JP7059000B2 - Curing method of epoxy resin composition - Google Patents

Curing method of epoxy resin composition Download PDF

Info

Publication number
JP7059000B2
JP7059000B2 JP2017250694A JP2017250694A JP7059000B2 JP 7059000 B2 JP7059000 B2 JP 7059000B2 JP 2017250694 A JP2017250694 A JP 2017250694A JP 2017250694 A JP2017250694 A JP 2017250694A JP 7059000 B2 JP7059000 B2 JP 7059000B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing
temperature
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250694A
Other languages
Japanese (ja)
Other versions
JP2019116545A (en
Inventor
力 三宅
哲也 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2017250694A priority Critical patent/JP7059000B2/en
Publication of JP2019116545A publication Critical patent/JP2019116545A/en
Application granted granted Critical
Publication of JP7059000B2 publication Critical patent/JP7059000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Description

本発明は、繊維強化複合材料に用いるエポキシ樹脂組成物の硬化方法に関する。 The present invention relates to a method for curing an epoxy resin composition used for a fiber-reinforced composite material.

従来、炭素繊維、ガラス繊維などの強化繊維と、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂からなる繊維強化複合材料は、軽量でありながら、強度や剛性などの力学特性や耐熱性、また耐食性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に応用されてきた。特に、高性能が要求される用途では、連続した強化繊維を用いた繊維強化複合材料が用いられ、強化繊維としては比強度、比弾性率に優れた炭素繊維が、そしてマトリックス樹脂としては熱硬化性樹脂、中でも特に炭素繊維との接着性に優れたエポキシ樹脂が多く用いられている。しかし、一般にエポキシ樹脂(硬化物)は脆い、すなわち靭性や伸びが低いことが欠点であるため、これをそのまま用いた繊維強化複合材料の力学特性は低くなってしまい満足するものではなかった。 Conventionally, fiber-reinforced composite materials consisting of reinforced fibers such as carbon fiber and glass fiber and thermosetting resins such as epoxy resin and phenol resin have been lightweight, but have mechanical properties such as strength and rigidity, heat resistance, and corrosion resistance. Due to its excellent properties, it has been applied to many fields such as aerospace, automobiles, railroad vehicles, ships, civil engineering and construction and sporting goods. In particular, in applications where high performance is required, a fiber-reinforced composite material using continuous reinforcing fibers is used, carbon fibers having excellent specific strength and specific elasticity as reinforcing fibers, and heat-curing as a matrix resin. Epoxy resins having excellent adhesiveness to carbon fibers are often used. However, since the epoxy resin (cured product) is generally brittle, that is, it has a drawback of low toughness and elongation, the mechanical properties of the fiber-reinforced composite material using the epoxy resin (cured product) as it is are lowered, which is not satisfactory.

エポキシ樹脂の靱性や伸びを向上させる方法として、靱性に優れるゴム成分や熱可塑性樹脂を配合する方法などが試されてきた。例えば、カルボキシル基を含有するアクリロニトリル-ブタジエンゴムのようなゴム成分をエポキシ樹脂に配合することにより、エポキシ樹脂の靱性が改善されることは1970年代から検討されており、一般によく知られている。しかしながら、ゴム成分は、耐熱性低下や弾性率低下を引き起こす上、ゴム成分による靱性改質効果を十分に得るためには、ゴム成分を多量に配合する必要がある。このため、エポキシ樹脂本来の耐熱性や力学特性が低下し、良好な物性を有する複合材料が得られないという欠点があった。 As a method for improving the toughness and elongation of an epoxy resin, a method of blending a rubber component having excellent toughness or a thermoplastic resin has been tried. For example, it has been studied since the 1970s that the toughness of an epoxy resin is improved by blending a rubber component such as acrylonitrile-butadiene rubber containing a carboxyl group with an epoxy resin, and it is generally well known. However, the rubber component causes a decrease in heat resistance and a decrease in elastic modulus, and in order to sufficiently obtain the toughness modifying effect of the rubber component, it is necessary to add a large amount of the rubber component. For this reason, there is a drawback that the inherent heat resistance and mechanical properties of the epoxy resin are deteriorated, and a composite material having good physical properties cannot be obtained.

エポキシ樹脂の硬化は、硬化剤や触媒(硬化助剤)を用いて、エポキシ環の開環を伴う付加重合や開環重合によって進行する。硬化剤としては、アミン、酸無水物、ジシアンジアミド、フェノール類など多種多用であり、目的や用途に応じて適宜選択され使用される。
その中で、ジシアンジアミドは、融点200℃以上の固体結晶であることから、潜在性硬化剤として知られ、貯蔵安定性が要求される用途で使用される。一方、100℃以上で溶解し硬化反応が開始することから、硬化温度が高温となり、繊維強化複合材料用途においてエポキシ樹脂を使用する場合、得られる硬化物の靭性等が要求物性を満たさない場合もある。
Curing of the epoxy resin proceeds by addition polymerization or ring-opening polymerization accompanied by ring-opening of the epoxy ring using a curing agent or a catalyst (curing aid). As the curing agent, amines, acid anhydrides, dicyandiamides, phenols and the like are widely used, and they are appropriately selected and used according to the purpose and use.
Among them, dicyandiamide is known as a latent curing agent because it is a solid crystal having a melting point of 200 ° C. or higher, and is used in applications requiring storage stability. On the other hand, since it melts at 100 ° C. or higher and the curing reaction starts, the curing temperature becomes high, and when an epoxy resin is used in a fiber-reinforced composite material application, the toughness of the obtained cured product may not meet the required physical characteristics. be.

また、エポキシ樹脂組成物を硬化させる際、予定の硬化温度以下の温度で予備硬化を行うプレキュアと呼ばれる操作が一般的に行われている。これは、型内での硬化時間を短くする、硬化物の発熱を制御する、または固形化することでタック性を低減し、取り扱いを容易にするために使用される技術である(特許文献1、2)。しかしながら、繊維強化複合材料に使用されるエポキシ樹脂組成物については検討されておらず、その際の硬化物の物性への影響については触れられていない。 Further, when the epoxy resin composition is cured, an operation called precure is generally performed in which pre-curing is performed at a temperature equal to or lower than the planned curing temperature. This is a technique used to shorten the curing time in the mold, control the heat generation of the cured product, or reduce the tackiness by solidifying and facilitate handling (Patent Document 1). 2). However, the epoxy resin composition used for the fiber-reinforced composite material has not been studied, and the influence on the physical properties of the cured product at that time has not been mentioned.

特開平10-279780号公報Japanese Unexamined Patent Publication No. 10-279780 特開平11-286026号公報Japanese Unexamined Patent Publication No. 11-286026

本発明では成形体製造時、特定の条件でプレキュアを行うことで、プリプレグ製造時の含浸性や貯蔵安定性に優れ、成形物の力学特性に優れる繊維強化複合材料を提供するもので、特にフィラメントワインディング法において好適に使用できる繊維強化複合材料用エポキシ樹脂組成物の硬化方法を提供するものである。 The present invention provides a fiber-reinforced composite material having excellent impregnation property and storage stability during prepreg production and excellent mechanical properties of the molded product by performing precure under specific conditions during the production of the molded body. It provides a curing method of an epoxy resin composition for a fiber reinforced composite material which can be suitably used in a winding method.

