JPS59155578A - Ocean temperature difference electric power generating system - Google Patents

Ocean temperature difference electric power generating system

Info

Publication number
JPS59155578A
JPS59155578A JP58030076A JP3007683A JPS59155578A JP S59155578 A JPS59155578 A JP S59155578A JP 58030076 A JP58030076 A JP 58030076A JP 3007683 A JP3007683 A JP 3007683A JP S59155578 A JPS59155578 A JP S59155578A
Authority
JP
Japan
Prior art keywords
water pump
temperature difference
temperature
hot water
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58030076A
Other languages
Japanese (ja)
Inventor
Mikio Takayanagi
幹男 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58030076A priority Critical patent/JPS59155578A/en
Publication of JPS59155578A publication Critical patent/JPS59155578A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To increase the amount of retrieving electric power remarkably in accordance with the seasonal fluctuation of seawater temperature by a method wherein a signal to control a water introducing amount is outputted from a control indicator, indicating the opening degree of an adjusting valve based on the temperature difference. CONSTITUTION:When the seawater temperature exceeds a design temperature, the opening degree of the adjusting valve 4 is controlled by a signal from the control indicator 11 to increase steam pressure. At the same time, the movable blades of a hot-water pump 1 and a cool water pump 8 are controlled by the water introducing amount control signal from the control indicator 11 to keep the generating output of a turbine 5 near a rating output. On the other hand, when the seawater temperature is lower than the design temperature, the adjusting valve 4 is controlled and, at the same time, the movable blades of the hot- water pump 1 and the cool water pump 8 are controlled by the water introducing amount control signal from the control indicator 11 to increase the seawater introducing amount.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は海洋温度差発電システムに係り、特に季節的
に海洋の表層温度が変動するような場合に用いられる発
電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ocean temperature difference power generation system, and particularly to a power generation system used when the surface temperature of the ocean changes seasonally.

〔発明の技術的背景〕[Technical background of the invention]

従来の海洋温度差発電システムの概略構成図を第1図に
示す。温水ポンプ1によって海洋表層から温水を取水し
て蒸発器2に送る。蒸発器2内を流れる作動流体は温水
からのエネルギを得て蒸気に変換され、蒸気止め弁3お
よび加減弁4を介してタービン5に供給される。タービ
ン5によって発電機6を動作させ発電をおこなう。ター
(ン5を動作させることによりそのエネルギを失った蒸
気は凝縮器7に導入され、冷水ポンプ8によって海洋深
層から取水された冷水によって冷却され液体となる。
FIG. 1 shows a schematic configuration diagram of a conventional ocean temperature difference power generation system. A hot water pump 1 takes hot water from the ocean surface layer and sends it to an evaporator 2. The working fluid flowing through the evaporator 2 is converted into steam by obtaining energy from hot water, and is supplied to the turbine 5 via the steam stop valve 3 and the control valve 4. A generator 6 is operated by the turbine 5 to generate electricity. The steam that has lost its energy by operating the turbine 5 is introduced into the condenser 7, where it is cooled by cold water drawn from deep in the ocean by the cold water pump 8 and becomes a liquid.

このようにして再び液体にもどった作動流体は作動流体
ポンプ9によって再び蒸発器2に送りこまれるように構
成されている。なお蒸発器2から流出する作動流体の蒸
気圧力は加減弁4によって調節されるのであるが、この
加減弁40開度を指示する信号は温水と冷水との温度差
に基づいて与えられるようになっている。すなわち海洋
表層には温度検知器10が設置されており、制御指示器
11はこの温度感知器10かもの温水温度を入力し、海
洋深層との温度差を算出して加減弁4に弁開度を指示す
る信号を出力する。この場合温度検知器1゜は海洋表層
にのみ設置されているが、これは海洋表層の温度は年間
を通して季節的に変動するが海洋深層の温度は年間を通
してほとんど一定であるためである。
The working fluid thus returned to liquid form is configured to be sent to the evaporator 2 again by the working fluid pump 9. Note that the vapor pressure of the working fluid flowing out from the evaporator 2 is regulated by the regulating valve 4, and the signal instructing the opening degree of the regulating valve 40 is given based on the temperature difference between hot water and cold water. ing. That is, a temperature sensor 10 is installed in the ocean surface layer, and the control indicator 11 inputs the hot water temperature of this temperature sensor 10, calculates the temperature difference with the deep ocean layer, and sets the valve opening degree to the control valve 4. Outputs a signal that instructs. In this case, the temperature detector 1° is installed only in the ocean surface layer, because the temperature in the ocean surface layer changes seasonally throughout the year, but the temperature in the deep ocean layer is almost constant throughout the year.

