JPS59155422A - Epoxy resin composition for use in filament winding - Google Patents

Epoxy resin composition for use in filament winding

Info

Publication number
JPS59155422A
JPS59155422A JP2691183A JP2691183A JPS59155422A JP S59155422 A JPS59155422 A JP S59155422A JP 2691183 A JP2691183 A JP 2691183A JP 2691183 A JP2691183 A JP 2691183A JP S59155422 A JPS59155422 A JP S59155422A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
viscosity
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2691183A
Other languages
Japanese (ja)
Other versions
JPS6248969B2 (en
Inventor
Toshimasa Fukushima
福島 利方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2691183A priority Critical patent/JPS59155422A/en
Publication of JPS59155422A publication Critical patent/JPS59155422A/en
Publication of JPS6248969B2 publication Critical patent/JPS6248969B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:The titled composition having a long pot life and a low viscosity desirable for the production of a bubble-free FRP of high resistance, comprising a specified epoxy resin, an acid anhydride curing agent and a cure accelerator. CONSTITUTION:An epoxy resin composition with a viscosity of 0.8-4.5P (40 deg.C), comprising (A) 100pts.wt. low-viscosity bisphenol F-derived opoxy resin and (B) 25-230pts.wt. phenol novolak epoxy resin of the formula and/or epoxy resin at least three glycidyl groups in the molecule (e.g., N,N,N',N'-tetraglycidyldiaminodiphenylmethane) is mixed with (C) 0.8-1.2 equivalent, per epoxy equivalent of total of components A and B, acid anhydride curing agent (e.g., methyltetrahydrophthalic anhydride) and (D) 0.1-5pts.wt. per 100pts.wt. total of components A and B, cure accelerator (e.g., 2-ethyl-4-methylimidazole.).

Description

【発明の詳細な説明】 本発明は優れた機械物性を有する繊維強化プラスチック
(以下FRPという)を製造するためのフィラメントワ
インド用エポキシ樹脂組成物GこII するもので、さ
らに詳しくは耐熱性が高く、気泡のないFRPをフィラ
メントワインド法Gこよって製造するのに好適な低粘度
で、かつポットライフの長いエポキシ樹脂組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an epoxy resin composition for filament winding for producing fiber reinforced plastics (hereinafter referred to as FRP) having excellent mechanical properties. This invention relates to an epoxy resin composition with a low viscosity and a long pot life suitable for producing bubble-free FRP using the filament winding method.

フィラメントワインド法は補強材に連続的に樹脂を含浸
させる必要があるため、使用する鉗脂としては低粘度の
液状樹脂でなければならず、また大型の成形品を製造す
るためには樹脂組成物のポットライフが長くなければな
らない、などの制約があるため、フィラメントワインド
法を実施する場合には樹脂組成物の選定が重要な課題と
なっている。特にエポキシ樹脂の場合には、低粘度でか
つポットライフの長いづm脂組成物を選定することは著
しくむずかしく、とくに耐熱性が高く、低圧成形で気泡
のないFRPを得るのに好適な樹脂組成物は殆んど知ら
れていない状態である。
Since the filament winding method requires the reinforcing material to be continuously impregnated with resin, the resin used must be a low-viscosity liquid resin, and in order to manufacture large molded products, it is necessary to use a resin composition. Due to constraints such as the need for a long pot life, selection of a resin composition is an important issue when implementing the filament winding method. Especially in the case of epoxy resins, it is extremely difficult to select a resin composition with low viscosity and a long pot life.In particular, it is extremely difficult to select a resin composition that has high heat resistance and is suitable for obtaining bubble-free FRP by low-pressure molding. The thing is almost unknown.

従来のフィラメントワインド用エポキシ樹脂組成物とし
ては、反応性希釈剤を使用したり、硬化剤(こ無水メチ
ルナジック酸あるいは液状芳香族ジアミン変性物を使用
した組成物が知られている(「Handbook of
 Fillers and Reinforcemen
ts forPlastics j Katz & M
ilewski著、Van N08trandRein
hold Company、 New York 、 
1978年第528〜529頁)。しかしながら反応性
希釈剤を使用すると、耐熱性が低下いまだ硬化剤として
無水メチルナジック酸あるいは液状芳香族ジアミン変性
物を使用すると粘度が賃<、気泡のないFRPが得にく
いという欠点を有する。さらに粘度を低下させるために
加温すれば大型成形品を製造するど充分な長いポットラ
イフを保つことが困難となる。
As conventional epoxy resin compositions for filament winding, compositions using reactive diluents and curing agents (methyl nadic anhydride or liquid aromatic diamine modified products) are known ("Handbook of
Fillers and Reinforcement
ts for Plastics j Katz & M
by ilewski, Van N08trandRein
hold company, new york,
1978, pp. 528-529). However, when a reactive diluent is used, the heat resistance is lowered, and when methylnadic anhydride or a liquid aromatic diamine modified product is used as a curing agent, the viscosity is low and it is difficult to obtain a bubble-free FRP. Furthermore, if heating is applied to lower the viscosity, it will be difficult to maintain a sufficiently long pot life, such as when producing large molded products.

