JP2022039265A - Epoxy resin composition, tow prepreg and fiber-reinforced composite material - Google Patents

Epoxy resin composition, tow prepreg and fiber-reinforced composite material Download PDF

Info

Publication number
JP2022039265A
JP2022039265A JP2020144205A JP2020144205A JP2022039265A JP 2022039265 A JP2022039265 A JP 2022039265A JP 2020144205 A JP2020144205 A JP 2020144205A JP 2020144205 A JP2020144205 A JP 2020144205A JP 2022039265 A JP2022039265 A JP 2022039265A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
component
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020144205A
Other languages
Japanese (ja)
Inventor
紘也 土田
Hiroya Tsuchida
正博 都築
Masahiro Tsuzuki
啓之 平野
Hiroyuki Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020144205A priority Critical patent/JP2022039265A/en
Publication of JP2022039265A publication Critical patent/JP2022039265A/en
Pending legal-status Critical Current

Links

Abstract

To provide an epoxy resin composition which enables production of a cured product that has excellent deformability and fracture toughness, and excellent heat resistance, water resistance and speed curability, and a tow prepreg and a fiber-reinforced composite material using the epoxy resin composition.SOLUTION: An epoxy resin composition contains all of the following components [A] to [E], and satisfies conditions [a] and [b]. [A]: The epoxy resin contains at least [A1] and [A2]: [A1] a bisphenol type epoxy resin, and [A2] a bifunctional aliphatic epoxy resin containing straight chain or branched alkylene and cycloalkyl alkylene groups. [B]: carboxyl group-terminated butadiene nitrile rubber. [C]: core-shell type rubber particles. [D]: dicyandiamide. [E]: aromatic urea. [a]: Hansen solubility parameter of the component [A2] is 9.0 to 9.8(cal/cm3)05. [b]: a ratio of a molar number of the component [D] to a molar number of an urea group of the component [E] is 2.0-9.0.SELECTED DRAWING: None

Description

本発明は、スポーツ用途、一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたトウプリプレグおよび繊維強化複合材料に関するものである。 The present invention relates to an epoxy resin composition preferably used as a matrix resin of a fiber-reinforced composite material suitable for sports use and general industrial use, and a tow prepreg and a fiber-reinforced composite material using the same as a matrix resin.

エポキシ樹脂組成物は、高い耐熱性、接着性、および機械強度に優れるという特徴を生かし、繊維強化複合材料のマトリックス樹脂として汎用される。繊維強化複合材料の製造には、搬送や形状付与の容易さから、あらかじめマトリックス樹脂を強化繊維に含浸させた中間基材が多用される。中間基材の形態としてはマトリックス樹脂を含浸した強化繊維をシート状に配列させたプリプレグや、強化繊維にマトリックス樹脂を含浸した、トウプリプレグ、ヤーンプリプレグなどの細幅の中間基材(以下、トウプリプレグ)などが挙げられる。 The epoxy resin composition is widely used as a matrix resin for a fiber-reinforced composite material by taking advantage of its features of high heat resistance, adhesiveness, and mechanical strength. In the production of the fiber-reinforced composite material, an intermediate base material in which the reinforcing fibers are impregnated in advance with a matrix resin is often used because of the ease of transportation and shape-impartment. The form of the intermediate base material is a prepreg in which reinforcing fibers impregnated with a matrix resin are arranged in a sheet shape, or a narrow intermediate base material such as a tow prepreg or a yarn prepreg in which the reinforcing fibers are impregnated with a matrix resin (hereinafter referred to as tow). Prepreg) and the like.

自動車部材をはじめとする一般産業用途への中間基材の適用拡大に伴い、繊維強化複合材料の長期耐久性、耐熱性、耐水性の向上が望まれている。長期耐久性の向上には、マトリックス樹脂(エポキシ樹脂)の変形能力と破壊靱性の向上が必要となる。また、耐水性の向上には、吸水性の低減が必要となる。また、耐熱性の向上には、ガラス転移点温度の向上が必要となる。 With the expansion of the application of intermediate base materials to general industrial applications such as automobile parts, it is desired to improve the long-term durability, heat resistance, and water resistance of fiber-reinforced composite materials. In order to improve long-term durability, it is necessary to improve the deformability and fracture toughness of the matrix resin (epoxy resin). Further, in order to improve the water resistance, it is necessary to reduce the water absorption. Further, in order to improve the heat resistance, it is necessary to improve the glass transition point temperature.

さらに、高い生産性の要求から、エポキシ樹脂の硬化速度を高めることも求められている。 Further, due to the demand for high productivity, it is also required to increase the curing speed of the epoxy resin.

特許文献1には、コアシェル型ゴム粒子を多量に含むエポキシ樹脂組成物を用い、トウプリプレグの表面品位と破壊靱性を向上させる技術が開示されている。 Patent Document 1 discloses a technique for improving the surface quality and fracture toughness of a tow prepreg by using an epoxy resin composition containing a large amount of core-shell type rubber particles.

特許文献2には、エポキシ樹脂に不溶なゴム成分を含む微粒子と1~2官能のエポキシ樹脂を併用し、硬化物の靱性を高める低粘度のエポキシ樹脂組成物が開示されている。 Patent Document 2 discloses a low-viscosity epoxy resin composition in which fine particles containing a rubber component insoluble in an epoxy resin and a 1-2 functional epoxy resin are used in combination to increase the toughness of the cured product.

特許文献3には、低粘度のエポキシ樹脂とコアシェル型ゴム粒子を併用し、エポキシ樹脂硬化物の破壊靱性値を高めたトウプリプレグ向けのエポキシ樹脂組成物が記載されている。 Patent Document 3 describes an epoxy resin composition for tow prepreg in which a low-viscosity epoxy resin and a core-shell type rubber particle are used in combination to increase the fracture toughness value of a cured epoxy resin product.

国際公開第2017/099060号International Publication No. 2017/09960 特開平9-227693号公報Japanese Unexamined Patent Publication No. 9-227693 特開2011-157491号公報Japanese Unexamined Patent Publication No. 2011-157491

特許文献1に記載のエポキシ樹脂組成物は、コアシェル型ゴム粒子を多量に含むため、エポキシ樹脂硬化物の機械特性が十分ではなかった。また、変形能力の向上に関する言及はない。 Since the epoxy resin composition described in Patent Document 1 contains a large amount of core-shell type rubber particles, the mechanical properties of the cured epoxy resin have not been sufficient. In addition, there is no mention of improving the deformability.

特許文献2および3に記載のエポキシ樹脂組成物は、比較的高い破壊靱性を示すが、エポキシ樹脂組成物に1~2官能のエポキシ樹脂を多用しており、架橋が不十分なためか、変形能力と耐熱性が低いものであった。 The epoxy resin compositions described in Patent Documents 2 and 3 show relatively high breaking toughness, but they are deformed probably because the epoxy resin composition uses a large amount of a 1-2 functional epoxy resin and the cross-linking is insufficient. It had low capacity and heat resistance.

本発明は、かかる従来技術の欠点を改良し、優れた変形能力と破壊靱性を示し、かつ、耐水性、耐熱性、速硬化性にも優れる硬化物を得ることができるエポキシ樹脂組成物、および、該エポキシ樹脂組成物と強化繊維からなるトウプリプレグ、ならびに該トウプリプレグを硬化させてなる繊維強化複合材料を提供することを目的とする。 The present invention is an epoxy resin composition capable of improving the drawbacks of the prior art, exhibiting excellent deformation ability and breaking toughness, and obtaining a cured product having excellent water resistance, heat resistance, and quick curing property, and an epoxy resin composition. It is an object of the present invention to provide a tow prepreg composed of the epoxy resin composition and reinforcing fibers, and a fiber-reinforced composite material obtained by curing the tow prepreg.