なお従来の海洋温度差発電システムでは、温水ポンプ1
および冷水ポンプ8の海水取水量は常に一定であったた
め、温水温度がある計画温度を上・廻るとぎには蒸気圧
力を高め、逆に計画温度を下廻るときには蒸気圧力を低
下せしめて蒸発器2に′おける入熱を定格近傍に保持す
るように加減9P4の開度を調節していた。
In addition, in the conventional ocean temperature difference power generation system, the hot water pump 1
Since the seawater intake amount of the cold water pump 8 was always constant, the steam pressure was increased when the hot water temperature rose above or below a certain planned temperature, and conversely, when the temperature fell below the planned temperature, the steam pressure was lowered and the evaporator 2 The opening degree of adjustment 9P4 was adjusted so as to maintain the heat input at 9' near the rated value.

〔背景技術の問題点〕[Problems with background technology]

このような従来の海洋温度差発電システムでは、海水温
度の変化想定カーブに対して発電機6の送電端出力が正
となる期間は5力月強にすぎず、定格出力をペースとし
た年間総送電端電力量の比すなわちプラントの利用率は
わずか35%程度でしかなく、経済性が損なわれるとい
う欠点があった。
In such a conventional ocean temperature difference power generation system, the period during which the sending end output of the generator 6 is positive with respect to the expected change curve of seawater temperature is only a little over 5 months, and the annual total output based on the rated output is The ratio of the amount of electricity at the transmission end, that is, the utilization rate of the plant, was only about 35%, which had the disadvantage of impairing economic efficiency.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、季節的な温水温度の変動に対応して
回収電力量の大巾な増大とプラントの利用率を増大させ
ることにより、プラントの経済性向上を計ることのでき
る海洋温度差発電システムを提供するにある。
The purpose of this invention is to dramatically increase the amount of recovered electricity and increase the utilization rate of the plant in response to seasonal fluctuations in hot water temperature, thereby improving the economic efficiency of the plant. The system is to provide.

〔発明の概要〕[Summary of the invention]

この発明では上記目的を達成するために、海洋表層から
温水を取水する温水ポンプと、海洋深層から冷水を取水
する冷水ポンプと、前記温水によってエネルギを得前記
冷水によってエネルギを失う作動流体の高エネルギ側で
その圧力を調節する加減弁と、I¥’rJ記温水と前記
冷水との温度差を検知しこの温度差に基づいて前記加減
弁の開度を指示する信号を出力する制御指示器とを具備
した海洋温度差発電システムにおいて、前記制御指示器
が前記温度差に応じてさらに取水量を制御する信号を出
力し、この取水量制御信号に応答して前記温水ポンプと
前記冷水ポンプがその取水量を増減するよう動作するこ
とを特徴とする。
In order to achieve the above object, the present invention includes a hot water pump that takes hot water from the ocean surface layer, a cold water pump that takes cold water from the deep ocean layer, and a high-energy working fluid that gains energy from the hot water and loses energy from the cold water. a control valve that adjusts the pressure on the side; and a control indicator that detects a temperature difference between the hot water and the cold water and outputs a signal instructing the opening degree of the control valve based on this temperature difference. In the ocean temperature difference power generation system, the control indicator further outputs a signal to control the amount of water intake according to the temperature difference, and in response to this water intake amount control signal, the hot water pump and the cold water pump It is characterized by operating to increase or decrease the amount of water intake.

〔発明の実施例〕[Embodiments of the invention]

以下この発明を実施例に基づいて詳細に説明する。 The present invention will be described in detail below based on examples.

第2図はこの発明の一実施例を示した概略構成図である
。なお第1図に示したと同一部分には同一符号を付して
その説明を省略する。第1図に示した従来のシステムと
異る点は、制御指示器11が加減弁4の開度を指示する
信号を出力するほかに、温水ポンプ1および冷水ポンプ
8にも取水量を制御する信号を出力する機能を備えてい
る点である。
FIG. 2 is a schematic diagram showing an embodiment of the present invention. Note that the same parts as shown in FIG. 1 are given the same reference numerals and their explanations will be omitted. The difference from the conventional system shown in FIG. 1 is that in addition to outputting a signal instructing the opening of the control valve 4, the control indicator 11 also controls the amount of water taken into the hot water pump 1 and the cold water pump 8. It has the function of outputting a signal.