また芳香族ジアミン類には発癌性をイイするものおよび
その疑のあるものがあるために残念ながら芳香族ジアミ
ン類を含む樹脂組成物は使用が太幅Qこ制限される可能
性がある。
Further, since some aromatic diamines are known to be carcinogenic or some are suspected of being carcinogenic, unfortunately, the use of resin compositions containing aromatic diamines may be severely restricted.

そこで本発明者は耐熱性が高く、気泡のないFRPをフ
ィラメントワインド法によって製造するのに好適な低粘
就でかつポットライフの長いエポキシ樹脂組成物に関し
て鋭意研究の結果、本発明を達成するに至った。
Therefore, as a result of intensive research into an epoxy resin composition with low viscosity and a long pot life, which is suitable for producing FRP with high heat resistance and no bubbles by the filament winding method, the present inventor has achieved the present invention. It's arrived.

すなわちエポキシ樹脂として低粘度のビスフェノールF
タイプエポキシ樹脂を(4)成分として用い、これに加
えて低粘度多官能のフェノールノボラツクタイプエボキ
シ樹脂および/または少なくとも3個のグリシジル基を
分子内に有するエポキシ樹脂を(B)成分として配合す
ることにより耐、熱性を向上させるものである。
In other words, low viscosity bisphenol F is used as an epoxy resin.
A type epoxy resin is used as component (4), and in addition, a low-viscosity polyfunctional phenol novolak type epoxy resin and/or an epoxy resin having at least three glycidyl groups in the molecule is blended as component (B). This improves the heat resistance and heat resistance.

本発明で使用する(B)成分の前記フェノールノボラッ
クタイプエボギシ期脂とは次の一般式で示されるエポキ
シ化合物を主要構成成分とする5エポキシ崩脂であり、
具体的にはエピコート(以下Epと略記する)−152
、Ep−1,54(いずれも油化シェルエポキシ(株)
製)を例示することができる。
The phenol novolac type epoxy fat used in the present invention as the component (B) is a 5-epoxy crumb fat whose main component is an epoxy compound represented by the following general formula,
Specifically, Epicote (hereinafter abbreviated as Ep)-152
, Ep-1, 54 (all manufactured by Yuka Shell Epoxy Co., Ltd.)
(manufactured by).

また(B)成分の少なくとも3個のグリシジル基を分子
内に有するエポキシ樹脂とは具体的には以下の樹脂を挙
げることができる。
Further, the epoxy resin having at least three glycidyl groups in the molecule of component (B) can specifically include the following resins.

N、N、N’、N’−テトラグリシジルジアミノジフェ
ニルメクン、N、N−ジグリシジル−m−アミンフェニ
ルグリシジルエーテル、N、N−ジグリシジル−p−ア
ミノフェニルグリシジエーテル、N、N、N′、N′−
テトラグリシジルメタキシリレンジアミン、N 、 N
 、 N’、N’−テトラグリシジルシクロヘキサンジ
アミン。これらはそれぞれアラルダイトMY72o(チ
バガイギー社製、商品名L YH484(東部化成(株
)製、商品名)、YDM120(東部化成(株)製、商
品名)、アラルダイ)0500(チバガイギー社製、商
品名)、TET RAD−X (三菱瓦斯化学(株〕製
、商品名)、TETRAD−Of三菱瓦痩を化学(株)
製、商品名)として市販されている。
N,N,N',N'-tetraglycidyldiaminodiphenylmecne, N,N-diglycidyl-m-amine phenylglycidyl ether, N,N-diglycidyl-p-aminophenylglycidyl ether, N,N,N' , N'-
Tetraglycidyl metaxylylene diamine, N, N
, N',N'-tetraglycidylcyclohexanediamine. These are Araldite MY72o (manufactured by Ciba Geigy Co., Ltd., trade name L YH484 (manufactured by Tobu Kasei Co., Ltd., trade name), YDM120 (manufactured by Tobu Kasei Co., Ltd., trade name), and Araldite) 0500 (manufactured by Ciba Geigy Co., Ltd., trade name). , TET RAD-X (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name), TETRAD-Of Mitsubishi Gas Chemical Co., Ltd.
It is commercially available under the trade name (trade name).