本発明者らは、上記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見出し、本発明を完成させるに至った。すなわち、本発明のエポキシ樹脂組成物は、次の成分[A]~[E]を全て含み、条件[a]および[b]を満たす。
[A]:少なくとも[A1]および[A2]を含む、エポキシ樹脂
[A1]:ビスフェノール型エポキシ樹脂
[A2]:下記化学式(I)で表され、かつ、化学式(I)中のXが下記(1)または(2)のいずれかを満たす、2官能の脂肪族エポキシ樹脂
As a result of diligent studies to solve the above problems, the present inventors have found an epoxy resin composition having the following constitution, and have completed the present invention. That is, the epoxy resin composition of the present invention contains all of the following components [A] to [E] and satisfies the conditions [a] and [b].
[A]: Epoxy resin [A1] including at least [A1] and [A2]: Bisphenol type epoxy resin [A2]: Represented by the following chemical formula (I), and X in the chemical formula (I) is as follows ( Bifunctional aliphatic epoxy resin satisfying either 1) or (2)

Figure 2022039265000001
Figure 2022039265000001

(1)炭素数4~10の直鎖または分岐のアルキレン
(2)炭素数4~10のシクロアルキルアルキレン
[B]:カルボキシル基末端ブタジエンニトリルゴム
[C]:コアシェル型ゴム粒子
[D]:ジシアンジアミド
[E]:芳香族ウレア
[a]:成分[A2]のHansen溶解度パラメーターが9.0~9.8(cal/cm0.5
[b]:成分[E]のウレア基のモル数に対する、成分[D]のモル数の比が2.0~9.0
(1) Linear or branched alkylene having 4 to 10 carbon atoms (2) Cycloalkylalkylene [B] having 4 to 10 carbon atoms: carboxyl group-terminated butadiene nitrile rubber [C]: core-shell type rubber particles [D]: dicyandiamide [E]: Aromatic urea [a]: Hansen solubility parameter of component [A2] is 9.0 to 9.8 (cal / cm 3 ) 0.5 .
[B]: The ratio of the number of moles of the component [D] to the number of moles of the urea group of the component [E] is 2.0 to 9.0.

本発明によれば、優れた変形能力と破壊靱性を示し、かつ、耐水性、耐熱性、速硬化性に優れる硬化物を得ることが可能なエポキシ樹脂組成物を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an epoxy resin composition which exhibits excellent deformation ability and fracture toughness, and can obtain a cured product having excellent water resistance, heat resistance, and quick curing property.

本発明は、次の構成を有するものである。すなわち、次の成分[A]~[E]を全て含み、条件[a]および[b]を満たすエポキシ樹脂組成物である。
[A]:少なくとも[A1]および[A2]を含む、エポキシ樹脂
[A1]:ビスフェノール型エポキシ樹脂
[A2]:下記化学式(I)で表され、かつ、化学式(I)中のXが下記(1)または(2)のいずれかを満たす、2官能の脂肪族エポキシ樹脂
The present invention has the following configuration. That is, it is an epoxy resin composition containing all of the following components [A] to [E] and satisfying the conditions [a] and [b].
[A]: Epoxy resin [A1] including at least [A1] and [A2]: Bisphenol type epoxy resin [A2]: Represented by the following chemical formula (I), and X in the chemical formula (I) is as follows ( Bifunctional aliphatic epoxy resin satisfying either 1) or (2)

Figure 2022039265000002
Figure 2022039265000002

(1)炭素数4~10の直鎖または分岐のアルキレン
(2)炭素数4~10のシクロアルキルアルキレン
[B]:カルボキシル基末端ブタジエンニトリルゴム
[C]:コアシェル型ゴム粒子
[D]:ジシアンジアミド
[E]:芳香族ウレア
[a]:成分[A2]のHansen溶解度パラメーターが9.0~9.8(cal/cm0.5
[b]:成分[E]のウレア基のモル数に対する、成分[D]のモル数の比が2.0~9.0。
(1) Linear or branched alkylene having 4 to 10 carbon atoms (2) Cycloalkylalkylene [B] having 4 to 10 carbon atoms: carboxyl group-terminated butadiene nitrile rubber [C]: core-shell type rubber particles [D]: dicyandiamide [E]: Aromatic urea [a]: Hansen solubility parameter of component [A2] is 9.0 to 9.8 (cal / cm 3 ) 0.5 .
[B]: The ratio of the number of moles of the component [D] to the number of moles of the urea group of the component [E] is 2.0 to 9.0.

本発明における成分[A1]は、ビスフェノール型エポキシ樹脂である。ビスフェノール型エポキシ樹脂は、比較的安価でありながら、それを主剤として得られるエポキシ樹脂硬化物の力学特性や耐熱性のバランスに優れるため、エポキシ樹脂の主剤として広く用いられる。 The component [A1] in the present invention is a bisphenol type epoxy resin. The bisphenol type epoxy resin is widely used as the main agent of the epoxy resin because it is relatively inexpensive and has an excellent balance of mechanical properties and heat resistance of the cured epoxy resin obtained by using it as the main agent.

かかる成分[A1]としては、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などが挙げられる。これらを単独で用いても、複数種を組み合わせてもよい。 Specific examples of the component [A1] include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin. These may be used alone or in combination of two or more.

かかる成分[A1]のうち、上記ビスフェノールA型エポキシ樹脂の市販品としては、“jER”(登録商標)828、1001、1007(以上、三菱ケミカル(株)製)などが挙げられる。また、上記ビスフェノールF型エポキシ樹脂の市販品としては、“EPICLON”(登録商標)830、807(以上、DIC(株)製)、“jER”(登録商標)806、4007P(以上、三菱ケミカル(株)製)、“エポトート”(登録商標)YDF-2001(東都化成(株)製)などが挙げられる。また、上記ビスフェノールS型エポキシ樹脂の市販品としては、“EPICLON”(商標登録)EXA-1514、“EPICLON”EXA-1517(以上、DIC(株)製)、YL7487、YL7459(以上、三菱ケミカル(株)製)などが挙げられる。 Among such components [A1], examples of commercially available bisphenol A type epoxy resins include "jER" (registered trademark) 828, 1001, 1007 (all manufactured by Mitsubishi Chemical Corporation). Commercially available products of the above bisphenol F type epoxy resin include "EPICLON" (registered trademark) 830, 807 (above, manufactured by DIC Corporation), "jER" (registered trademark) 806, 4007P (above, Mitsubishi Chemical (above, Mitsubishi Chemical Corporation)). (Made by Toto Kasei Co., Ltd.), “Epototo” (registered trademark) YDF-2001 (manufactured by Toto Kasei Co., Ltd.), and the like. Commercially available products of the above bisphenol S type epoxy resin include "EPICLON" (registered trademark) EXA-1514, "EPICLON" EXA-1517 (above, manufactured by DIC Corporation), YL7487, YL7459 (above, Mitsubishi Chemical (above, Mitsubishi Chemical Corporation)). Made by Co., Ltd.).

本発明における成分[A1]は、エポキシ樹脂組成物の粘度をトウプリプレグ用マトリックス樹脂としてより好適なものにできるため、25℃で液状であるビスフェノール型エポキシ樹脂であることが好ましい。中でも、価格と、硬化物の力学特性、耐熱性のバランスに優れたエポキシ樹脂組成物を得られることから、25℃で液状のビスフェノールA型エポキシ樹脂を含むことがより好ましい。 The component [A1] in the present invention is preferably a bisphenol type epoxy resin that is liquid at 25 ° C. because the viscosity of the epoxy resin composition can be made more suitable as the matrix resin for tow prepreg. Above all, it is more preferable to contain a bisphenol A type epoxy resin that is liquid at 25 ° C. because an epoxy resin composition having an excellent balance between price, mechanical properties of the cured product, and heat resistance can be obtained.