すなわち、本発明は、エポキシ樹脂(A)、ジシアンジアミド(B)及びイミダゾール系硬化助剤(C)を必須成分とするエポキシ樹脂組成物の硬化方法であって、イミダゾール系硬化助剤(C)としてエポキシ樹脂組成物をDSCにて昇温速度10℃/分の条件で測定したとき、発熱開始温度が135℃以上となるものを使用し、エポキシ樹脂組成物を90℃~140℃でプレキュアさせることを特徴とするエポキシ樹脂組成物の硬化方法である。 That is, the present invention is a method for curing an epoxy resin composition containing an epoxy resin (A), a dicyandiamide (B) and an imidazole-based curing aid (C) as essential components, as the imidazole-based curing aid (C). When the epoxy resin composition is measured by DSC at a heating rate of 10 ° C./min, the epoxy resin composition is pre-cured at 90 ° C. to 140 ° C. using a material having a heat generation start temperature of 135 ° C. or higher. It is a curing method of an epoxy resin composition characterized by.

上記硬化方法は、プレキュアを90℃~140℃で30~180分行うことが好ましく、プレキュア後に、本硬化反応をプレキュア温度より高い温度で30~120分行うことが好ましい。 In the above curing method, precure is preferably performed at 90 ° C. to 140 ° C. for 30 to 180 minutes, and after precure, the main curing reaction is preferably performed at a temperature higher than the precure temperature for 30 to 120 minutes.

本発明の別の態様は、エポキシ樹脂(A)、ジシアンジアミド(B)及びイミダゾール系硬化助剤(C)を必須成分とするエポキシ樹脂組成物と強化繊維を含む繊維強化複合材料用エポキシ樹脂組成物を硬化させて繊維強化複合材料を製造する方法であって、エポキシ樹脂組成物としてDSCにて昇温速度10℃/分の条件で測定したとき、発熱開始温度が135℃以上となるものを使用し、繊維強化複合材料用エポキシ樹脂組成物を90℃~140℃でプレキュアさせることを特徴とする繊維強化複合材料の製造方法である。更に、上記繊維強化複合材料の製造方法で得られる成形体である。 Another aspect of the present invention is an epoxy resin composition for a fiber-reinforced composite material containing an epoxy resin composition containing an epoxy resin (A), a dicyandiamide (B) and an imidazole-based curing aid (C) as essential components, and reinforcing fibers. A method for producing a fiber-reinforced composite material by curing the epoxy resin composition, which has a heat generation start temperature of 135 ° C. or higher when measured with a DSC at a temperature rise rate of 10 ° C./min. A method for producing a fiber-reinforced composite material, which comprises pre-curing an epoxy resin composition for a fiber-reinforced composite material at 90 ° C to 140 ° C. Further, it is a molded product obtained by the above-mentioned method for producing a fiber-reinforced composite material.

本発明の硬化方法によれば、プリプレグ製造時の含浸性に優れ、高い貯蔵安定性及び高い破壊靭性と伸びを両立する繊維強化複合材料用エポキシ樹脂硬化物を得る。 According to the curing method of the present invention, an epoxy resin cured product for a fiber-reinforced composite material, which has excellent impregnation property during prepreg production and has both high storage stability, high fracture toughness and elongation, can be obtained.

DSCチャートから求められる発熱開始温度と発熱ピーク温度を示すグラフである。It is a graph which shows the heat generation start temperature and the heat generation peak temperature obtained from a DSC chart.

以下、本発明の実施の形態について詳細に説明する。
本発明の硬化方法は、エポキシ樹脂(A)、ジシアンジアミド(B)及びイミダゾール系硬化助剤(C)を必須成分とするエポキシ樹脂組成物を硬化する方法であって、エポキシ樹脂組成物をプレキュア(予備加熱)した後、プレキュアよりも高温で本硬化する二段階によって硬化を行う。
イミダゾール系硬化助剤(C)として、エポキシ樹脂組成物を示差走査熱量分析(DSC)にて昇温速度10℃/分の条件で測定したとき、発熱開始温度が135℃以上となるものを使用する。
Hereinafter, embodiments of the present invention will be described in detail.
The curing method of the present invention is a method for curing an epoxy resin composition containing an epoxy resin (A), a dicyandiamide (B) and an imidazole-based curing aid (C) as essential components, and the epoxy resin composition is precure (precure). After preheating), curing is performed in two steps of main curing at a temperature higher than that of precure.
As the imidazole-based curing aid (C), an epoxy resin composition having a heat generation start temperature of 135 ° C. or higher when measured by differential scanning calorimetry (DSC) at a heating rate of 10 ° C./min is used. do.

エポキシ樹脂組成物中にエポキシ樹脂とジシアンジアミド、イミダゾールが存在する場合、その硬化反応は主にエポキシ樹脂とイミダゾールとの反応とイミダゾールを触媒としたエポキシ樹脂とジシアンジアミドとの反応が協奏的に進行する。更にエポキシ樹脂とジシアンジアミドとの反応も進行するため、その反応機構は非常に複雑なものとなる。
詳細は明らかではないが、この硬化反応を、プレキュア及び本硬化の二段階硬化とし、特定の温度及び時間で制御することにより、高い破壊靭性と伸びを両立する繊維強化複合材料用エポキシ樹脂硬化物を得ることができる。
When the epoxy resin, dicyandiamide, and imidazole are present in the epoxy resin composition, the curing reaction mainly proceeds synergistically between the reaction between the epoxy resin and imidazole and the reaction between the epoxy resin and dicyandiamide catalyzed by imidazole. Furthermore, since the reaction between the epoxy resin and dicyandiamide also proceeds, the reaction mechanism becomes very complicated.
Although the details are not clear, this curing reaction is a two-step curing of precure and main curing, and by controlling at a specific temperature and time, an epoxy resin cured product for fiber reinforced composite materials that achieves both high fracture toughness and elongation. Can be obtained.

プレキュア(予備硬化)は、本硬化反応の際の発熱を抑制するとともに、本組成物の複雑な硬化反応を温度で制御することにより、伸び、破壊靱性に優位性のある硬化反応を進行させるために行う。プレキュアは、90~140℃の任意温度、好ましくは100~130℃、より好ましくは105~125℃で、0.5~3時間の範囲の任意時間、好ましくは0.5~2時間加熱することにより行う。加熱条件は1段階でも良く、複数の加熱条件を組み合わせた多段階条件でも良い。硬化温度が90℃未満では反応が遅滞し生産性の面から好ましくなく、同様に3時間を超える硬化時間も好ましくない。また0.5時間未満の硬化時間ではプレキュアの効果が十分に発現せず、また140℃より高い硬化温度は硬化物の伸びが低下する。 Precure (pre-curing) suppresses heat generation during the main curing reaction and controls the complicated curing reaction of the present composition by temperature to promote the curing reaction having superior elongation and fracture toughness. To do. Precure should be heated at an arbitrary temperature of 90 to 140 ° C., preferably 100 to 130 ° C., more preferably 105 to 125 ° C., for any time in the range of 0.5 to 3 hours, preferably 0.5 to 2 hours. It is done by. The heating condition may be one step or a multi-step condition in which a plurality of heating conditions are combined. If the curing temperature is less than 90 ° C., the reaction is delayed, which is not preferable from the viewpoint of productivity, and similarly, the curing time exceeding 3 hours is also not preferable. Further, if the curing time is less than 0.5 hours, the effect of precure is not sufficiently exhibited, and if the curing temperature is higher than 140 ° C., the elongation of the cured product is lowered.