制御指示器]1からの信号な受けて取水量の増減を自動
的におこなうためには温水ポンプ1および冷水ボンダ2
として可変翼式の海水ポンプを用いればよい。
[Control indicator] In order to automatically increase or decrease the amount of water intake in response to signals from the hot water pump 1 and the cold water bonder 2,
A variable vane type seawater pump may be used.

次に第2図に示すシステムの動作を説明する。Next, the operation of the system shown in FIG. 2 will be explained.

温水温度が計画温度を上廻る時には、制御指示器11か
らの信号によって加減弁4の開度が制御され蒸気圧力が
高められるのは従来と同様である。しかしこれだけの制
御ではタービン5で利用できる熱落差が過大となり発生
電力も過剰となるため、発生電力を最大でも定格の10
5%位に押えるように温水および冷水の流水量をしぼる
ことが必要となる。
When the hot water temperature exceeds the planned temperature, the opening degree of the regulating valve 4 is controlled by a signal from the control indicator 11 and the steam pressure is increased, as in the conventional case. However, with this kind of control, the heat drop that can be used by the turbine 5 becomes too large and the generated power becomes excessive.
It is necessary to reduce the flow of hot and cold water to about 5%.

制御指示器11からの取水量制御信号によって温水ポン
プ1および冷水ポンプ8はその可動翼が制御される。可
動翼式の海水ポンプは流量が低減されると所要動力も減
少するためタービン50発生出力は定格近傍に保たれた
まま、所内動力低減に9.より送電端出力は増大される
。一方温水温度が計画温度を丁廻る時には加減弁4が制
御されて蒸気圧力が温水温度の低下傾向に合せて下げら
れる点は従来と同様である。しかしこれだけではタービ
ン5で利用できる熱落差が過小となり発生電力が極度に
低下してしまう。この出力低減を防止するためには作動
流体の流量を増加させることが必要で、そのためには温
水ポンプ1および冷水ポンプ8の取水量を増す必要があ
る。
The movable blades of the hot water pump 1 and the cold water pump 8 are controlled by a water intake amount control signal from the control indicator 11. Since the movable blade type seawater pump requires less power when the flow rate is reduced, the output generated by the turbine 50 can be maintained near the rated value while reducing the in-house power.9. As a result, the output at the sending end is increased. On the other hand, when the hot water temperature is just below the planned temperature, the regulating valve 4 is controlled and the steam pressure is lowered in accordance with the decreasing tendency of the hot water temperature, which is the same as in the prior art. However, if this is done alone, the heat drop that can be used by the turbine 5 becomes too small, resulting in an extremely low power generation. In order to prevent this output reduction, it is necessary to increase the flow rate of the working fluid, and for this purpose, it is necessary to increase the amount of water taken by the hot water pump 1 and the cold water pump 8.

制御指示器11からの取水量制御信号により温水ポンプ
1および冷水ポンプ80町動翼が制闘されて海水取水量
が増加する。可動翼式の海水ポンプは流量が増すと所要
動力も増加する傾向に、らるが、所内動力の増分以上に
発電端出力が増大する期間がI珀いので、結局発電端出
力が所内勤カを上廻り送電端出力が正となる運転可能期
間は従来の発電システムに比べて長くなる。またプラン
トの利用率は:30%程度にまで増大−4−る。
The water intake amount control signal from the control indicator 11 controls the rotor blades of the hot water pump 1 and the cold water pump 80, thereby increasing the amount of seawater intake. For movable vane type seawater pumps, the required power tends to increase as the flow rate increases, but since there are many periods in which the generating end output increases more than the increment of the in-house power, the generating end output eventually becomes less than the in-house operating power. The operable period during which the sending end output is positive is longer than that of conventional power generation systems. In addition, the plant utilization rate will increase to about 30%.

第3図は従来の発市ンスアムによる場合とこの発明によ
る発電システムによる場合との出力1頃向を比較する図
である。第3図囚は月別の海水温度の変化を示した図で
あるが、この図から明かなように表層温水温度は季節的
に変動しており表層基準温度を5℃に設定した場合には
この温度を超える期間は3力月にすぎない。一方深層冷
水温度は年間を通じてほぼ一定であることがわかる。
FIG. 3 is a diagram comparing the output around 1 between the conventional power generation system and the power generation system according to the present invention. Figure 3 shows monthly changes in seawater temperature.As is clear from this figure, surface layer warm water temperature fluctuates seasonally, and when the surface layer standard temperature is set at 5℃, The period in which the temperature is exceeded is only three months. On the other hand, it can be seen that the deep cold water temperature is almost constant throughout the year.