本発明において成分[A1]は、後述の成分[A2]、成分[B]、成分[C]の効果を損なわない範囲で含まれる。 In the present invention, the component [A1] is included within a range that does not impair the effects of the component [A2], the component [B], and the component [C] described later.

本発明における成分[A2]は、下記化学式(I)で表され、かつ、化学式(I)中のXが下記(1)または(2)のいずれかを満たす、2官能の脂肪族エポキシ樹脂である(以下、下記化学式(I)で表され、かつ、化学式(I)中のXが下記(1)または(2)のいずれかを満たす、2官能の脂肪族エポキシ樹脂を2官能の脂肪族エポキシ樹脂や成分[A2]と記載することもある)。 The component [A2] in the present invention is a bifunctional aliphatic epoxy resin represented by the following chemical formula (I) and in which X in the chemical formula (I) satisfies either of the following (1) or (2). A bifunctional aliphatic epoxy resin represented by the following chemical formula (I) and in which X in the chemical formula (I) satisfies any of the following (1) or (2) is a bifunctional aliphatic. It may also be described as epoxy resin or component [A2]).

Figure 2022039265000003
Figure 2022039265000003

(1)炭素数4~10の直鎖または分岐のアルキレン
(2)炭素数4~10のシクロアルキルアルキレン。
(1) Linear or branched alkylene having 4 to 10 carbon atoms (2) Cycloalkyl alkylene having 4 to 10 carbon atoms.

かかる成分[A2]の具体例としては、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、1,8-オクタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテルなどが挙げられる。 Specific examples of such component [A2] include 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 1,8-octanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and cyclohexanedi. Examples thereof include methanol diglycidyl ether.

かかる成分[A2]の市販品としては、“デナコール”(登録商標)EX-214(1,4-ブタンジオールジグリシジルエーテル、ナガセケムテックス(株)製)、“Araldite”(登録商標)DY-026(1,4-ブタンジオールジグリシジルエーテル、ハンツマン・ジャパン(株)製)、“デナコール”(登録商標)EX-212(1,6-ヘキサンジオールジグリシジルエーテル、ナガセケムテックス(株)製)、“アデカレジン”(登録商標)ED-503(1,6-ヘキサンジオールジグリシジルエーテル、ADEKA(株)製)、“デナコール”(登録商標)EX-211(ネオペンチルグリコールジグリシジルエーテル、ナガセケムテックス(株)製)、“アデカレジン”(登録商標)ED-523(ネオペンチルグリコールジグリシジルエーテル、ADEKA(株)製)、“デナコール”(登録商標)EX-216(シクロヘキサンジメタノールジグリシジルエーテル、ナガセケムテックス(株)製)、“リカレジン”(登録商標)DME-100(シクロヘキサンジメタノールジグリシジルエーテル、新日本理化(株)製)などが挙げられる。 Commercially available products of such component [A2] include "Denacol" (registered trademark) EX-214 (1,4-butanediol diglycidyl ether, manufactured by Nagase ChemteX Corporation), "Araldite" (registered trademark) DY-. 026 (1,4-butanediol diglycidyl ether, manufactured by Huntsman Japan Co., Ltd.), "Denacol" (registered trademark) EX-212 (1,6-hexanediol diglycidyl ether, manufactured by Nagase ChemteX Corporation) , "Adecaledin" (registered trademark) ED-503 (1,6-hexanediol diglycidyl ether, manufactured by ADEKA Co., Ltd.), "Denacol" (registered trademark) EX-211 (neopentyl glycol diglycidyl ether, Nagasechemtex) ED-523 (Neopentyl glycol diglycidyl ether, ADEKA Co., Ltd.), "Denacol" (registered trademark) EX-216 (cyclohexanedimethanol diglycidyl ether, Nagase) Chemtex Co., Ltd.), "Ricaresin" (registered trademark) DME-100 (cyclohexanedimethanol diglycidyl ether, Shin Nihon Rika Co., Ltd.) and the like can be mentioned.

本発明におけるエポキシ樹脂組成物は、全エポキシ樹脂100質量部中に、成分[A2]を2~18質量部含むことが好ましく、3~15質量部含むことがより好ましく、4~15質量部含むことがさらに好ましい。上記範囲を満たすことで、引張破断伸度、靱性値と耐熱性、吸水性低減効果のバランスを好ましいものにできる。 The epoxy resin composition in the present invention preferably contains 2 to 18 parts by mass of the component [A2], more preferably 3 to 15 parts by mass, and 4 to 15 parts by mass in 100 parts by mass of the total epoxy resin. Is even more preferable. By satisfying the above range, the balance between tensile elongation at break, toughness value and heat resistance, and water absorption reducing effect can be preferably achieved.

本発明における[A2]のHansen溶解度パラメーターは、9.0~9.8(cal/cm0.5である。[A2]のHansen溶解度パラメーターが9.0(cal/cm0.5未満だと耐熱性が不足し、9.8(cal/cm0.5を超えると吸水性低減効果が不足する。 The Hansen solubility parameter of [A2] in the present invention is 9.0 to 9.8 (cal / cm 3 ) 0.5 . If the Hansen solubility parameter of [A2] is less than 9.0 (cal / cm 3 ) 0.5 , the heat resistance is insufficient, and if it exceeds 9.8 (cal / cm 3 ) 0.5 , the water absorption reducing effect is insufficient. do.

ここで、Hansen溶解度パラメーター(HSP)とは、分散力成分(δ)、極性成分(δ)、水素結合成分(δ)の3成分で表現される溶解パラメーターの一種である。HSPは、下記式(1)から算出することができ、単位は1(cal/cm0.5=2.05(MPa)0.5に従って、SI単位系に換算可能である。 Here, the Hansen solubility parameter (HSP) is a kind of dissolution parameter represented by three components, a dispersion force component (δ d ), a polar component (δ p ), and a hydrogen bond component (δ h ). HSP can be calculated from the following formula (1), and the unit can be converted into SI unit system according to 1 (cal / cm 3 ) 0.5 = 2.05 (MPa) 0.5 .

Figure 2022039265000004
Figure 2022039265000004

HSPは物質同士の親和性の目安となるパラメーターであり、2成分のHSPの差が小さいほど相溶性が高まることが経験的に知られている。本発明では、水のHSPからより離れたHSPを持ち、水との相溶性が低い脂肪族エポキシ樹脂、すなわち、より疎水性の高い脂肪族エポキシ樹脂を含むことで、エポキシ樹脂硬化物の吸水性を効果的に低減した。 HSP is a parameter that serves as a measure of affinity between substances, and it is empirically known that the smaller the difference between the two components of HSP, the higher the compatibility. In the present invention, the water-absorbing product of the cured epoxy resin is contained by containing an aliphatic epoxy resin having an HSP farther from the HSP of water and having low compatibility with water, that is, an aliphatic epoxy resin having higher hydrophobicity. Was effectively reduced.

HSPは、コンピュータソフトウェアHansen Solubility Parameter in Practice(HSPiP)(http://www.hansen-solubility.com)を用いることにより、成分の化学構造から、25℃における値を一義的に算出することができる。本発明では、[A2]のHSPを、HSPiPver.5.0.06(映像工房クエスチョン社販売品)を用いて算出した。 The HSP can be uniquely calculated from the chemical structure of the component at 25 ° C. by using the computer software Hansen Solubility Parameter in Practice (HSPiP) (http://www.hansen-solubility.com). .. In the present invention, the HSP of [A2] is referred to as HSPiPver. It was calculated using 5.0.06 (a product sold by Video Studio Question Co., Ltd.).