プレキュア後に、本硬化を行い、架橋反応により所望の硬化物を得る。本硬化は、プレキュア温度以上の任意温度、好ましくは10℃以上高い温度で、0.5~2時間の範囲の任意時間、好ましくは0.5~1時間加熱することにより、架橋反応を進行させて硬化物を得る。本硬化温度は、140~180℃、好ましくは140~160℃、より好ましくは145~155℃の温度域において適宜選択する。本硬化の加熱条件も、1段階でも良く、複数の加熱条件を組み合わせた多段階条件でも良いが、2時間を超える硬化時間は生産性の面から好ましくない。 After pre-cure, the main curing is performed, and a desired cured product is obtained by a crosslinking reaction. In this curing, the crosslinking reaction is allowed to proceed by heating at an arbitrary temperature equal to or higher than the precure temperature, preferably at a temperature higher than 10 ° C. for an arbitrary time in the range of 0.5 to 2 hours, preferably 0.5 to 1 hour. To obtain a cured product. The main curing temperature is appropriately selected in a temperature range of 140 to 180 ° C., preferably 140 to 160 ° C., more preferably 145 to 155 ° C. The heating condition of the main curing may be one-step or a multi-step condition in which a plurality of heating conditions are combined, but a curing time of more than 2 hours is not preferable from the viewpoint of productivity.

本発明の硬化方法に使用するエポキシ樹脂組成物は、エポキシ樹脂(A)、ジシアンジアミド(B)、イミダゾール系硬化助剤(C)を必須成分とする。また(D)成分としてゴム成分を含むことが好ましい。以下、エポキシ樹脂(A)、ジシアンジアミド(B)、イミダゾール系硬化助剤(C)、コアシェルゴム(D)を、それぞれ(A)成分、(B)成分、(C)成分及び(D)成分ともいう。 The epoxy resin composition used in the curing method of the present invention contains an epoxy resin (A), dicyandiamide (B), and an imidazole-based curing aid (C) as essential components. Further, it is preferable to include a rubber component as the component (D). Hereinafter, the epoxy resin (A), the dicyandiamide (B), the imidazole-based curing aid (C), and the core-shell rubber (D) are used as the components (A), (B), (C), and (D), respectively. say.

本発明で使用するエポキシ樹脂(A)の配合量は、(A)~(C)成分の合計100質量部の内、40~75質量部、好ましくは40~70質量部、より好ましくは50~70質量部である。(D)成分も含む場合、(A)~(D)成分の合計100質量部に対して、同様な配合量である。
エポキシ樹脂としては、1分子中に2つのエポキシ基を有するビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、イソホロンビスフェノール型エポキシ樹脂等のビスフェノール型エポキシ樹脂や、これらビスフェノール型エポキシ樹脂のハロゲン、アルキル置換体、水添品、単量体に限らず複数の繰り返し単位を有する高分子量体、アルキレンオキサイド付加物のグリシジルエーテルや、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂や、3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレ-ト、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、1-エポキシエチル-3,4-エポキシシクロヘキサン等の脂環式エポキシ樹脂や、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリオキシアルキレンジグリシジルエーテル等の脂肪族エポキシ樹脂や、フタル酸ジグリシジルエステルや、テトラヒドロフタル酸ジグリシジルエステルや、ダイマー酸グリシジルエステル等のグリシジルエステルや、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミン等のグリシジルアミン類等を用いることができる。これらのエポキシ樹脂中、粘度増加率の観点から1分子中に2つのエポキシ基を有するエポキシ樹脂が好ましく、それよりエポキシ基が多い多官能のエポキシ樹脂は好ましくない。その中でビスフェノールF型エポキシ樹脂が最も好ましい。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。
The blending amount of the epoxy resin (A) used in the present invention is 40 to 75 parts by mass, preferably 40 to 70 parts by mass, and more preferably 50 to 50 parts by mass, out of a total of 100 parts by mass of the components (A) to (C). It is 70 parts by mass. When the component (D) is also included, the blending amount is the same with respect to a total of 100 parts by mass of the components (A) to (D).
As the epoxy resin, a bisphenol A type epoxy resin having two epoxy groups in one molecule, a bisphenol F type epoxy resin, a bisphenol E type epoxy resin, a bisphenol S type epoxy resin, a bisphenol Z type epoxy resin, and an isophoron bisphenol type epoxy resin. Bisphenol type epoxy resins such as, halogens, alkyl substituents, hydrogenated products of these bisphenol type epoxy resins, high molecular weight bodies having multiple repeating units not limited to monomers, glycidyl ethers as alkylene oxide adducts, and phenols. Novolak type epoxy resin such as novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate , 3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1-epoxyethyl-3,4-epoxycyclohexane and other alicyclic epoxy resins, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl Aliper epoxy resins such as ethers and polyoxyalkylene diglycidyl ethers, phthalic acid diglycidyl esters, tetrahydrophthalic acid diglycidyl esters, glycidyl esters such as dimer acid glycidyl esters, tetraglycidyl diaminodiphenylmethane, tetraglycidyl diaminodiphenyl Glycidyl amines such as sulfone, triglycidylaminophenol, triglycidylaminocrezole, and tetraglycidylxylylene diamine can be used. Among these epoxy resins, an epoxy resin having two epoxy groups in one molecule is preferable from the viewpoint of the rate of increase in viscosity, and a polyfunctional epoxy resin having more epoxy groups is not preferable. Among them, the bisphenol F type epoxy resin is the most preferable. These may be used alone or in combination of two or more.

本発明で使用するエポキシ樹脂(A)は、25℃におけるE型粘度計(コーンプレートタイプ)を使用して測定した粘度が5~30Pa・sの範囲が好ましく、さらに好ましくは6~25Pa・s、より好ましくは7~20Pa・sである。これにより良好な強化繊維への含浸性を有し、含浸後にも繊維から樹脂の液垂れが起きにくいものとなる。また、エポキシ樹脂(A)は数種類の混合物でも良く、その混合物の粘度が上記範囲であることが好ましい。 The epoxy resin (A) used in the present invention preferably has a viscosity in the range of 5 to 30 Pa · s, more preferably 6 to 25 Pa · s, measured using an E-type viscometer (cone plate type) at 25 ° C. , More preferably 7 to 20 Pa · s. As a result, the reinforcing fiber has good impregnation property, and the resin does not easily drip from the fiber even after impregnation. Further, the epoxy resin (A) may be a mixture of several kinds, and the viscosity of the mixture is preferably in the above range.