上記エポキシ樹脂は多官能であることに起因して架橋密
度が大きく、高弾性で耐熱性に優れた硬化物を形成する
。しかしながらフィラメントワインド法においては樹脂
の粘度が高いと繊維束への樹脂付着量の調節が困難であ
り、かつ気泡を容易に除去できず、逆に低すぎても繊維
束が含浸樹脂を充分保持できず、所定樹脂量の調節が困
難となる。繊維束に対する樹脂の含浸性が良好で、しか
も繊維束が含浸時持込む気泡が容易に除去できる粘度範
囲は40℃において0.8〜4.5ボイスである。
Since the epoxy resin is polyfunctional, it has a high crosslinking density and forms a cured product with high elasticity and excellent heat resistance. However, in the filament winding method, if the viscosity of the resin is high, it is difficult to control the amount of resin attached to the fiber bundle, and air bubbles cannot be easily removed.On the other hand, if the viscosity of the resin is too low, the fiber bundle cannot sufficiently retain the impregnated resin. First, it becomes difficult to adjust the predetermined amount of resin. The viscosity range at 40° C. is 0.8 to 4.5 voices, in which the fiber bundle is well impregnated with the resin and the air bubbles brought into the fiber bundle during impregnation can be easily removed.

ここで(B)成分の配合割合としては、(A)成分のビ
スフェノールFタイプエポキシ樹脂100重量部当り2
5〜280重量部がよい。すなわち25重量部未満では
耐熱性が不充分であり、一方230重量部を超すと40
゛Cでの粘度が4.5Iボイズ以上となり、粘度が高く
なりすぎて気泡のないFRPが得られないt また本発明においては(A)成分および(B)成分とと
もに(0)成分の低粘度酸無水物硬化剤および(D)成
分の硬化促進剤を配合する。
Here, the blending ratio of component (B) is 2 parts per 100 parts by weight of the bisphenol F type epoxy resin of component (A).
It is preferably 5 to 280 parts by weight. That is, if it is less than 25 parts by weight, the heat resistance will be insufficient, while if it exceeds 230 parts by weight, it will be 40 parts by weight.
The viscosity at ゛C is 4.5 I voids or more, and the viscosity is too high to obtain a bubble-free FRP.In addition, in the present invention, the low viscosity of the (0) component as well as the (A) and (B) components An acid anhydride curing agent and a curing accelerator as component (D) are blended.

(C1成分の酸無水物硬化剤としては、メチルテトラヒ
ドロ無水フタル酸、メチルへギサヒドU無水フタル酸が
あり、配合割合としては前記(A+B)成分のエポキシ
基1当量に対して0.8〜1.2当量がよい。0.8当
量未満では架橋密度が小さくなるので耐熱性などの物性
が低下し、一方1.2当量を超すと未反応の硬化剤が残
り、これが可塑的な作用をして物性を低下ぎせる。
(As the acid anhydride curing agent for the C1 component, there are methyltetrahydrophthalic anhydride and methylhegisahide U phthalic anhydride, and the blending ratio is 0.8 to 1 per equivalent of the epoxy group of the component (A + B). .2 equivalent is better. If it is less than 0.8 equivalent, the crosslinking density will be small and physical properties such as heat resistance will be deteriorated. On the other hand, if it exceeds 1.2 equivalent, unreacted curing agent will remain and this will have a plastic effect. and deteriorate the physical properties.

また(DJ酸成分硬化促進剤としては、第三級アミン類
、イミダゾール類、三弗化ホウ素錯塩類、金属石けん類
などがある。4特にポットライフ、耐熱性より2−エチ
ル−4−メチルイミダゾールが好ましく、(D)成分の
配合割合としては(A+B)成分100重量部当り0゜
】〜5重量部がよい。すなわち0.1重量部未満では反
応性が向上せず、一方5重量部を超すとポットライフが
短かくなり好ましくない。
In addition, (DJ acid component curing accelerators include tertiary amines, imidazoles, boron trifluoride complex salts, metal soaps, etc.) 4.2-ethyl-4-methylimidazole, especially for pot life and heat resistance. is preferable, and the blending ratio of component (D) is preferably 0° to 5 parts by weight per 100 parts by weight of components (A+B).In other words, if it is less than 0.1 part by weight, the reactivity will not improve; Exceeding the limit will shorten the pot life, which is not desirable.

次に本発明の、1ift成物は、補強拐としてガラス繊
維、有機繊維、炭素繊維など通常FRPの補強材として
用いられるものはすべてに使用することができる。
Next, the 1ift composition of the present invention can be used as a reinforcing material for all materials normally used as reinforcing materials for FRP, such as glass fibers, organic fibers, and carbon fibers.