本発明における成分[B]は、カルボキシル基末端ブタジエンニトリルゴムである。成分[B]をエポキシ樹脂組成物に配合することにより、エポキシ樹脂硬化物の靱性値を効果的に高めることができる。 The component [B] in the present invention is a carboxyl group-terminated butadiene nitrile rubber. By blending the component [B] into the epoxy resin composition, the toughness value of the cured epoxy resin can be effectively increased.

かかる成分[B]の市販品としては、“Hypro”(登録商標)1300X31、“Hypro”(登録商標)1300X13、“Hypro”(登録商標)1300X13NA、“Hypro”(登録商標)1300X8(以上、CVC Thermoset Specialties社製)などを使用することができる。 Commercially available products of such component [B] include "Hypro" (registered trademark) 1300X31, "Hypro" (registered trademark) 1300X13, "Hypro" (registered trademark) 1300X13NA, and "Hypro" (registered trademark) 1300X8 (hereinafter, CVC). (Manufactured by Thermoset Specialties) and the like can be used.

本発明における成分[C]は、コアシェル型ゴム粒子である。成分[C]をエポキシ樹脂組成物に含有することにより、エポキシ樹脂硬化物の耐熱性を低下させることなく、靭性値を高めることができる。 The component [C] in the present invention is a core-shell type rubber particle. By containing the component [C] in the epoxy resin composition, the toughness value can be increased without lowering the heat resistance of the cured epoxy resin.

ここで、コアシェル型ゴム粒子とは、粒子状のコア成分の表面に、シェル成分を修飾した粒子であり、コア成分の表面の一部あるいは全体をシェル成分で被覆した粒子である。上記コアおよびシェル成分の構成要素は特に限定されず、コアおよびシェル成分を有していればよい。 Here, the core-shell type rubber particles are particles in which the shell component is modified on the surface of the particulate core component, and are particles in which a part or the whole of the surface of the core component is coated with the shell component. The components of the core and shell components are not particularly limited, and may have core and shell components.

かかる成分[C]の市販品としては、“カネエース”(登録商標)MX-125、“カネエース”(登録商標)MX-150、“カネエース”(登録商標)MX-154、“カネエース”(登録商標)MX-257、“カネエース”(登録商標)MX-267、“カネエース”(登録商標)MX-416、“カネエース”(登録商標)MX-451、“カネエース”(登録商標)MX-EXP(HM5)(以上、カネカ(株)製)、“PARALOID”(登録商標)EXL-2655、EXL-2668(以上、Dow Chemical社製)などを用いることができる。 Commercially available products of such component [C] include "Kaneace" (registered trademark) MX-125, "Kaneace" (registered trademark) MX-150, "Kaneace" (registered trademark) MX-154, and "Kaneace" (registered trademark). ) MX-257, "Kaneace" (registered trademark) MX-267, "Kaneace" (registered trademark) MX-416, "Kaneace" (registered trademark) MX-451, "Kaneace" (registered trademark) MX-EXP (HM5) ) (Above, manufactured by Kaneka Co., Ltd.), "PARALOID" (registered trademark) EXL-2655, EXL-2668 (above, manufactured by Dow Chemical) and the like can be used.

本発明におけるエポキシ樹脂組成物は、エポキシ樹脂組成物中の全エポキシ成分100質量部に対して、成分[C]を4~25質量部含むことが好ましい。上記範囲を満たすことで、優れた引張破断伸度と靭性値の向上効果が得られ、繊維強化複合材料の破壊強度と疲労特性を特に優れたものにできる。 The epoxy resin composition in the present invention preferably contains 4 to 25 parts by mass of the component [C] with respect to 100 parts by mass of the total epoxy component in the epoxy resin composition. By satisfying the above range, excellent tensile elongation at break and improvement of toughness value can be obtained, and the fracture strength and fatigue characteristics of the fiber-reinforced composite material can be made particularly excellent.

また、成分[C]の含有量に対する成分[B]の含有量の質量比(成分[B]の含有量/成分[C]の含有量)は、0.1~0.8であることが好ましい。上記範囲を満たすことで、引張破断伸度と靭性値の向上効果が優れたものになりやすい。 Further, the mass ratio of the content of the component [B] to the content of the component [C] (content of the component [B] / content of the component [C]) may be 0.1 to 0.8. preferable. By satisfying the above range, the effect of improving the tensile elongation at break and the toughness value tends to be excellent.

本発明におけるエポキシ樹脂組成物は、成分[A1]、成分[A2]、成分[B]、成分[C]を全て含む必要がある。成分[A2]、成分[B]、成分[C]を全て含むことで、それぞれの成分を単独で使用する場合、または2成分を併用する場合と比較して、特異的な引張破断伸度と靭性値の向上効果が得られる。このような効果が得られる理由は定かではないが、成分[A2]、成分[B]、成分[C]がそれぞれもつ、異なる引張破断伸度と靭性値の向上メカニズムが協奏的に働いたためであると推測している。 The epoxy resin composition in the present invention needs to contain all of the component [A1], the component [A2], the component [B], and the component [C]. By including all of the component [A2], the component [B], and the component [C], the specific tensile elongation at break is achieved as compared with the case where each component is used alone or the two components are used in combination. The effect of improving the toughness value can be obtained. The reason why such an effect is obtained is not clear, but it is because the different tensile elongation at break and the mechanism for improving the toughness value of the components [A2], [B], and [C] work in concert. I'm guessing there is.

また、成分[A2]、成分[B]、成分[C]に加えて、上記の効果を損なわない範囲で成分[A1]を含むことで、上記引張破断伸度と靱性値の向上効果に加えて、価格や力学特性、耐熱性をトウプリプレグ用マトリックス樹脂として好適なものにすることができる。 Further, by containing the component [A1] in addition to the component [A2], the component [B], and the component [C] within a range that does not impair the above-mentioned effect, in addition to the above-mentioned effect of improving the tensile elongation at break and the toughness value. Therefore, the price, mechanical properties, and heat resistance can be made suitable as a matrix resin for tough prepreg.

本発明における成分[D]は、ジシアンジアミドである。ジシアンジアミドは、化学式(HN)C=N-CNで表される化合物であり、それを硬化剤として得られるエポキシ樹脂硬化物に高い力学特性や耐熱性を与えることができる点で優れており、エポキシ樹脂の硬化剤として広く用いられる。ジシアンジアミドの市販品としては、DICY7T、DICY15(以上、三菱ケミカル(株)製)などが挙げられる。 The component [D] in the present invention is dicyandiamide. Dicyanodiamide is a compound represented by the chemical formula (H 2 N) 2 C = N—CN, and is excellent in that it can impart high mechanical properties and heat resistance to an epoxy resin cured product obtained by using it as a curing agent. It is widely used as a curing agent for epoxy resins. Examples of commercially available dicyandiamides include DICY7T and DICY15 (all manufactured by Mitsubishi Chemical Corporation).

ジシアンジアミドは、自身がもつ4つの活性水素以外の部位でもエポキシ基と反応可能であると考えられているため、本発明において、ジシアンジアミドは、硬化反応中に7つのエポキシ基と反応することとして扱う。すなわち、ジシアンジアミドの見かけの活性水素当量を12g/eq.として扱う。 Since dicyandiamide is considered to be capable of reacting with epoxy groups at sites other than its own four active hydrogens, in the present invention, dicyandiamide is treated as reacting with seven epoxy groups during the curing reaction. That is, the apparent active hydrogen equivalent of dicyandiamide was 12 g / eq. Treat as.