エポキシ樹脂組成物には、硬化剤としてジシアンジアミド(B)が用いられる。ジシアンジアミドは常温で固体の硬化剤であり、室温ではエポキシ樹脂にほとんど溶解しないが、180℃以上まで加熱すると溶解し、エポキシ基と反応するという特性を有する室温での保存安定性に優れた潜在性硬化剤である。使用する量としてはエポキシ樹脂(A)のエポキシ当量に対して0.2~0.8当量(ジシアンジアミド1モルを4当量として計算)の範囲で配合することが好ましい。より好ましくは0.2~0.5当量である。エポキシ当量に対して0.2当量未満では硬化物の架橋密度が低くなり、破壊靱性が低くなりやすくなり、0.8当量を超えると未反応のジシアンジアミドが残りやすくなるため、機械物性が悪くなる傾向にある。 In the epoxy resin composition, dicyandiamide (B) is used as a curing agent. Diciandiamide is a solid curing agent at room temperature and hardly dissolves in epoxy resin at room temperature, but it dissolves when heated to 180 ° C or higher and has the property of reacting with epoxy groups. It has excellent storage stability potential at room temperature. It is a curing agent. The amount to be used is preferably 0.2 to 0.8 equivalents (calculated with 1 mol of dicyandiamide as 4 equivalents) with respect to the epoxy equivalent of the epoxy resin (A). More preferably, it is 0.2 to 0.5 equivalent. If it is less than 0.2 equivalents to the epoxy equivalent, the crosslink density of the cured product becomes low and the fracture toughness tends to be low, and if it exceeds 0.8 equivalents, unreacted dicyandiamide tends to remain, resulting in poor mechanical properties. There is a tendency.

エポキシ樹脂組成物は、様々な公知の方法で調整することができる。例えば、各成分をニーダーにて混練する方法がある。また、二軸の押出機を用いて混練してもよい。ジシアンジアミド(B)は、固形状態のまま各成分中に分散されるが、一度に全ての成分を混練した場合、ジシアンジアミドが凝集して分散不良となる場合がある。分散不良のエポキシ樹脂組成物は、硬化物中に物性ムラが生じたり、硬化不良を生じたりするため好ましくない。よって、ジシアンジアミドはエポキシ樹脂の一部を使用し、三本ロールにて予備混練を行い、マスターバッチとして使用することが好ましい。 The epoxy resin composition can be prepared by various known methods. For example, there is a method of kneading each component with a kneader. Further, kneading may be performed using a twin-screw extruder. The dicyandiamide (B) is dispersed in each component in a solid state, but when all the components are kneaded at once, the dicyandiamide may aggregate and cause dispersion failure. An epoxy resin composition with poor dispersion is not preferable because it causes uneven physical properties in the cured product and causes poor curing. Therefore, it is preferable to use a part of the epoxy resin for dicyandiamide, pre-knead it with three rolls, and use it as a masterbatch.

エポキシ樹脂組成物に含まれるイミダゾール系硬化助剤(C)の配合量は、ジシアンジアミド(B)の量100質量部に対し、好ましくは50~250質量部、より好ましくは50~100質量部とする。イミダゾール系硬化助剤が50質量部より少ない場合、速硬化性の発現が困難となり、250質量部より多くなると速硬化性に変化はないものの、硬化物が脆くなる傾向にある。 The blending amount of the imidazole-based curing aid (C) contained in the epoxy resin composition is preferably 50 to 250 parts by mass, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the dicyandiamide (B). .. When the amount of the imidazole-based curing aid is less than 50 parts by mass, it becomes difficult to develop the fast-curing property, and when the amount is more than 250 parts by mass, the fast-curing property does not change, but the cured product tends to be brittle.

イミダゾール系硬化助剤(C)としては、粘度増加率の抑制(保存安定性)を向上させるために、(A)、(B)及び(C)のエポキシ樹脂組成物としたときのDSC(示差走査熱量分析)発熱開始温度が135℃以上であるものを使用する。好ましくは137℃以上、より好ましくは140℃以上であるものがよい。発熱開始温度が135℃より低いと室温での保存安定性が低下するばかりでなく、含浸時に硬化反応が進行してしまい流動性向上効果が十分に発現されない。このDSC発熱開始温度は、硬化触媒としてのイミダゾール系硬化助剤(C)を配合した(A)、(B)及び(C)のエポキシ樹脂組成物を、昇温速度10℃/分の条件でDSC測定したときの時間当たりの発熱量の外挿で表される温度であり、図1にその測定法を示す。
図1において、(A)、(B)及び(C)のエポキシ樹脂組成物について、時間当たりの発熱量を外挿し、その交点を発熱開始温度と定義し、また発熱量の最大値を示す温度を発熱ピーク温度とした。
As the imidazole-based curing aid (C), in order to suppress the viscosity increase rate (storage stability), the DSC (differential difference) when the epoxy resin compositions of (A), (B) and (C) are used. Scanning calorie analysis) Use a heat generation start temperature of 135 ° C or higher. It is preferably 137 ° C. or higher, more preferably 140 ° C. or higher. If the heat generation start temperature is lower than 135 ° C., not only the storage stability at room temperature is lowered, but also the curing reaction proceeds at the time of impregnation, and the effect of improving the fluidity is not sufficiently exhibited. The DSC heat generation start temperature is the condition that the epoxy resin compositions (A), (B) and (C) containing the imidazole-based curing aid (C) as a curing catalyst are heated at a heating rate of 10 ° C./min. It is a temperature represented by the extrapolation of the calorific value per hour when DSC measurement is performed, and FIG. 1 shows the measurement method.
In FIG. 1, for the epoxy resin compositions (A), (B) and (C), the heat generation amount per hour is extrapolated, the intersection thereof is defined as the heat generation start temperature, and the temperature indicating the maximum value of the heat generation amount. Was defined as the exothermic peak temperature.

更にイミダゾール系硬化助剤(C)としては、硬化時の発熱を抑制させるために、エポキシ樹脂組成物としたときのDSC発熱ピーク温度が、好ましくは145℃~160℃、より好ましくは148℃~155℃であるものがよい。発熱ピーク温度が145℃より低いと室温での保存安定性が低下するばかりでなく、含浸時に硬化反応が進行してしまい流動性向上効果が十分に発現されない。また、160℃を超えると硬化時の硬化発熱により樹脂自体の異常発熱、分解が起こるため好ましくない。このDSC発熱ピーク温度は、硬化触媒としてのイミダゾール系硬化助剤(C)を配合したエポキシ樹脂組成物を、昇温速度10℃/分の条件でDSC測定したときの、発熱ピーク温度である。 Further, as the imidazole-based curing aid (C), in order to suppress heat generation during curing, the DSC heat generation peak temperature when the epoxy resin composition is used is preferably 145 ° C. to 160 ° C., more preferably 148 ° C. to It is preferable that the temperature is 155 ° C. If the exothermic peak temperature is lower than 145 ° C., not only the storage stability at room temperature is lowered, but also the curing reaction proceeds at the time of impregnation, and the effect of improving the fluidity is not sufficiently exhibited. Further, if the temperature exceeds 160 ° C., abnormal heat generation and decomposition of the resin itself occur due to heat generation during curing, which is not preferable. This DSC exothermic peak temperature is the exothermic peak temperature when the epoxy resin composition containing the imidazole-based curing aid (C) as a curing catalyst is measured by DSC at a heating rate of 10 ° C./min.