第3図(団は発電端出力の十テ11〕変切を表わした図
で、一点鎖線は従来の発電システムによる場合を、実線
はこの発明による発電システムを用いた場合をそれぞれ
示す。図から明かなようにこの発明による場合には季節
変動による発′i!端出力の変動は極めて小さく/【っ
ている。
Figure 3 (the group shows the change in the power generation end output), where the dashed-dotted line shows the case using the conventional power generation system, and the solid line shows the case using the power generation system according to the present invention.From the figure As is clear, in the case of the present invention, fluctuations in the output output due to seasonal fluctuations are extremely small.

第3図fc)は所内勤力合計の季節別変動を示した図で
ある。表層基準温度を25Cに設定した場合の基準動力
が1600 KWである場合には、表層温水温度が25
C以下の場合に所内勤力合計が基準動力1600 KW
を超えて増大することがわかる、第3図1))は送直端
出力の季節的変動を表した図である。従来の発電システ
ムによるものを一点鎖線で、この発明によるものを実線
でそれぞれ示しである。送直端出力が正になる期間すな
わち運転可能期間は従来のシステムではたかだか5力月
にすぎなかったが、この発明によるシステムを採用する
ことにより9力月と大巾にす胃太することがわかる。
Figure 3 fc) is a diagram showing seasonal fluctuations in the total labor force at the station. If the surface layer standard temperature is set to 25C and the standard power is 1600 KW, the surface layer hot water temperature is 25C.
If C or less, the total in-house labor is the standard power of 1600 KW.
Figure 3 (1)) is a diagram showing seasonal fluctuations in the direct output. A conventional power generation system is shown by a dashed line, and a power generation system according to the present invention is shown by a solid line. In the conventional system, the period during which the direct output end is positive, that is, the operable period was only 5 months at most, but by adopting the system of this invention, the period can be increased to 9 months. Recognize.

以上の結果をまとめて示したのが第1表である。Table 1 summarizes the above results.

第1表 なお第1表は第3図に糸す出力傾向の季節別変動に対応
する一試算結果である。
Table 1 Table 1 shows the results of a trial calculation corresponding to the seasonal fluctuations in output trends shown in Figure 3.

以上説明した実施例においては温水ポンプ1および冷水
ポンプ8として可動翼式の海水ポンプを用いたが、これ
に1凝定されるものではなくモータのI隼変速制御等ン
用いた可変速式海水ポンプであってもよい3.また温水
ポンプどよび4水ポンプの制〒111だけでなく、作動
流体を循環させる作@流体ポンプ9を可変速式としてτ
品水温度に対応した回転数制御をおこ/ようことも可能
である。
In the embodiment described above, a movable blade type seawater pump was used as the hot water pump 1 and the cold water pump 8, but instead of a fixed type seawater pump, a variable speed type seawater pump using a motor I Hayabusa variable speed control etc. It may be a pump 3. In addition to controlling the hot water pump and 4-water pump 111, the fluid pump 9 that circulates the working fluid is of variable speed type.
It is also possible to control the rotation speed in accordance with the temperature of the product water.