本発明のトウプレグに用いるエポキシ樹脂組成物は、成分[E]として芳香族ウレアを含むことが必要である。成分[E]を成分[D]と併用することで、エポキシ樹脂組成物の粘度の経時安定性と、硬化速度のバランスを良好にできる。ここで、芳香族ウレアとは、芳香環にウレア基が結合した構造を有する化合物を指し、具体的には、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア(DCMU)、3-(4-クロロフェニル)-1,1-ジメチルウレア、フェニルジメチルウレア(PDMU)、2,4-トルエンビス(3,3-ジメチルウレア)(TBDMU)などが挙げられる。これらは、単独で用いてもよいし、適宜混合して用いてもよい。
かかる成分[E]の市販品としては、DCMU99(DCMU、保土ヶ谷化学工業株式会社製)、“Omicure(登録商標)”24(TBDMU、蝶理GLEX株式会社製)、“Dyhard(登録商標)”UR505(4,4’-メチレンビス(フェニルジメチルウレア)、AlzChem社製)などが挙げられる。
The epoxy resin composition used for the tow preg of the present invention needs to contain an aromatic urea as a component [E]. By using the component [E] in combination with the component [D], the balance between the viscosity of the epoxy resin composition over time and the curing rate can be improved. Here, the aromatic urea refers to a compound having a structure in which a urea group is bonded to an aromatic ring, and specifically, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 3 -(4-Chlorophenyl) -1,1-dimethylurea, phenyldimethylurea (PDMU), 2,4-toluenebis (3,3-dimethylurea) (TBDMU) and the like can be mentioned. These may be used alone or may be appropriately mixed and used.
Commercially available products of such component [E] include DCMU99 (DCMU, manufactured by Hodogaya Chemical Industry Co., Ltd.), "Omicure (registered trademark)" 24 (TBDMU, manufactured by Chori GLEX Co., Ltd.), and "Dyhard (registered trademark)" UR505 (registered trademark). 4,4'-Methylenebis (phenyldimethylurea), manufactured by AlzChem) and the like can be mentioned.

中でも、本発明における成分[E]としては、TBDMUを用いることが好ましい。成分[D]とTBDMUを併用することで、優れた保管安定性を維持したまま、速硬化性をより高めることができる。 Above all, it is preferable to use TBDMU as the component [E] in the present invention. By using the component [D] in combination with TBDMU, it is possible to further enhance the quick-curing property while maintaining excellent storage stability.

本発明では、成分[E]のウレア基のモル数に対する、成分[D]のモル数の比が2.0~9.0となる必要がある。 In the present invention, the ratio of the number of moles of the component [D] to the number of moles of the urea group of the component [E] needs to be 2.0 to 9.0.

上記範囲を満たすことで、引張破断伸度、靱性値、耐熱性、耐水性、硬化速度を優れたものにできる。 By satisfying the above range, the tensile elongation at break, the toughness value, the heat resistance, the water resistance, and the curing rate can be made excellent.

本発明のエポキシ樹脂組成物は、成分[D]をエポキシ樹脂に対して0.7~1.2当量含むことが好ましく、0.7~1.0当量含むことがより好ましく、0.7~0.9当量含むことが最も好ましい。 The epoxy resin composition of the present invention preferably contains the component [D] in an amount of 0.7 to 1.2 equivalents, more preferably 0.7 to 1.0 equivalents, and more preferably 0.7 to 1.0 equivalents with respect to the epoxy resin. Most preferably, it contains 0.9 equivalents.

また、成分[E]のウレア基のモル数に対する、エポキシ樹脂組成物中の全エポキシ基のモル数の比は、20~50であることが好ましく、20~40であることがより好ましい。 The ratio of the number of moles of all epoxy groups in the epoxy resin composition to the number of moles of urea groups of the component [E] is preferably 20 to 50, more preferably 20 to 40.

条件[b]を満たしつつ、成分[D]および成分[E]の含有量が上記範囲を満たすことで、引張破断伸度、靱性値、耐熱性、耐水性、硬化速度を優れたものにできる。 By satisfying the above range of the contents of the component [D] and the component [E] while satisfying the condition [b], the tensile elongation at break, the toughness value, the heat resistance, the water resistance, and the curing rate can be made excellent. ..

本発明において、ジシクロペンタジエン型エポキシ樹脂(成分[A3])を全エポキシ成分100質量部中に5~40質量部含むことで、エポキシ樹脂組成物の粘度を大きく高めることなくエポキシ樹脂硬化物の耐熱性を向上させることができ、トウプリプレグ用マトリックス樹脂として、より好適に用いることができるようになる。ジシクロペンタジエン型樹脂のより好ましい含有量は5~30質量部である。上記範囲を満たすことで、粘度と耐熱性向上効果のバランスがより優れたものになる。 In the present invention, by containing 5 to 40 parts by mass of the dicyclopentadiene type epoxy resin (component [A3]) in 100 parts by mass of the total epoxy component, the epoxy resin cured product does not significantly increase the viscosity of the epoxy resin composition. The heat resistance can be improved, and it can be more preferably used as a matrix resin for tow prepreg. A more preferable content of the dicyclopentadiene type resin is 5 to 30 parts by mass. By satisfying the above range, the balance between the viscosity and the effect of improving heat resistance becomes better.

かかる成分[A3]の市販品としては、“EPICLON”(商標登録)HP-7200L、“EPICLON”(商標登録)HP-7200、“EPICLON”(商標登録)HP-7200H、“EPICLON”(商標登録)HP-7200HH、“EPICLON”(商標登録)HP-7200HHH(以上、DIC(株)製)などが挙げられる。 Commercially available products of such component [A3] include "EPICLON" (trademark registration) HP-7200L, "EPICLON" (trademark registration) HP-7200, "EPICLON" (trademark registration) HP-7200H, and "EPICLON" (trademark registration). ) HP-7200HH, "EPICLON" (registered trademark) HP-7200HHH (all manufactured by DIC Co., Ltd.) and the like.

本発明のエポキシ樹脂組成物に消泡剤を配合することで、繊維強化複合材料を作製する際の泡の発生を抑え、外観品位を向上させることができる。中でも、シリコンフリーポリマー系消泡剤は、泡の発生を大きく抑制することができるため好ましい。かかるシリコンフリーポリマー系消泡剤の市販品としては、“BYK”(登録商標)1788、1790、1791、A535(以上、ビックケミー・ジャパン(株)製)などが挙げられる。 By blending an antifoaming agent with the epoxy resin composition of the present invention, it is possible to suppress the generation of foam when producing a fiber-reinforced composite material and improve the appearance quality. Above all, a silicon-free polymer-based defoaming agent is preferable because it can greatly suppress the generation of bubbles. Examples of commercially available products of such a silicon-free polymer-based defoaming agent include "BYK" (registered trademark) 1788, 1790, 1791, A535 (all manufactured by Big Chemie Japan Co., Ltd.) and the like.

本発明では、成分[A]として、成分[A1]~[A3]とは異なるエポキシ樹脂を、本発明の効果を損なわい範囲で用いてもよい。具体的には、たとえば、アニリン型エポキシ樹脂、ジアミノジフェニルメタン型エポキシ樹脂、ジアミノジフェニルスルホン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、キシレンジアミン型エポキシ樹脂などが挙げられる。これらを単独で用いても、複数種を組み合わせてもよい。 In the present invention, as the component [A], an epoxy resin different from the components [A1] to [A3] may be used as long as the effect of the present invention is impaired. Specific examples thereof include an aniline type epoxy resin, a diaminodiphenylmethane type epoxy resin, a diaminodiphenyl sulfone type epoxy resin, a phenol novolac type epoxy resin, and a xylenediamine type epoxy resin. These may be used alone or in combination of two or more.