本発明のエポキシ樹脂組成物は、前述の組成を有するこ
とにより耐熱性が高く、気泡のないFRPをフィラメン
トワインド法により製造するに好適な低粘度を有しかつ
ポットライフが長いので、大型のフィラメントワインド
成形品の製造に好適であり、特に自動車用板はね、駆動
軸等の用途に使次に本発明を実施例および比較例により
説明する。
The epoxy resin composition of the present invention has high heat resistance due to the above-mentioned composition, has a low viscosity suitable for manufacturing bubble-free FRP by the filament winding method, and has a long pot life, so it can be used for large filaments. This invention is suitable for manufacturing wind-molded products, and is particularly used for applications such as automobile plate springs and drive shafts.The present invention will now be described with reference to Examples and Comparative Examples.

実施例】 ビスフェノールFタイプエポキシ樹脂(油化シェルエポ
キシ(林)製Ep−8o 7、商品名)800り、フェ
ノールノボラックタイプエボキシ(歯側(油化シェルエ
ポキシ(株)製Ep−152、商品名)200り、メチ
ルテトラ−ヒドロ無水フタルr*(日立化成工業(株)
製HN −2200、商品名)865ノおよび2−エチ
ル−4−メチルイミダゾール(四国ファインケミカル(
株)製2E41MZX商品名)を十分攪拌混合し、樹脂
組成物を調製した。この樹脂組成物の40°Cにおける
B型粘度計で測定した粘度は2.1ボイスであり、かつ
ポットライフは8時間以上であった。
Examples: Bisphenol F type epoxy resin (Ep-8o 7, trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) 800, phenol novolac type epoxy (teeth side (Ep-152, trade name, manufactured by Yuka Shell Epoxy Co., Ltd.) ) 200, methyltetra-hydrophthalic anhydride r* (Hitachi Chemical Co., Ltd.)
manufactured by HN-2200, trade name) 865-no and 2-ethyl-4-methylimidazole (Shikoku Fine Chemical Co., Ltd.)
2E41MZX (trade name) manufactured by Co., Ltd.) were sufficiently stirred and mixed to prepare a resin composition. The viscosity of this resin composition measured with a B-type viscometer at 40°C was 2.1 voices, and the pot life was 8 hours or more.

次いで樹脂組成物の性能を評価するために、40℃に加
熱した該樹脂組成物にガラス繊維(旭ファイバーグラス
製、R200セ゛08、商品名、(載維直径28μ、フ
ィラメント故2000 )を連続的、。
Next, in order to evaluate the performance of the resin composition, glass fibers (manufactured by Asahi Fiberglass Co., Ltd., R200 SE 08, trade name, (fiber loading diameter 28μ, filament size 2000) were continuously added to the resin composition heated to 40°C. ,.

に浸漬させながらフィラメントワインド法により板状マ
ンドレルに巻きつけ、これを油圧プレスの熱板間に挿入
し、1〜Vcm2に加圧して120”Cで2時間硬化ざ
鴛だ。ざらに得られた硬化板を]、 50’Cのオーブ
ン中で2時間アフターキュアを行い、完全に硬化した硬
化板を得た。得られた硬化板には気泡がなく、ガラス繊
維の含有量は6o谷量チであり、TMA(サーマル・メ
カニカル・アナリシス)によるガラス転移温度Tpは1
34℃であった。
The material was wound around a plate-shaped mandrel using the filament winding method while immersed in water, and this was inserted between the hot plates of a hydraulic press, and the material was pressurized to 1 to Vcm2 and cured at 120"C for 2 hours. A rough texture was obtained. The cured board] was after-cured for 2 hours in an oven at 50'C to obtain a completely cured board.The obtained cured board was free of air bubbles and had a glass fiber content of 6o valley weight. The glass transition temperature Tp according to TMA (thermal mechanical analysis) is 1
The temperature was 34°C.

この硬化板から幅25×長さs o X /−1ざ3 
mrnの試料をつくり、JIS K−7203に準じて
測定した曲は特性は第1表の通りであった。但し測定時
の支点間の距離は5 Q IrMとした。また100℃
における保持率は70チ以上であり、すぐれた耐熱性を
有していた。
Width 25 x length s o x /-1 za 3 from this hardened plate
A sample of mrn was prepared and the characteristics of the song measured according to JIS K-7203 were as shown in Table 1. However, the distance between the supporting points during measurement was 5 Q IrM. Also 100℃
The retention rate was 70 inches or more, and it had excellent heat resistance.