イミダゾール系硬化助剤(C)として、エポキシ樹脂組成物の強化繊維への含浸性に加え、硬化時における耐熱性をより満足させるためには、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが好ましい。また、発熱ピーク温度が145℃以上を示す組成となるものであれば、その他のイミダゾール系化合物を、硬化助剤成分の一部として1種又は2種以上を組み合わせて用いてもよい。例えばこれら他のイミダゾール系硬化助剤(C1)としては、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル6-4′,5′-ジヒドロキシメチルイミダゾール、1-シアノエチル-2-エチル-4メチルイミダゾール等のイミダゾール系化合物を用いることが良い。更に、トリアジン環を含有するイミダゾール化合物としては、例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン等が挙げられる。 As an imidazole-based curing aid (C), in order to further satisfy the heat resistance at the time of curing in addition to the impregnation property of the epoxy resin composition into the reinforcing fibers, 2,4-diamino-6- [2'-ethyl -4'-Methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenyl-4-methyl-5-hydroxymethylimidazole is preferred. Further, as long as the composition has a composition showing an exothermic peak temperature of 145 ° C. or higher, one or a combination of two or more of other imidazole-based compounds may be used as a part of the curing aid component. For example, other imidazole-based curing aids (C1) include 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, and 2-undecylimidazole. , 2-Heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl6-4', 5'-dihydroxymethylimidazole, 1-cyanoethyl-2-ethyl-4methylimidazole and the like. It is preferable to use a system compound. Further, examples of the imidazole compound containing a triazine ring include 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine and 2,4-diamino-6- [. 2'-Undecylimidazolyl- (1')]-ethyl-s-triazine and the like can be mentioned.

イミダゾール系硬化助剤(C)も固形であるため、分散不良を起こしやすいためジシアンジアミド(B)と同様にエポキシ樹脂の一部を使用し、三本ロールにて予備混練を行い、マスターバッチとして使用することが好ましい。 Since the imidazole-based curing aid (C) is also solid, it tends to cause poor dispersion. It is preferable to do so.

必須成分である(A)~(C)成分に、コアシェルゴム(D)を配合する場合、コアシェルゴム(D)としては、架橋されたゴム状ポリマーまたはエラストマーを主成分とする粒子状コア成分の表面に、コア成分とは異種のシェル成分ポリマーをグラフト重合することで粒子状コア成分の表面の一部あるいは全体をシェル成分で被覆したものである。 When the core-shell rubber (D) is added to the essential components (A) to (C), the core-shell rubber (D) is a particulate core component containing a crosslinked rubber-like polymer or elastomer as a main component. A part or the whole of the surface of the particulate core component is coated with the shell component by graft-polymerizing a shell component polymer different from the core component on the surface.

コアシェルゴム(D)の配合量は、エポキシ樹脂組成物100質量部中に、0.5~15質量部配合されることが好ましく、1~10質量部であればさらに好ましい。配合量が0.5質量部以上であれば、成形後の繊維強化複合材料に必要とされる破壊靭性が得られやすく、さらに、配合量が15質量部以下であれば、得られる繊維強化複合材料用エポキシ樹脂組成物の粘度が高くなることを抑え、強化繊維に無理なく含浸できるため、繊維強化複合材料用により適したものとなる。 The amount of the core-shell rubber (D) to be blended is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass in 100 parts by mass of the epoxy resin composition. When the blending amount is 0.5 parts by mass or more, the breaking toughness required for the fiber-reinforced composite material after molding can be easily obtained, and when the blending amount is 15 parts by mass or less, the obtained fiber-reinforced composite can be easily obtained. Since it suppresses the increase in viscosity of the epoxy resin composition for materials and can be impregnated into the reinforcing fibers without difficulty, it is more suitable for fiber-reinforced composite materials.

エポキシ樹脂組成物は、さらに他の安定剤、改質剤等を含んでいても良い。好ましい安定剤としては、B(OR)(但し、Rは水素原子、アルキル基あるいはアリール基を表す。)で表されるホウ酸化合物が好ましい。ホウ酸化合物の配合量は、樹脂組成物全体を100質量部に対して0.01~10質量部であり、好ましくは0.1~3質量部である。0.01質量部未満の添加量では貯蔵時の安定性を確保することができず、また10質量部を越えると硬化反応を阻害する効果のほうが大きくなってしまい、硬化不良を誘発するので好ましくない。 The epoxy resin composition may further contain other stabilizers, modifiers and the like. As a preferable stabilizer, a borate compound represented by B (OR) 3 (where R represents a hydrogen atom, an alkyl group or an aryl group) is preferable. The blending amount of the boric acid compound is 0.01 to 10 parts by mass, preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the entire resin composition. If the amount added is less than 0.01 parts by mass, stability during storage cannot be ensured, and if it exceeds 10 parts by mass, the effect of inhibiting the curing reaction becomes greater and induces curing failure, which is preferable. not.

エポキシ樹脂組成物には、添加剤として表面平滑性を向上させる目的で消泡剤、レベリング剤を添加することが可能である。これら添加剤は樹脂組成物全体を100質量部に対して0.01~3質量部、好ましくは0.01~1質量部を配合することができる。配合量が0.01質量部未満では表面を平滑にする効果が表れず、3質量部をこえると添加剤が表面にブリードアウトを起こしてしまい、逆に平滑性を損なう要因となるため好ましくない。 An antifoaming agent and a leveling agent can be added to the epoxy resin composition as an additive for the purpose of improving surface smoothness. These additives can be blended in an amount of 0.01 to 3 parts by mass, preferably 0.01 to 1 part by mass, based on 100 parts by mass of the entire resin composition. If the blending amount is less than 0.01 parts by mass, the effect of smoothing the surface does not appear, and if it exceeds 3 parts by mass, the additive causes bleed-out on the surface, which conversely causes deterioration of smoothness, which is not preferable. ..

エポキシ樹脂組成物は、上記の(A)~(C)成分等を均一に混合することにより調整される。このエポキシ樹脂組成物は、良好な強化繊維への含浸性を有し、含浸後にも繊維から樹脂の液垂れが起きにくい。さらに、室温23℃では安定で粘度変化がほとんどなく、温度40℃、大気雰囲気または不活性ガス雰囲気の条件下において、72時間経過後の粘度増加率が20%以下であり、長時間の含浸工程を有するプリプレグの製造時に安定した強化繊維への含浸性を担保できるだけでなく、保管時に増粘することがないことから、樹脂流れ性が悪くなることに起因する硬化時に空隙が少なく、表面平滑性に優れた繊維強化複合材料が得られる。 The epoxy resin composition is prepared by uniformly mixing the above-mentioned components (A) to (C) and the like. This epoxy resin composition has good impregnation property into reinforcing fibers, and the resin is less likely to drip from the fibers even after impregnation. Further, the viscosity is stable at room temperature of 23 ° C. and there is almost no change in viscosity, and the viscosity increase rate after 72 hours is 20% or less under the conditions of a temperature of 40 ° C. and an air atmosphere or an inert gas atmosphere, and the impregnation step for a long time. Not only can the impregnation property of the reinforcing fibers be stable during the production of the prepreg having the above properties be ensured, but also the viscosity does not increase during storage. Excellent fiber reinforced composite material can be obtained.