〔発明の効果〕〔Effect of the invention〕

以り実施例に基づいて詳細に説明したように、この発明
では謡水と冷水との温度差に応じて作動流体の蒸気圧を
制御するほかに、温水と冷水の取水量をも制御するよう
に構成したので、従来の発電システムに比較して年間送
音端′心力滑が増加しプラントの利用率を向上させろこ
とができるという利点がある。したがって経済性す1よ
りち電力単価を太1]に改善させることがでさるという
優れた
As described in detail based on the embodiments, in this invention, in addition to controlling the vapor pressure of the working fluid according to the temperature difference between singing water and cold water, the intake amount of hot water and cold water is also controlled. Compared to conventional power generation systems, this system has the advantage of increasing the annual sound transmission end's stress slippage and improving the plant utilization rate. Therefore, it is an excellent method that can improve the unit price of electricity by 1 from the economical point of view.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシステムの概略構成を示す図、第2図は
この発明の一実施例による発電システムの概略構成図、
第3図は従来の発電システムとこの発明による発電シス
テムとを比較してその出カイ頃向を月別に示した図であ
る。 1・・・温水ポンプ、2・・・蒸発器、3・・・蒸気1
F、め弁、4・・・加減弁、5・・・タービン、6・・
・発電機、7・・・凝縮器、8・・・冷水ポンプ、9・
・・作動流体ポンプ、10・・・温度感知器、11・・
・制御指示器。 出願人代理人  猪 股    清
FIG. 1 is a diagram showing a schematic configuration of a conventional system, and FIG. 2 is a diagram showing a schematic configuration of a power generation system according to an embodiment of the present invention.
FIG. 3 is a diagram comparing the conventional power generation system and the power generation system according to the present invention and showing their expected output by month. 1... Hot water pump, 2... Evaporator, 3... Steam 1
F, valve, 4... control valve, 5... turbine, 6...
・Generator, 7... Condenser, 8... Cold water pump, 9.
... Working fluid pump, 10... Temperature sensor, 11...
・Control indicator. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】[Claims] (1)海洋表層から温水を取水する温水ポンプと、海洋
深層から冷水を取水する冷水ポンプと、前記温水によっ
てエネルギを得前記冷水によってエネルギを失う作業流
体の高エネルギ側でその圧力を調節する加減弁と、前記
温水と前記冷水との温度差を検知しこの温度差に基づい
て前記加減弁の開度を指示する信号を出力する制御指示
器とを具備した海洋温度差発電システムにおいて、前記
制御指示器が前記温度差に応じてさらに取水量を制御す
る信号を出力し、この取水量制御信号に応答して前記温
水ポンプと前記冷水ポンプがその取水量を増減するよう
動作することを特徴とする海洋温度差発電システム。
(1) A hot water pump that takes hot water from the ocean surface layer, a cold water pump that takes cold water from the deep ocean layer, and adjustment of the pressure on the high-energy side of the working fluid that gains energy from the hot water and loses energy from the cold water. In an ocean temperature difference power generation system comprising a valve and a control indicator that detects a temperature difference between the hot water and the cold water and outputs a signal instructing the opening degree of the adjustment valve based on this temperature difference, the control The indicator further outputs a signal for controlling the amount of water intake according to the temperature difference, and the hot water pump and the cold water pump operate to increase or decrease the amount of water taken in response to this water intake amount control signal. An ocean temperature difference power generation system.
JP58030076A 1983-02-24 1983-02-24 Ocean temperature difference electric power generating system Pending JPS59155578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030076A JPS59155578A (en) 1983-02-24 1983-02-24 Ocean temperature difference electric power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030076A JPS59155578A (en) 1983-02-24 1983-02-24 Ocean temperature difference electric power generating system

Publications (1)

Publication Number Publication Date
JPS59155578A true JPS59155578A (en) 1984-09-04

Family

ID=12293703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030076A Pending JPS59155578A (en) 1983-02-24 1983-02-24 Ocean temperature difference electric power generating system

Country Status (1)

Country Link
JP (1) JPS59155578A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781106A (en) * 1980-11-11 1982-05-21 Toshiba Corp Turbine driven by low boiling point medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781106A (en) * 1980-11-11 1982-05-21 Toshiba Corp Turbine driven by low boiling point medium

Similar Documents

Publication Publication Date Title
JPS59155578A (en) Ocean temperature difference electric power generating system
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP2000297608A (en) Control device for feed water pump of power station
GB2176248A (en) Turbine control
JPS61145305A (en) Control device for turbine plant using hot water
CN116667383B (en) Heat pump and low-adding coupling thermal power generating unit frequency modulation system and method
JPH10184316A (en) Power generation control device utilizing exhaust heat
JP2731147B2 (en) Control unit for hydroelectric power plant
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
JPS639638B2 (en)
JP2531755B2 (en) Water supply control device
JPS58133503A (en) Controller for steam generating facility
JPS6239657B2 (en)
JPH0241720B2 (en)
JPH0146684B2 (en)
SU1675584A1 (en) Method of control of axial flow pump with adjustable pitch blades
JPS5986456A (en) Operating method for rotary electric machine
CN113803707A (en) Supercritical unit double enthalpy difference correction water supply control method adapting to frequency modulation requirement
JPS6191402A (en) Condensate booster
JPS61108810A (en) Control system for water supply pump in power plant
JPS58220994A (en) Controller of variable speed feed water pump
JPH0440527B2 (en)
JPH0379601B2 (en)
JPS60198309A (en) Cooling water feeder for condenser of steam turbine plant
JPS59114318A (en) Water level regulator