上記アニリン型エポキシ樹脂の市販品としては、GAN(N,N-ジグリシジルアニリン)、GOT(N,N-ジグリシジル-o-トルイジン)(以上、日本化薬(株)製)などが挙げられる。 Examples of commercially available aniline-type epoxy resins include GAN (N, N-diglycidyl aniline) and GOT (N, N-diglycidyl-o-toluidine) (all manufactured by Nippon Kayaku Co., Ltd.).

上記ジアミノジフェニルメタン型エポキシ樹脂の市販品としては、“スミエポキシ”(登録商標)ELM434、ELM434VL(以上、住友化学工業(株)製)、YH434L(新日鉄住金化学(株)製)、“jER”(登録商標)604(三菱ケミカル(株)製)、“アラルダイト”(登録商標)MY720、MY721(以上、ハンツマン・アドバンスト・マテリアルズ社製)などが挙げられる。 Commercially available products of the above diaminodiphenylmethane type epoxy resin include "Sumiepoxy" (registered trademark) ELM434, ELM434VL (all manufactured by Sumitomo Chemical Corporation), YH434L (manufactured by Nippon Steel & Sumitomo Metal Corporation), and "jER" (registered). Trademarks) 604 (manufactured by Mitsubishi Chemical Corporation), "Araldite" (registered trademark) MY720, MY721 (all manufactured by Huntsman Advanced Materials) and the like can be mentioned.

上記ジアミノジフェニルスルホン型エポキシの市販品としては、TG3DAS(小西化学工業(株)製)などが挙げられる。 Examples of commercially available products of the diaminodiphenyl sulfone type epoxy include TG3DAS (manufactured by Konishi Chemical Industry Co., Ltd.).

上記フェノールノボラック型エポキシ樹脂の市販品としては、“jER”(登録商標)152、154、180S(以上、三菱ケミカル(株)製)などが挙げられる。 Examples of commercially available phenol novolac type epoxy resins include "jER" (registered trademark) 152, 154, 180S (all manufactured by Mitsubishi Chemical Corporation).

上記キシレンジアミン型エポキシ樹脂の市販品としては、TETRAD-X(三菱ガス化学(株)製)が挙げられる。 Examples of commercially available products of the xylene diamine type epoxy resin include TETRAD-X (manufactured by Mitsubishi Gas Chemical Company, Inc.).

本発明におけるエポキシ樹脂組成物の25℃における粘度は、1~150Pa・sであることが好ましく、3~50Pa・sがより好ましい。粘度が上記範囲を満たすことで、強化繊維への樹脂含浸性がより向上し、特段の加熱機構の据え付けや、有機溶剤での希釈処理が不要となる。 The viscosity of the epoxy resin composition in the present invention at 25 ° C. is preferably 1 to 150 Pa · s, more preferably 3 to 50 Pa · s. When the viscosity satisfies the above range, the resin impregnation property into the reinforcing fiber is further improved, and it is not necessary to install a special heating mechanism or dilute with an organic solvent.

本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いてもよい。均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜてもよい。 Machines such as a kneader, a planetary mixer, a three-roll and a twin-screw extruder may be used for preparing the epoxy resin composition of the present invention. If uniform kneading is possible, it may be mixed by hand using a beaker and a spatula.

本発明のエポキシ樹脂組成物は、強化繊維と複合一体化してなる、中間基材として用いることができる。中間基材の形態としては、プリプレグ、スリットテープ、トウプリプレグなどが挙げられる。中でも、本発明のエポキシ樹脂組成物は、1,000~70,000フィラメントからなる強化繊維にマトリックス樹脂を含浸させてなるトウプリプレグに好適に用いられる。 The epoxy resin composition of the present invention can be used as an intermediate base material which is compositely integrated with the reinforcing fiber. Examples of the form of the intermediate base material include prepreg, slit tape, and tow prepreg. Above all, the epoxy resin composition of the present invention is suitably used for a tow prepreg obtained by impregnating a reinforcing fiber composed of 1,000 to 70,000 filaments with a matrix resin.

本発明におけるトウプリプレグは、様々な公知の方法で製造することができる。例えば、エポキシ樹脂組成物を、有機溶媒を用いずに加温して低粘度化した樹脂バス中に、強化繊維を浸漬させながら含浸させる方法、エポキシ樹脂組成物を回転ロールや離型紙上に塗膜化し、次いで強化繊維の片面、あるいは両面に転写したあと、屈曲ロールや圧力ロールを通すことで加圧して含浸させる方法などで製造できる。 The tow prepreg in the present invention can be produced by various known methods. For example, a method of impregnating an epoxy resin composition while immersing reinforcing fibers in a resin bath whose viscosity has been reduced by heating without using an organic solvent, or applying the epoxy resin composition on a rotating roll or a release paper. It can be manufactured by a method such as filming, then transferring to one side or both sides of the reinforcing fiber, and then pressurizing and impregnating the fiber by passing it through a bending roll or a pressure roll.

本発明における強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが使用できる。これらの繊維を2種以上混合して用いても構わない。軽量かつ高剛性な繊維強化複合材料が得られる観点から、炭素繊維を用いることが好ましい。 The reinforcing fiber in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like can be used. Two or more of these fibers may be mixed and used. From the viewpoint of obtaining a lightweight and highly rigid fiber-reinforced composite material, it is preferable to use carbon fiber.

本発明の繊維強化複合材料は、上記トウプリプレグを硬化させてなる。例えば、トウプリプレグを、マンドレルやライナーなどに巻き付け、加熱硬化させることで得ることができる。ライナーを用いる繊維強化複合材料の製造では、ライナーと、ライナーを被覆するエポキシ樹脂硬化物と強化繊維より構成される。本発明のエポキシ樹脂組成物は、変形能力と破壊靱性、耐水性と耐熱性に優れる特徴を生かし、長期耐久性および高温高湿条件での耐久性が要求される圧力容器などの、一般産業用途に好適に用いられる。 The fiber-reinforced composite material of the present invention is obtained by curing the above-mentioned tow prepreg. For example, it can be obtained by wrapping a tow prepreg around a mandrel, a liner, or the like and heat-curing it. In the production of a fiber-reinforced composite material using a liner, the liner is composed of a liner, a cured epoxy resin covering the liner, and a reinforcing fiber. The epoxy resin composition of the present invention is used for general industrial applications such as a pressure vessel, which is required to have long-term durability and durability under high temperature and high humidity conditions by taking advantage of its excellent deformation ability, fracture toughness, water resistance and heat resistance. Suitable for use in.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。 Examples are shown below and the present invention will be described in more detail, but the present invention is not limited to the description of these examples.

本実施例で用いる構成要素は以下の通りである。 The components used in this embodiment are as follows.

<使用した材料>
・成分[A1]:ビスフェノール型エポキシ樹脂
“jER”(登録商標)828(三菱ケミカル(株)製)。
<Material used>
-Ingredient [A1]: Bisphenol type epoxy resin "jER" (registered trademark) 828 (manufactured by Mitsubishi Chemical Corporation).

・成分[A2]:2官能の脂肪族エポキシ樹脂
“デナコール”(登録商標)EX-212(HSP=9.4(cal/cm0.5)、
“デナコール”(登録商標)EX-216(HSP=9.6(cal/cm0.5)、
“デナコール”(登録商標)EX-211(HSP=9.3(cal/cm0.5)(以上、ナガセケムテックス(株)製)。
-Ingredient [A2]: Bifunctional aliphatic epoxy resin "Denacol" (registered trademark) EX-212 (HSP = 9.4 (cal / cm 3 ) 0.5 ),
"Denacol" (registered trademark) EX-216 (HSP = 9.6 (cal / cm 3 ) 0.5 ),
"Denacol" (registered trademark) EX-211 (HSP = 9.3 (cal / cm 3 ) 0.5 ) (all manufactured by Nagase ChemteX Corporation).