実施例2 実施例1のメチルテトラヒドロ無水フタル酸の代りにメ
チルへキサヒドロ無水フタル酸(日立化成工業(株)製
、HN−5500,商品名)を8802用い、他の成分
は同様にして樹脂組成物を調製した。この樹脂Mi7I
31:物の40°CにおCプるB型粘度計で測定した粘
度は2.2ボイスで、かつポットライフは8時間以上で
あった。
Example 2 Methylhexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., HN-5500, trade name) 8802 was used in place of methyltetrahydrophthalic anhydride in Example 1, and the other components were the same as the resin composition. I prepared something. This resin Mi7I
31: The viscosity measured with a B-type viscometer at 40°C was 2.2 voices, and the pot life was 8 hours or more.

次いで実施例1と同様の条件で硬化板を得た。Then, a cured plate was obtained under the same conditions as in Example 1.

得られた硬化板には気泡はなく、ガラス繊維の含有量は
60谷量チで、TMAによるTりは143°Cであった
。一方実施例1と同様にしてJIS−に−7203に準
じて測定した曲げ特性は第1表の通りで、100°Cに
おける保持率は70係以上であり、優れた耐熱性を有し
ていた。
The obtained cured plate had no air bubbles, the content of glass fiber was 60%, and the T temperature by TMA was 143°C. On the other hand, the bending properties measured in accordance with JIS-7203 in the same manner as in Example 1 are shown in Table 1, and the retention rate at 100°C was 70 coefficient or higher, indicating excellent heat resistance. .

実施例8 Ep−8,,07800り、N、N、N’、N’−テト
ラグリシジルジアミノジフェニルメタジ(東都化成(株
)\ 製YH−484)200り、HN−220094,02
および2E4MZ5りを十分攪拌混合し、樹脂組成物を
調製した。この樹脂組成物の40″CにおけるB型粘度
計で測定した粘度は2.2ボイスであり、かつポットラ
イフは8時間以上であった。
Example 8 Ep-8, 07800, N, N, N', N'-tetraglycidyldiaminodiphenylmetadi (Toto Kasei Co., Ltd. YH-484) 200, HN-220094,02
and 2E4MZ5 were sufficiently stirred and mixed to prepare a resin composition. The viscosity of this resin composition measured with a Type B viscometer at 40''C was 2.2 voices, and the pot life was 8 hours or more.

次いで実施例1と同様の条件で硬化板を得た。Then, a cured plate was obtained under the same conditions as in Example 1.

得られた硬化板には気泡がなく、ガラス繊維の含有量は
60容量係であり、TMAによるT9は]58”Cであ
った。一方実施例1と同様にしてJISK−7203に
準じて測定した曲げ特性は第1表の通りであり、100
”Cにおける保持率は80チ以上であり、優れた耐熱性
を有していた。
The obtained cured board had no air bubbles, the glass fiber content was 60% by volume, and the T9 measured by TMA was 58"C.Meanwhile, it was measured in the same manner as in Example 1 according to JISK-7203. The bending properties obtained are shown in Table 1, and 100
The retention rate at C was 80 inches or more, and it had excellent heat resistance.

比較例1 実施例8においてN、N、N’、N’−テトラグリシジ
ルジアミノジフェニルメタンを用いず、その代りEp 
−80710007、HN−22009009および2
E4MZ5りを用い、十分攪拌混合し、樹脂組成物を調
整した。この樹脂組成物の40°C(こおけるB型粘度
計で測定した粘度は1゜7ポイズで、かつボットライフ
は8時間以上であった。
Comparative Example 1 In Example 8, Ep
-80710007, HN-22009009 and 2
Using E4MZ5, the mixture was thoroughly stirred and mixed to prepare a resin composition. The viscosity of this resin composition was 1°7 poise as measured with a Type B viscometer at 40°C, and the bot life was 8 hours or more.

次いで実施例1と同様の条件で硬化板を得た。Then, a cured plate was obtained under the same conditions as in Example 1.

得られた。硬化板には気泡がなく、ガラス繊維の含有油
は60谷量チであり、TMAによるTりは122°Cで
あった。一方実施例1と同様の試料をつくり同様にして
JIS K−7203に準じて測定した曲げ特性は第1
表の通りで、100°Cにおける保持率は60%以ドで
あり、本発明の硬化板に比べて耐熱性が劣っていた。
Obtained. There were no air bubbles in the cured board, the oil content in the glass fibers was 60%, and the T temperature by TMA was 122°C. On the other hand, a sample similar to that in Example 1 was made and the bending properties were measured in accordance with JIS K-7203.
As shown in the table, the retention rate at 100°C was 60% or more, and the heat resistance was inferior to that of the cured plate of the present invention.