エポキシ樹脂組成物には、他の硬化性樹脂を配合することもできる。このような硬化性樹脂としては、不飽和ポリエステル樹脂、硬化性アクリル樹脂、硬化性アミノ樹脂、硬化性メラミン樹脂、硬化性ウレア樹脂、硬化性シアネートエステル樹脂、硬化性ウレタン樹脂、硬化性オキセタン樹脂、硬化性エポキシ/オキセタン複合樹脂等が挙げられるがこれらに限定されない。 Other curable resins may be added to the epoxy resin composition. Examples of such curable resins include unsaturated polyester resins, curable acrylic resins, curable amino resins, curable melamine resins, curable urea resins, curable cyanate ester resins, curable urethane resins, and curable oxetane resins. Examples thereof include, but are not limited to, a curable epoxy / oxetane composite resin.

本発明の硬化方法に使用する繊維強化複合材料用エポキシ樹脂組成物は、E型粘度計を使用して測定した粘度が好ましくは5~30Pa・s/25℃、より好ましくは6~25Pa・s/25℃、特に好ましくは7~20Pa・s/25℃である。粘度が高すぎると炭素繊維への含浸性が悪化し、粘度が低すぎる場合、ジシアンジアミドやイミダゾール系硬化助剤の沈降を招く。 The epoxy resin composition for a fiber-reinforced composite material used in the curing method of the present invention has a viscosity measured using an E-type viscometer preferably 5 to 30 Pa · s / 25 ° C, more preferably 6 to 25 Pa · s. / 25 ° C, particularly preferably 7 to 20 Pa · s / 25 ° C. If the viscosity is too high, the impregnation property into carbon fibers deteriorates, and if the viscosity is too low, dicyandiamide and imidazole-based curing aids are precipitated.

本発明のエポキシ樹脂組成物の硬化方法は、トウプリプレグ繊維強化複合材料に好適に用いられる。ここで用いられるトウプリプレグの製造方法は特に限定されないが、該エポキシ樹脂組成物をメチルエチルケトンやメタノールなどの有機溶媒に溶解させて低粘度化し、強化繊維束を浸漬させながら含浸させた後、オーブンなどを用いて有機溶媒を蒸発させてトウプリプレグとするウェット法、あるいは、有機溶媒を用いずに加熱して低粘度化した該エポキシ樹脂組成物をロールや離型紙上にフィルム化し、次いで強化繊維束の片面、あるいは両面に転写したあと、屈曲ロールあるいは圧力ロールを通すことで加圧して含浸させるホットメルト法、該エポキシ樹脂組成物を、加熱により低粘度化し、強化繊維束を浸漬させながら含浸させるフィラメントワインディング法などで製造でき、トウプリプレグ中に残留する有機溶媒が実質的に皆無であり、生産性が高く高品位なトウプリプレグが製造できることから、フィラメントワインディング法を好ましく用いることができる。このような製造法を用いることで樹脂含浸されたトウプリプレグを得ることができる。 The method for curing an epoxy resin composition of the present invention is suitably used for a tow prepreg fiber reinforced composite material. The method for producing the tow prepreg used here is not particularly limited, but the epoxy resin composition is dissolved in an organic solvent such as methyl ethyl ketone or methanol to reduce the viscosity, impregnated while immersing the reinforcing fiber bundle, and then in an oven or the like. A wet method in which an organic solvent is evaporated to form a tow prepreg using an organic solvent, or the epoxy resin composition which has been heated to a low viscosity without using an organic solvent is formed into a film on a roll or a release paper, and then a reinforcing fiber bundle is formed. A hot melt method in which the epoxy resin composition is impregnated by applying pressure through a bending roll or a pressure roll after transfer to one or both sides of the epoxy resin composition, and the epoxy resin composition is impregnated while being immersed in a reinforcing fiber bundle. The filament winding method can be preferably used because it can be produced by a filament winding method or the like, there is virtually no organic solvent remaining in the tow prepreg, and a highly productive and high-quality tow prepreg can be produced. By using such a production method, a resin-impregnated tow prepreg can be obtained.

本発明のエポキシ樹脂組成物の硬化方法において、エポキシ樹脂組成物とともに用いられる強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等から選ばれるが、強度に優れた繊維強化複合材料を得るためには炭素繊維を使用するのが好ましい。 In the curing method of the epoxy resin composition of the present invention, the reinforcing fiber used together with the epoxy resin composition is selected from glass fiber, aramid fiber, carbon fiber, boron fiber and the like, and a fiber-reinforced composite material having excellent strength is used. It is preferable to use carbon fiber for obtaining.

本発明の硬化方法によって得られるエポキシ樹脂組成物と強化繊維より構成された成形体(繊維強化複合材料)において、強化繊維の体積含有率は、好ましくは30~75%、より好ましくは45~75%であり、この範囲であると空隙が少なく、かつ強化繊維の体積含有率が高い成形体が得られるため、優れた強度の成形材料が得られる。 In the molded body (fiber reinforced composite material) composed of the epoxy resin composition obtained by the curing method of the present invention and the reinforcing fibers, the volume content of the reinforcing fibers is preferably 30 to 75%, more preferably 45 to 75. %, In this range, a molded body having few voids and a high volume content of the reinforcing fibers can be obtained, so that a molding material having excellent strength can be obtained.

以下、実施例により、本発明をさらに具体的に説明する。各実施例の樹脂組成物を得るために、下記の樹脂原料を用いた。 Hereinafter, the present invention will be described in more detail with reference to Examples. The following resin raw materials were used to obtain the resin compositions of each example.

(A)エポキシ樹脂
・液状ビスフェノールF型エポキシ樹脂:YDF-170(新日鉄住金化学株式会社製)
(エポキシ当量160~180g/eq,粘度2~5Pa・s)
・液状ビスフェノールA型エポキシ樹脂:YD-128(新日鉄住金化学株式会社製)
(エポキシ当量184~194g/eq,粘度11~15Pa・s)
(B)ジシアンジアミド
・ジシアンジアミド:DICYANEX1400F(AIRPRODUCT社製)
(C)イミダゾール系硬化助剤
・2MAOK-PW(四国化成工業製)
(D)コアシェルゴム
・MX-154(株式会社カネカ製):エポキシマスターバッチ
(コアシェルゴム配合量40wt%、BPA型エポキシ樹脂配合量60wt%、平均粒径100nm、株式会社カネカ製)
(A) Epoxy resin / Liquid bisphenol F type epoxy resin: YDF-170 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
(Epoxy equivalent 160-180 g / eq, viscosity 2-5 Pa · s)
-Liquid bisphenol A type epoxy resin: YD-128 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
(Epoxy equivalent 184 to 194 g / eq, viscosity 11 to 15 Pa · s)
(B) dicyandiamide / dicyandiamide: DICYANEX1400F (manufactured by AIRPRODUCT)
(C) Imidazole-based curing aid, 2MAOK-PW (manufactured by Shikoku Chemicals Corporation)
(D) Core shell rubber MX-154 (manufactured by Kaneka Corporation): Epoxy masterbatch (core shell rubber compounding amount 40 wt%, BPA type epoxy resin compounded amount 60 wt%, average particle size 100 nm, manufactured by Kaneka Corporation)