・成分[A3]:ジシクロペンタジエン型エポキシ樹脂
“EPICLON”(商標登録)HP-7200L(DIC(株)製)。
-Ingredient [A3]: Dicyclopentadiene type epoxy resin "EPICLON" (trademark registration) HP-7200L (manufactured by DIC Corporation).

・成分[A4]:成分[A2]以外の脂肪族エポキシ樹脂
“デナコール”(登録商標)EX-821(HSP=9.9(cal/cm0.5)、
“デナコール”(登録商標)EX-820(HSP=10.5(cal/cm0.5)(以上、ナガセケムテックス(株)製)
DOP-DEP(HSP=8.8(cal/cm0.5)(四日市合成(株)製)。
-Ingredient [A4]: Aliphatic epoxy resin "Denacol" (registered trademark) EX-821 (HSP = 9.9 (cal / cm 3 ) 0.5 ) other than ingredient [A2],
"Denacol" (registered trademark) EX-820 (HSP = 10.5 (cal / cm 3 ) 0.5 ) (all manufactured by Nagase ChemteX Corporation)
DOP-DEP (HSP = 8.8 (cal / cm 3 ) 0.5 ) (manufactured by Yokkaichi Chemical Co., Ltd.).

・成分[B]:カルボキシル基末端ブタジエンニトリルゴム
“Hypro”(登録商標)1300X13(CVC Thermoset Specialties社製)。
-Component [B]: Carboxyl group-terminated butadiene nitrile rubber "Hypro" (registered trademark) 1300X13 (manufactured by CVC Thermoset Specialties).

・成分[C]:コアシェルゴム型粒子
“カネエース”(登録商標)MX-150(ビスフェノールA型エポキシ樹脂60質量%、および、ブタジエン系コアシェル型ゴム粒子40質量%)(カネカ(株)製)。
-Component [C]: Core-shell rubber type particles "Kaneace" (registered trademark) MX-150 (bisphenol A type epoxy resin 60% by mass and butadiene-based core-shell type rubber particles 40% by mass) (manufactured by Kaneka Co., Ltd.).

・成分[D]:ジシアンジアミド
DICY7(三菱ケミカル(株)製)。
-Ingredient [D]: dicyandiamide DICY7 (manufactured by Mitsubishi Chemical Corporation).

・成分[E]:硬化促進剤
“Omicure”(登録商標)24(ピィ・ティ・アイ・ジャパン(株)製)。
-Ingredient [E]: Curing accelerator "Omicure" (registered trademark) 24 (manufactured by PTI Japan Co., Ltd.).

・消泡剤
“BYK”(登録商標)1790(ビックケミ-・ジャパン(株)製)。
-Defoaming agent "BYK" (registered trademark) 1790 (manufactured by Big Chemie Japan Co., Ltd.).

<エポキシ樹脂組成物の調製方法>
ステンレスビーカーに、成分[A]および必要に応じてその他のエポキシ樹脂成分を所定量加え、100℃まで昇温し、各成分が相溶するまで適宜混練した。60℃まで降温させた後、成分[B]~[E]および、その他添加剤等の成分を添加して10分混練した。その後、5分間真空脱泡することでエポキシ樹脂組成物を得た。エポキシ樹脂の組成は、表1~3に示した通りである。
<Preparation method of epoxy resin composition>
A predetermined amount of the component [A] and other epoxy resin components were added to the stainless beaker, the temperature was raised to 100 ° C., and the mixture was appropriately kneaded until the components were compatible. After lowering the temperature to 60 ° C., components [B] to [E] and other components such as additives were added and kneaded for 10 minutes. Then, the epoxy resin composition was obtained by vacuum defoaming for 5 minutes. The composition of the epoxy resin is as shown in Tables 1 to 3.

<エポキシ樹脂硬化物の引張破断伸度の評価方法>
上記<エポキシ樹脂組成物の調製方法>に従って得られた未硬化のエポキシ樹脂組成物を、2mm厚の“テフロン”(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で、150℃の温度で1時間硬化させ、厚さ2mmの樹脂硬化板を得た。得られた樹脂硬化板を、JIS K7161(1994)に従って、1BA型のダンベル状に加工した。インストロン万能試験機(インストロン社製)を用い、チャック間距離を58mmに設定し、試験速度1mm/分にて樹脂引張試験を実施し、引張破断伸度を測定した。この際、サンプル数n=5で測定した値の平均値を採用した。
<Evaluation method of tensile elongation at break of cured epoxy resin>
The uncured epoxy resin composition obtained according to the above <Method for preparing an epoxy resin composition> was placed at 150 ° C. in a mold set to a thickness of 2 mm with a 2 mm thick “Teflon” (registered trademark) spacer. The resin was cured at the same temperature for 1 hour to obtain a resin cured plate having a thickness of 2 mm. The obtained cured resin plate was processed into a 1BA type dumbbell shape according to JIS K7161 (1994). Using an Instron universal testing machine (manufactured by Instron), the distance between chucks was set to 58 mm, a resin tensile test was carried out at a test speed of 1 mm / min, and the tensile elongation at break was measured. At this time, the average value of the values measured with the number of samples n = 5 was adopted.

<エポキシ樹脂組成物の硬化時間の評価方法>
上記<エポキシ樹脂組成物の調製方法>に従って得られた未硬化のエポキシ樹脂組成物を、あらかじめ150℃に加熱したマイクロプレス上に2mL静置し、キュアモニターLT-451(Lambient Technologies社製)を用いてイオン粘度を測定した。エポキシ樹脂組成物のイオン粘度は硬化開始時に最低値をとり、硬化反応の進行に伴い増加後、完了とともに飽和する。本発明では、イオン粘度の変化率が初めて0になった時点から、1時間測定を継続した。測定後、ASTM E2039規格に従い、イオン粘度の実測値からキュアインデックス(Cd)を算出し、Cdが95%に到達するまでの時間を硬化時間として採用した。
<Epoxy resin composition curing time evaluation method>
2 mL of the uncured epoxy resin composition obtained according to the above <method for preparing an epoxy resin composition> was allowed to stand on a micropress heated to 150 ° C. in advance, and a cure monitor LT-451 (manufactured by Lambient Technologies) was placed. Ion viscosity was measured using. The ionic viscosity of the epoxy resin composition takes a minimum value at the start of curing, increases with the progress of the curing reaction, and then saturates with the completion. In the present invention, the measurement was continued for 1 hour from the time when the rate of change in ionic viscosity became 0 for the first time. After the measurement, the cure index (Cd) was calculated from the measured value of the ionic viscosity according to the ASTM E2039 standard, and the time until the Cd reached 95% was adopted as the curing time.

<エポキシ樹脂硬化物の靱性値の評価方法>
上記<エポキシ樹脂組成物の調製方法>に従って得られた未硬化のエポキシ樹脂組成物を、6mm厚の“テフロン”(登録商標)製スペーサーにより厚み6mmになるように設定したモールド中で、150℃の温度で1時間硬化させ、厚さ6mmの樹脂硬化板を得た。得られた樹脂硬化板を、ASTM D5045-99に記載の試験片形状に加工を行った後、ASTM D5045-99に従ってSENB試験を実施した。この際、サンプル数をn=15とし、その平均値を靱性値として採用した。
<Epoxy resin cured product toughness value evaluation method>
The uncured epoxy resin composition obtained according to the above <Method for preparing an epoxy resin composition> was placed at 150 ° C. in a mold set to a thickness of 6 mm with a spacer made of 6 mm thick "Teflon" (registered trademark). The resin was cured at the same temperature for 1 hour to obtain a resin cured plate having a thickness of 6 mm. The obtained cured resin plate was processed into the shape of the test piece described in ASTM D5045-99, and then the SENB test was carried out according to ASTM D5045-99. At this time, the number of samples was set to n = 15, and the average value thereof was adopted as the toughness value.

