号とのうちの低値の信
号を通過させる第1の低値優先回路とを含んでおり、こ
の第1の低値優先回路の出力信号と速度制御回路からの
蒸気加減弁開度信号と負荷制限器からの制限信号とのう
ちの最低イエの信号を通過させる第2の低値優先回路の
出力信号により蒸気加減弁の開度を制御することを特徴
とする特許請求の範囲第1項記載の蒸気タービン制御装
置。 3、前記第1の手段は、前記積分器の入力側に直列に設
けられた第1のブレーク接点と、この第1のブレーク接
点に並列に接続された第2のブレーク接点と、前記入口
蒸気圧力低下防止制御装置の出力信号のレベルと前記自
動追従回路に記憶された信号のレベルとを比較し、前者
が後者よりも高い時に前記第1のブレーク接点を開路す
る第1の比較器と、前記第1の低値優先回路の出力信号
レベルと@紀速度制御回路の出力信号レベルとを比較し
、前者が後者よりも低い時に前記第2のブレーク接点を
開路する第2の比較器とを含んでおり、前記第1のプレ
ー久接点と第2のブレーク接点とが共に開路することに
より前記積分器の積分動作が停止して前記自動追従回路
の自動追従機能が停止されるように1、たことを特徴と
する特許請求の範囲第2項記載の蒸気タービン制御部(
t。
[Claims] 1. A speed control circuit that outputs a steam control valve opening signal so that the steam turbine reaches a predetermined rotational speed, and prevents cold air and water from flowing into the steam turbine due to a drop in inlet steam pressure. and an inlet steam pressure drop prevention control device that outputs a control signal to throttle the steam control valve when the inlet steam pressure decreases below a predetermined value.
f, a first means for preventing the opening operation of the steam control valve by the inlet steam pressure drop prevention control device when the inlet steam pressure decreases and recovers; and second means for opening the steam control valve by manual control. 2. The first means includes an automatic follow-up circuit including an integrator that stores an output control signal of the inlet steam pressure drop prevention control device, and a signal stored in the automatic follow-up circuit and the inlet steam pressure drop prevention device d. and a first low-value priority circuit that passes a low-value signal of the output control signal, and the output signal of the first low-value priority circuit and the steam control valve opening from the speed control circuit. Claim 1, characterized in that the opening degree of the steam control valve is controlled by the output signal of a second low value priority circuit that passes the lowest signal of the signal and the limit signal from the load limiter. The steam turbine control device according to item 1. 3. The first means includes a first break contact provided in series on the input side of the integrator, a second break contact connected in parallel to the first break contact, and a second break contact provided in series on the input side of the integrator; a first comparator that compares the level of the output signal of the pressure drop prevention control device with the level of the signal stored in the automatic follow-up circuit, and opens the first break contact when the former is higher than the latter; a second comparator that compares the output signal level of the first low value priority circuit and the output signal level of the speed control circuit, and opens the second break contact when the former is lower than the latter; 1, such that when both the first play contact and the second break contact open, the integration operation of the integrator is stopped and the automatic follow-up function of the automatic follow-up circuit is stopped; The steam turbine control unit according to claim 2, characterized in that:
t.
JP12539882A 1982-07-19 1982-07-19 Steam turbine controller Granted JPS5915609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12539882A JPS5915609A (en) 1982-07-19 1982-07-19 Steam turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12539882A JPS5915609A (en) 1982-07-19 1982-07-19 Steam turbine controller

Publications (2)

Publication Number Publication Date
JPS5915609A true JPS5915609A (en) 1984-01-26
JPS622123B2 JPS622123B2 (en) 1987-01-17

Family

ID=14909144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12539882A Granted JPS5915609A (en) 1982-07-19 1982-07-19 Steam turbine controller

Country Status (1)

Country Link
JP (1) JPS5915609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281497A (en) * 1985-10-03 1987-04-14 不二製油株式会社 Production of oils and fats composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349316A (en) * 1991-05-24 1992-12-03 Matsushita Electric Ind Co Ltd Waterproof switch for electronic equipment
JPH0590757U (en) * 1992-05-07 1993-12-10 株式会社田村電機製作所 Key top structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281497A (en) * 1985-10-03 1987-04-14 不二製油株式会社 Production of oils and fats composition

Also Published As

Publication number Publication date
JPS622123B2 (en) 1987-01-17

Similar Documents

Publication Publication Date Title
KR880001189B1 (en) Steam turbine control
JPS6158644B2 (en)
CA1191231A (en) Nuclear power plant feedwater controller design
JPS6365841B2 (en)
KR840001677A (en) Bypass device for steam turbine
JPS5915609A (en) Steam turbine controller
JPS607169B2 (en) Turbine control device for driving water pump
US4306417A (en) Multiple boiler steam blending control system for an electric power plant
US4368773A (en) Boiler feed pump turbine control system
JPS6239655B2 (en)
JPH0375401A (en) Water level controller of deaerator
JPH0122521B2 (en)
JPS642762B2 (en)
US4025222A (en) Control valve unit for a hydraulic servo motor for a control valve of a turbine
JPH0243881B2 (en)
JPS6141926Y2 (en)
JPH0539703A (en) Steam turbine power generating facility
JP2000064810A (en) Control of high and low pressure bypass valve for boiler equipment
JPH04259605A (en) Stem turbine control device
SU1370260A2 (en) System for regulating extraction turbine
JPS58148205A (en) Controller of geothermal steam turbine
JPH0312203B2 (en)
JPH0127243B2 (en)
JPS6212361B2 (en)
JPS623283B2 (en)