比較例2 実施例1のエポキシ樹脂の代りにビスフェノールAタイ
プエポキシ樹脂(油化シェルエポキシ(株)製Ep−8
28)10009と無水メチルナジック酸(日本化薬(
株)製カヤハードMCD)900ノ、べ・ンジルジメチ
ルアミン(化工石鹸(株)BDMA)1、09を十分攪
拌混合し、樹脂組成物を調製した。
Comparative Example 2 Bisphenol A type epoxy resin (Ep-8 manufactured by Yuka Shell Epoxy Co., Ltd.) was used instead of the epoxy resin of Example 1.
28) 10009 and methylnadic anhydride (Nippon Kayaku (
Kayahard MCD) 900 (manufactured by Kayahard Co., Ltd.) and benzyl dimethylamine (BDMA, manufactured by Kako Soap Co., Ltd.) 1,09 were sufficiently stirred and mixed to prepare a resin composition.

この樹脂組成物の40°CにおけるB型粘度計で測定し
た粘度は6ボイズであり、かつポットライフは8時間以
上であった。
The viscosity of this resin composition measured with a B-type viscometer at 40°C was 6 voids, and the pot life was 8 hours or more.

次いで実施例1と同様の条件で硬化板を得た。Then, a cured plate was obtained under the same conditions as in Example 1.

得られた硬化板には、比重−繊維含有率の関係より推算
して気泡が3.5%含まれており、強度が著しく劣って
いた。
The resulting cured board contained 3.5% of air bubbles, estimated from the relationship between specific gravity and fiber content, and had significantly poor strength.

比較例3 ゛ 実施例1のエポキシ樹脂の代りに脂環式エボキ”a
i 脂、314−エポキシシクロヘキシルメチル=3.
4−エポキシシクロヘキサンカルボキシレート(ユニオ
ンカーバイド社製4221.)10009とHN −2
20011,009,2E4MZ5ノを十分攪拌混合し
、樹脂組成物を調製した。
Comparative Example 3 ゛ Alicyclic epoxy resin “a” was used instead of the epoxy resin of Example 1.
i fat, 314-epoxycyclohexylmethyl = 3.
4-Epoxycyclohexanecarboxylate (Union Carbide 4221.) 10009 and HN-2
20011,009,2E4MZ5 were sufficiently stirred and mixed to prepare a resin composition.

次いで実施例1と同様の条件で硬化板を得た。Then, a cured plate was obtained under the same conditions as in Example 1.

得られた硬化板のガラス繊維含有量は70容量チであり
、曲げ強度は22°CGこて10511%、2で、やや
低下した。
The glass fiber content of the obtained cured plate was 70% by volume, and the bending strength was 10511% (2) with a 22° CG trowel, which was slightly lower.

実施例4 Ep−807とEp−152の配合比(有量)を80=
20から30ニア0まで変化させた混合樹脂10009
と、HN−22009009および2E4MZ10gを
十分攪拌して樹脂組成物を調製した。又2,6比較のた
めにEp−807とEp−152との割合を前記80:
20〜so:’yo以外の割合にした混合樹脂1000
g100O:0又はO: 100を含む)を同様にHN
−2200,9009,2E4MZ1.0シと攪拌して
樹脂組成物を調製した。この樹脂組成物の40°Cにお
けるB型粘度計で測定した粘度および実施例1と同様の
条件で得た硬化板の100°Cにおける曲げ強度を第1
図に示す。第1図から明らかなように比較のためのEp
−15270重量部を超えた組成物になると粘度が4.
5ボイスより犬(ガラス繊維の含有量60容量係以上)
になりガラス繊維への樹脂の含浸性が切り、気泡が混入
し、気泡率が1容量チ以上になる。気泡が混入すると第
2図の如く層間剪断強度が著しく低下する。また20重
量部未満になると100°Cにおける曲げ強度保持率が
70チ以下になり耐熱性が劣る。従ってEp−152が
20〜70重量部の範囲、即ちEp−807100重量
部に対してEp−152が25〜230重量部が好まし
いことがわかる。伺この場合のガラス繊維含有率は60
容量係であった。
Example 4 The blending ratio (abundance) of Ep-807 and Ep-152 was 80=
Mixed resin 10009 varying from 20 to 30 near 0
Then, HN-22009009 and 10 g of 2E4MZ were sufficiently stirred to prepare a resin composition. 2.6 For comparison, the ratio of Ep-807 and Ep-152 was set to 80:
20~so:mixed resin 1000 in proportions other than 'yo
g100O:0 or O:100) as well as HN
A resin composition was prepared by stirring with -2200, 9009, 2E4MZ1.0. The viscosity of this resin composition measured with a B-type viscometer at 40°C and the bending strength at 100°C of a cured plate obtained under the same conditions as in Example 1 were determined as follows.
As shown in the figure. As is clear from Figure 1, Ep for comparison
-If the composition exceeds 15,270 parts by weight, the viscosity will be 4.
Dogs from 5 voices (glass fiber content 60 or more)
As a result, the impregnation of the resin into the glass fibers is reduced, air bubbles are mixed in, and the air bubble ratio becomes 1 volume or more. When air bubbles are mixed in, the interlaminar shear strength is significantly reduced as shown in FIG. If the amount is less than 20 parts by weight, the bending strength retention rate at 100°C will be 70 inches or less, resulting in poor heat resistance. Therefore, it can be seen that Ep-152 is preferably in the range of 20 to 70 parts by weight, that is, 25 to 230 parts by weight based on 100 parts by weight of Ep-807. The glass fiber content in this case is 60
He was in charge of capacity.