測定方法を以下に示す。
エポキシ当量:JIS K 7236規格に準拠して測定した。具体的には、電位差滴定装置を用い、溶媒としてテトラヒドロフランを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸-酢酸溶液を用いた。
粘度:JIS K7117-1に準じた。具体的には硬化前樹脂組成物の25℃における粘度をE型粘度計で測定した。
増粘率:40℃の熱風循環式オーブンに3日間静置した後、JIS K7177-1に準じて測定した。
反応ピーク温度:示差走査熱量測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 DSC6200)にて10℃/分の昇温条件で測定を行った時の時間辺りの発熱量が最大になったときの温度で表した。
反応開始温度:示差走査熱量測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 DSC6200)にて10℃/分の昇温条件で測定を行った時の時間当たりの発熱量の外挿で表した。
Tg:示差走査熱量測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 DSC6200)にて10℃/分の昇温条件で測定を行った時のDSC外挿値の温度で表した。
破壊靭性(K1c):ASTM E399に準じた。具体的には、幅10mm、厚み4mm、長さ50mmの試験片を作成し、室温23℃下、クロスヘッドスピード0.5 mm/分で測定した。
引張り弾性率、引張り強度、引張り伸び:JIS K7161に準じた。具体的には、万能材料試験機(島津サイエンス株式会社製 オートグラフAGS-H)を使用した。室温にて、掴み部を含めた全長215mm、幅10mm、厚み4mmの寸法のダンベル試験片を、チャック間114mm、速度50mm/min.で引張試験し、得られた応力-歪線図から引っ張り強度、引っ張り弾性率、引っ張り伸びを求めた。
The measurement method is shown below.
Epoxy equivalent: Measured according to JIS K 7236 standard. Specifically, a potentiometric titrator was used, tetrahydrofuran was used as a solvent, a brominated tetraethylammonium acetic acid solution was added, and a 0.1 mol / L perchloric acid-acetic acid solution was used.
Viscosity: According to JIS K7117-1. Specifically, the viscosity of the pre-cured resin composition at 25 ° C. was measured with an E-type viscometer.
Thickness increase rate: After allowing to stand in a hot air circulation type oven at 40 ° C. for 3 days, the measurement was carried out according to JIS K7177-1.
Reaction peak temperature: When the calorific value around the time is maximized when the measurement is performed with a differential scanning calorimetry device (EXSTAR6000 DSC6200 manufactured by SII Nanotechnology Co., Ltd.) under a temperature rise condition of 10 ° C./min. Expressed in temperature.
Reaction start temperature: It is expressed by extrapolation of the calorific value per hour when the measurement is performed under the heating condition of 10 ° C./min with a differential scanning calorimetry device (EXSTAR6000 DSC6200 manufactured by SII Nanotechnology Co., Ltd.).
Tg: Expressed as the temperature of the DSC extrapolation value when the measurement was performed with a differential scanning calorimetry device (EXSTAR6000 DSC6200 manufactured by SII Nanotechnology Co., Ltd.) under a temperature rise condition of 10 ° C./min.
Fracture toughness (K1c): According to ASTM E399. Specifically, a test piece having a width of 10 mm, a thickness of 4 mm, and a length of 50 mm was prepared, and measured at a room temperature of 23 ° C. and a crosshead speed of 0.5 mm / min.
Tensile elastic modulus, tensile strength, tensile elongation: JIS K7161 was applied. Specifically, a universal material testing machine (Autograph AGS-H manufactured by Shimadzu Science Co., Ltd.) was used. At room temperature, a dumbbell test piece having a total length of 215 mm, a width of 10 mm, and a thickness of 4 mm including the grip portion was subjected to a chuck spacing of 114 mm and a speed of 50 mm / min. The tensile strength, tensile elastic modulus, and tensile elongation were obtained from the obtained stress-strain diagram.

参考例
発熱開始温度及び反応ピーク温度の測定に使用するエポキシ樹脂組成物は、以下に従い調製した。
YD-128(A)/ジシアンジアミド(B)/イミダゾール系硬化助剤-2MAOK-PW(C)を、それぞれ、93.7/5.3/1の配合(wt%)で加え混練して、エポキシ樹脂組成物とした。示差走査熱量測定装置にて10℃/分の昇温条件で測定を行った時の時間辺りの発熱量から外挿した、イミダゾール系硬化助剤の発熱開始温度及び発熱ピーク温度はそれぞれ143℃と154℃であった。
Reference Example The epoxy resin composition used for measuring the heat generation start temperature and the reaction peak temperature was prepared according to the following.
YD-128 (A) / dicyandiamide (B) / imidazole-based curing aid-2MAOK-PW (C) were added in a formulation (wt%) of 93.7 / 5.3 / 1, respectively, and kneaded to make an epoxy. It was made into a resin composition. The exothermic start temperature and exothermic peak temperature of the imidazole-based curing aid extrapolated from the calorific value around the time when the measurement was performed under the heating condition of 10 ° C./min with the differential scanning calorimeter were 143 ° C., respectively. It was 154 ° C.

実施例1~7、比較例1,2
(1)エポキシ樹脂組成物の調製
YDF-170(A)/DICYANEX1400F(B)/2MAOK-PW(C)/MX-154(D)を、それぞれ、69.7/5.3/3/25の配合(重量部)で加え、THINKY PLANETARY VACUUM MIXER(株式会社シンキー社製)を用いて2000rpm、4.0mmhgの条件下で6分混練して、エポキシ樹脂組成物を調製した。(B)ジシアンジアミドは、エポキシ樹脂(A)の一部と予備混練したものを使用し、(D)コアシェルゴムもコアシェルポリマーの製造過程でエポキシ樹脂(A)中に分散したマスターバッチを使用した。調整されたエポキシ樹脂組成物のゴム含率は、10重量%であった。また、初期粘度は6.8mPa・s/25℃、40℃3日後の粘度は7.2 mPa・s/25℃であり増粘率は5.9%であった。
調整されたエポキシ樹脂組成物は、粘度、増粘率が低く、プリプレグ製造時の含浸性、貯蔵安定性も優れていた。
Examples 1 to 7, Comparative Examples 1 and 2.
(1) Preparation of Epoxy Resin Composition YDF-170 (A) / DICYANEX1400F (B) / 2MAOK-PW (C) / MX-154 (D) were added to 69.7 / 5.3 / 3/25, respectively. The epoxy resin composition was prepared by adding by compounding (part by weight) and kneading with THINKY PLANETARY VACUUM MIXER (manufactured by Shinky Co., Ltd.) at 2000 rpm for 6 minutes under the condition of 4.0 mmhg. As (B) dicyandiamide, a pre-kneaded product with a part of the epoxy resin (A) was used, and (D) a masterbatch in which the core-shell rubber was also dispersed in the epoxy resin (A) in the process of producing the core-shell polymer was used. The rubber content of the adjusted epoxy resin composition was 10% by weight. The initial viscosity was 6.8 mPa · s / 25 ° C., the viscosity after 3 days at 40 ° C. was 7.2 mPa · s / 25 ° C., and the thickening rate was 5.9%.
The prepared epoxy resin composition had low viscosity and thickening rate, and was excellent in impregnation property and storage stability during prepreg production.