試験例 ガラス繊維(旭グラスファイバー製、R2220TA−
FO8)20本束に実施例1〜8、比較例1〜3の樹脂
組成物を含浸させ、マンドレルの軸方向に26層巻き、
実施例1と同様の条件で硬化することにより、第3図の
如き自動車用板ばねを試作した。板ばねのばね定数、8
0’Cでのへたり、耐久試験の結果を第2表に示す。但
し第8図において1l−110(lI、Z 2−550
 ” s W 1−80 ’+m −。
Test example Glass fiber (manufactured by Asahi Glass Fiber, R2220TA-
FO8) A bundle of 20 pieces was impregnated with the resin compositions of Examples 1 to 8 and Comparative Examples 1 to 3, and wound in 26 layers in the axial direction of the mandrel.
By curing under the same conditions as in Example 1, a prototype automobile leaf spring as shown in FIG. 3 was manufactured. Spring constant of leaf spring, 8
Table 2 shows the results of the fatigue and durability tests at 0'C. However, in Figure 8, 1l-110 (lI, Z 2-550
” s W 1-80 '+m −.

W2 ”’ 50 am、tl−1,9m弘t2−12
 IIImである。
W2 ”' 50 am, tl-1, 9m Hirot2-12
IIIm.

比較例2および8の樹脂組成物より試作したリーフスプ
リングのばね定数は、それぞれ3−4 ”’Anm、4
−2− ”’/nmであり、設計許容範囲からはずれた
ため、他の試験に供しなかった。また比較例1の樹脂組
成物より試作した板ばねは、耐久試験では圧縮側で繊維
が剥離し、ばね定数が1.5%低下するという不具合を
生じた。
The spring constants of the leaf springs prototyped from the resin compositions of Comparative Examples 2 and 8 were 3-4"'Anm and 4"'Anm, respectively.
-2- "'/nm, which was outside the design tolerance range, so it was not subjected to other tests. In addition, in the durability test, the leaf spring prototyped from the resin composition of Comparative Example 1 had fibers peeling off on the compression side. , a problem occurred in that the spring constant decreased by 1.5%.

第2表 *  60 ’Slam尻2で20日出L** 圧縮側
に繊維の剥離、はね定数1.5%低下、***IHz平
均応力45 ”lyAm2
Table 2 * 60' Slam butt 2 at 20 days L ** Fiber peeling on compression side, spring constant 1.5% decrease, *** IHz average stress 45 ”lyAm2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例4&こおけるE、−807とEp−15
2の配合率と、硬化板の]00°Cにおける曲げ強度お
よび組成物の40°Cにおける粘度の関係を示す線図、 第2図は気泡率とノー間剪断強度の関係を示す線図、 @8図1 (a)は試験例に用いた板はねの平面図、第
3図(b)は第3図(a)の板ばねの側面図である。 特許出願人 日産自動車株式会社 第1図
Figure 1 shows Example 4 & Kookeru E, -807 and Ep-15.
A diagram showing the relationship between the blending ratio of No. 2 and the bending strength at 00°C of the cured plate and the viscosity of the composition at 40°C. @8 Figure 1 (a) is a plan view of the leaf spring used in the test example, and Figure 3 (b) is a side view of the leaf spring in Figure 3 (a). Patent applicant Nissan Motor Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 L  (A)ビスフェノールFタイプエポキシ樹脂と、
(B)前記(A)成分100重量部当り25〜230M
tmのフェノールメボラツクタイプエボキシ樹脂および
メまたは少なくとも3個のグリシジル基を分子内に有す
るエポキシ樹脂と、(C)前記(A+B)成分のエポキ
シ基1帽1こ対して0゜8〜1.2当量の酸無水物硬化
剤と、■)前記(A+B)成分100重社部当り0.1
〜5重量部の硬化促進剤 とから成ることを特徴とするフィラメントワインド用エ
ポキシ樹脂組成物。
[Claims] L (A) bisphenol F-type epoxy resin;
(B) 25 to 230 M per 100 parts by weight of component (A)
tm phenolic mevolac type epoxy resin and an epoxy resin having one or at least three glycidyl groups in the molecule, and (C) 0.8 to 1.0° per 1 epoxy group of the component (A+B). 2 equivalents of an acid anhydride curing agent, and ■) 0.1 parts per 100 parts of the (A+B) component.
An epoxy resin composition for filament winding, characterized in that it comprises ~5 parts by weight of a curing accelerator.
JP2691183A 1983-02-22 1983-02-22 Epoxy resin composition for use in filament winding Granted JPS59155422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2691183A JPS59155422A (en) 1983-02-22 1983-02-22 Epoxy resin composition for use in filament winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2691183A JPS59155422A (en) 1983-02-22 1983-02-22 Epoxy resin composition for use in filament winding

Publications (2)

Publication Number Publication Date
JPS59155422A true JPS59155422A (en) 1984-09-04
JPS6248969B2 JPS6248969B2 (en) 1987-10-16

Family

ID=12206395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2691183A Granted JPS59155422A (en) 1983-02-22 1983-02-22 Epoxy resin composition for use in filament winding

Country Status (1)

Country Link
JP (1) JPS59155422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310618A (en) * 1986-06-30 1988-01-18 Mitsubishi Rayon Co Ltd Epoxy resin composition
EP0745030A1 (en) * 1994-02-14 1996-12-04 Thiokol Corporation Chemorheologically tailored matrix resin formulations containing anhydride curing agents
WO2012102202A1 (en) 2011-01-27 2012-08-02 東レ株式会社 Epoxy resin composition for resin transfer molding of fiber-reinforced composite material, fiber-reinforced composite material, and method for producing same
JP2013001767A (en) * 2011-06-14 2013-01-07 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310618A (en) * 1986-06-30 1988-01-18 Mitsubishi Rayon Co Ltd Epoxy resin composition
EP0745030A1 (en) * 1994-02-14 1996-12-04 Thiokol Corporation Chemorheologically tailored matrix resin formulations containing anhydride curing agents
EP0745030A4 (en) * 1994-02-14 1998-07-01 Thiokol Corp Chemorheologically tailored matrix resin formulations containing anhydride curing agents
WO2012102202A1 (en) 2011-01-27 2012-08-02 東レ株式会社 Epoxy resin composition for resin transfer molding of fiber-reinforced composite material, fiber-reinforced composite material, and method for producing same
US9309352B2 (en) 2011-01-27 2016-04-12 Toray Industries, Inc. Epoxy resin composition for resin transfer molding of fiber-reinforced composite material, fiber-reinforced composite material, and method for producing same
JP2013001767A (en) * 2011-06-14 2013-01-07 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material

Also Published As

Publication number Publication date
JPS6248969B2 (en) 1987-10-16

Similar Documents

Publication Publication Date Title
JP6790492B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
CN1251597A (en) Epoxy resin composition to FRP, prepreg and tubular molding produced therefrom
TW201841970A (en) Epoxy resin composition for fiber-reinforced composite materials, fiber-reinforced composite material and molded body
JPH11302507A (en) Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material
EP1302495B1 (en) Epoxy resin composition and fiber-reinforced composite material formed with the epoxy resin composition
EP3632952B1 (en) Epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material
JPH01294727A (en) Epoxy resin curing agent
JPH09217281A (en) Carbon fiber bundle for chopped strand and its production
JP4428978B2 (en) Epoxy resin composition
JP7139572B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JPS59155422A (en) Epoxy resin composition for use in filament winding
US5075356A (en) Bisphenol and neopentyl glycol diglycidyl ethers with glycidyl methacrylate copolymer
JP3498439B2 (en) Curable resin composition, molded article using the same, and method for producing the same
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JPH0643508B2 (en) Prepreg and manufacturing method thereof
JPH0967428A (en) Composite material, its production and composite material for lateral rigid part in track belt
JP7235557B2 (en) Curable resin composition and Tuprepreg using the same
JP7059000B2 (en) Curing method of epoxy resin composition
JPS59174616A (en) Epoxy resin composition and prepreg
JP3531845B2 (en) Epoxy resin composition
JP7512064B2 (en) CURABLE RESIN COMPOSITION AND TOW PREPREG USING SAME
JPWO2016143189A1 (en) tire
KR20200025746A (en) Method for manufacturing prepreg having high toughness, high strength and heat resistance characteristic, prepreg manufactured by the same
JPS596442A (en) Leaf spring of fiberglass reinforced plastics for car