(2)試験片の作製
上記(1)で調整したエポキシ樹脂組成物を、80℃の温度に加熱して、モールドに注入し、50℃の温度のオーブンで3/分で所定の温度まで昇温後、表1に示す種々のプレュア温度・時間およびポストキュア(本硬化)温度・時間の条件で硬化して、厚さ4mmのエポキシ樹脂硬化物の板を作製した。次に、得られたエポキシ樹脂硬化物の板を切り出して試験分析に使用した。結果を合わせて表1に示す。
(2) Preparation of test piece The epoxy resin composition prepared in (1) above is heated to a temperature of 80 ° C., poured into a mold, and raised to a predetermined temperature in an oven at a temperature of 50 ° C. at 3 / min. After warming, it was cured under various conditions of pureer temperature / time and post-cure (main curing) temperature / time shown in Table 1 to prepare a plate of a cured epoxy resin having a thickness of 4 mm. Next, a plate of the obtained cured epoxy resin was cut out and used for test analysis. The results are also shown in Table 1.


Figure 0007059000000001
Figure 0007059000000001

Claims (1)

エポキシ樹脂(A)、ジシアンジアミド(B)及びイミダゾール系硬化助剤(C)を必須成分とし、溶剤を含有しないエポキシ樹脂組成物と強化繊維を含む繊維強化複合材料用エポキシ樹脂組成物を硬化させて繊維強化複合材料を製造する方法であって、エポキシ樹脂組成物としてDSCにて昇温速度10℃/分の条件で測定したとき、発熱開始温度が135℃以上となるものを使用し、繊維強化複合材料用エポキシ樹脂組成物を90℃~140℃でプレキュアを30~180分行い、プレキュア後に、本硬化反応をプレキュア温度より高い温度140~160℃で30~120分行うことを特徴とする繊維強化複合材料の製造方法。 Epoxy resin (A), dicyandiamide (B) and imidazole-based curing aid (C) are used as essential components, and a solvent-free epoxy resin composition and an epoxy resin composition for a fiber-reinforced composite material containing reinforcing fibers are cured. A method for producing a fiber-reinforced composite material, in which an epoxy resin composition having a heat generation start temperature of 135 ° C. or higher when measured with a DSC at a temperature rise rate of 10 ° C./min is used to reinforce the fibers . A fiber characterized in that the epoxy resin composition for a composite material is pre-cured at 90 ° C. to 140 ° C. for 30 to 180 minutes, and after the pre-cure, the main curing reaction is carried out at a temperature 140 to 160 ° C. higher than the pre-cure temperature for 30 to 120 minutes. A method for manufacturing a reinforced composite material.
JP2017250694A 2017-12-27 2017-12-27 Curing method of epoxy resin composition Active JP7059000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250694A JP7059000B2 (en) 2017-12-27 2017-12-27 Curing method of epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250694A JP7059000B2 (en) 2017-12-27 2017-12-27 Curing method of epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2019116545A JP2019116545A (en) 2019-07-18
JP7059000B2 true JP7059000B2 (en) 2022-04-25

Family

ID=67304048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250694A Active JP7059000B2 (en) 2017-12-27 2017-12-27 Curing method of epoxy resin composition

Country Status (1)

Country Link
JP (1) JP7059000B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7432331B2 (en) * 2019-09-25 2024-02-16 日清紡ケミカル株式会社 Method of curing epoxy resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265371A (en) 2009-05-14 2010-11-25 Toray Ind Inc Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP2012116146A (en) 2010-12-02 2012-06-21 Sekisui Chem Co Ltd Insulating sheet and multilayer structure
JP2017101227A (en) 2015-11-20 2017-06-08 三菱ケミカル株式会社 Epoxy resin composition, and molding, prepreg and fiber-reinforced plastic prepared therewith

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG158772A1 (en) * 2008-07-25 2010-02-26 Sumitomo Bakelite Co Liquid resin composition, semiconductor chip with an adhesive layer, method of producing such materials, and semiconductor devices
JP6813317B2 (en) * 2016-09-20 2021-01-13 積水化学工業株式会社 How to reinforce or repair fiber reinforced plastic prepregs and objects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265371A (en) 2009-05-14 2010-11-25 Toray Ind Inc Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP2012116146A (en) 2010-12-02 2012-06-21 Sekisui Chem Co Ltd Insulating sheet and multilayer structure
JP2017101227A (en) 2015-11-20 2017-06-08 三菱ケミカル株式会社 Epoxy resin composition, and molding, prepreg and fiber-reinforced plastic prepared therewith

Also Published As

Publication number Publication date
JP2019116545A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6292345B2 (en) Molding materials and fiber reinforced composite materials
TWI778041B (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and molded body
JP7186711B2 (en) Curable resin composition and Tuprepreg using the same
JP7055045B2 (en) Epoxy resin composition, epoxy resin impregnated tow prepreg and carbon fiber reinforced plastic
JP2019048954A (en) Epoxy resin composition and fiber-reinforced composite material
JP6995779B2 (en) Curable epoxy resin composition and fiber reinforced composite material using it
TW201942179A (en) Epoxy resin having oxazolidinone structure, producing method, epoxy resin composition, fiber reinforced composite material and molded body having an oxazolidinone structure excellent in adhesiveness
JP7059000B2 (en) Curing method of epoxy resin composition
JP7178850B2 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and molded article
JP2020138989A (en) Curing agent composition for thermosetting resin, and thermosetting resin composition, inorganic reinforced composite resin composition and molding including the same
JP7161482B2 (en) Curable epoxy resin composition and fiber-reinforced composite material using the same
JP7182370B2 (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material, and molded article
JP7235557B2 (en) Curable resin composition and Tuprepreg using the same
JP3354707B2 (en) Epoxy resin composition
JP4344662B2 (en) Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition
JP2021161239A (en) Method for curing epoxy resin composition, and method for manufacturing molding using the same
JP2022039264A (en) Epoxy resin composition, tow prepreg and fiber-reinforced composite material
JP2022039265A (en) Epoxy resin composition, tow prepreg and fiber-reinforced composite material
JP2022154652A (en) epoxy resin composition
JP2023149614A (en) Epoxy resin composition, fiber-reinforced composite material, and molding
JP2020070336A (en) Epoxy resin composition, molding material, and fiber-reinforced composite material
WO2018207509A1 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220413

R150 Certificate of patent or registration of utility model

Ref document number: 7059000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150