<ガラス転移点温度の測定方法>
上記<エポキシ樹脂組成物の調製方法>に従って得られた未硬化のエポキシ樹脂組成物を、2mm厚の“テフロン”(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で、150℃の温度で1時間硬化させ、厚さ2mmの樹脂硬化板を得た。得られた樹脂硬化板を、長さ45mm、幅12.7mmに加工し、60℃で24時間真空乾燥させた。その後、乾燥した樹脂硬化板のねじり動的粘弾性測定を、ARES-G2(TAインスツルメント社製)を用いて以下の条件で行った。
測定温度範囲:40℃~200℃
昇温速度:5℃/分
歪:0.1%
周波数:6.28rad/秒
ガラス転移点温度は、JIS K7095(2012)に従い、測定で得られた貯蔵弾性率の変化曲線から求めた。この際、サンプル数をn=2とし、その平均値をガラス転移点温度として採用した。
<Measurement method of glass transition point temperature>
The uncured epoxy resin composition obtained according to the above <Method for preparing an epoxy resin composition> was placed at 150 ° C. in a mold set to a thickness of 2 mm with a 2 mm thick “Teflon” (registered trademark) spacer. The resin was cured at the same temperature for 1 hour to obtain a resin cured plate having a thickness of 2 mm. The obtained cured resin plate was processed to a length of 45 mm and a width of 12.7 mm, and vacuum dried at 60 ° C. for 24 hours. Then, the torsional dynamic viscoelasticity of the dried resin cured plate was measured using ARES-G2 (manufactured by TA Instruments) under the following conditions.
Measurement temperature range: 40 ° C to 200 ° C
Temperature rise rate: 5 ° C / min Distortion: 0.1%
Frequency: 6.28 rad / sec The glass transition temperature was determined from the change curve of the storage elastic modulus obtained by measurement according to JIS K7095 (2012). At this time, the number of samples was set to n = 2, and the average value thereof was adopted as the glass transition point temperature.

<25℃におけるエポキシ樹脂組成物の粘度の測定方法>
JIS Z8803(2011)における「円すい-平板形回転粘度計による粘度測定方法」に従い、標準コーンローター(3°×R9.7)を装着したE型粘度計(東機産業(株)製、TVE-22HT)を使用し、測定部の実温を25℃に設定した状態で、回転速度5rpmで測定した。粘度として測定開始から5分後の値を採用した。
<Measuring method of viscosity of epoxy resin composition at 25 ° C>
E-type viscometer (manufactured by Toki Sangyo Co., Ltd., TVE-) equipped with a standard cone rotor (3 ° x R9.7) according to "Conical-Viscosity measurement method using a flat plate type rotational viscometer" in JIS Z8803 (2011). 22HT) was used, and the measurement was performed at a rotation speed of 5 rpm with the actual temperature of the measuring unit set to 25 ° C. The value 5 minutes after the start of measurement was adopted as the viscosity.

なお、上記<エポキシ樹脂組成物の調製方法>に従って調製してから5分後のエポキシ樹脂組成物の25℃における粘度を、エポキシ樹脂組成物の初期粘度(η)とした。 The viscosity of the epoxy resin composition at 25 ° C. 5 minutes after the preparation according to the above <method for preparing the epoxy resin composition> was defined as the initial viscosity (η 0 ) of the epoxy resin composition.

<50℃で24時間加温した際の増粘倍率の計算方法>
上記<エポキシ樹脂組成物の調製方法>に従って得られた未硬化のエポキシ樹脂組成物を、50℃に設定したオーブンに24時間静置し、加温した。その後、上記<25℃におけるエポキシ樹脂組成物の粘度の測定方法>に従い、加温後のエポキシ樹脂組成物の粘度(η24)を測定した。増粘倍率は、式(2)に従い計算した。
<Calculation method of thickening ratio when heated at 50 ° C for 24 hours>
The uncured epoxy resin composition obtained according to the above <Method for preparing an epoxy resin composition> was allowed to stand in an oven set at 50 ° C. for 24 hours and heated. Then, the viscosity (η 24 ) of the heated epoxy resin composition was measured according to the above <method for measuring the viscosity of the epoxy resin composition at 25 ° C.>. The thickening ratio was calculated according to the formula (2).

Figure 2022039265000005
Figure 2022039265000005

<エポキシ樹脂硬化物の吸水性の評価方法>
上記<エポキシ樹脂組成物の調製方法>に従って得られた未硬化のエポキシ樹脂組成物を、2mm厚の“テフロン”(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で、150℃の温度で1時間硬化させ、厚さ2mmの樹脂硬化板を得た。その後、得られた樹脂硬化板を、長さ60mm、幅10mmの大きさに加工し、60℃で24時間真空乾燥させ、吸水処理前の乾燥させた樹脂硬化板の質量(W)を測定した。乾燥させた樹脂硬化板を、温度85℃、湿度95%の条件で7日間静置して吸水処理した後、吸水処理後の樹脂硬化板の質量(W)を測定した。樹脂硬化板の吸水率は、WとWを用いて、式(3)に従い計算した。この際、サンプル数はn=6とし、その平均値を樹脂硬化板の質量とした。
<Epoxy resin cured product water absorption evaluation method>
The uncured epoxy resin composition obtained according to the above <Method for preparing an epoxy resin composition> was placed at 150 ° C. in a mold set to a thickness of 2 mm with a 2 mm thick “Teflon” (registered trademark) spacer. The resin was cured at the same temperature for 1 hour to obtain a resin cured plate having a thickness of 2 mm. Then, the obtained cured resin plate was processed into a size of 60 mm in length and 10 mm in width, vacuum dried at 60 ° C. for 24 hours, and the mass ( before W) of the dried resin cured plate before the water absorption treatment was measured. did. The dried resin cured plate was allowed to stand for 7 days at a temperature of 85 ° C. and a humidity of 95% for water absorption treatment, and then the mass ( after W) of the resin cured plate after the water absorption treatment was measured. The water absorption rate of the resin cured plate was calculated according to the formula (3) using before W and after W. At this time, the number of samples was set to n = 6, and the average value was taken as the mass of the resin cured plate.

Figure 2022039265000006
Figure 2022039265000006

(実施例1)
成分[A1]として“jER”(商標登録)828を73質量部、成分[A2]として“デナコール”(登録商標)EX-212を10質量部、成分[B]として“Hypro”(登録商標)1300X13を3.1質量部、成分[C]として“カネエース”(登録商標)MX-150を28質量部、成分[D]としてDICY7を5.4質量部、成分[E]として“Omicure”(登録商標)24を2.3質量部用い、上記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。
(Example 1)
73 parts by mass of "jER" (registered trademark) 828 as component [A1], 10 parts by mass of "Denacol" (registered trademark) EX-212 as component [A2], and "Hypro" (registered trademark) as component [B]. 3.1 parts by mass of 1300X13, 28 parts by mass of "Kaneace" (registered trademark) MX-150 as component [C], 5.4 parts by mass of DICY7 as component [D], and "Omicure" as component [E] ( Using 2.3 parts by mass of Registered Trademark) 24, an epoxy resin composition was prepared according to the above <Method for preparing an epoxy resin composition>.

上記<25℃におけるエポキシ樹脂組成物の粘度の測定方法>、<エポキシ樹脂組成物の硬化時間の評価方法>に従い、調製したエポキシ樹脂組成物の25℃における初期粘度と硬化速度を評価したところ、初期粘度は8.3Pa・s、硬化時間は33分と、トウプリプレグ用エポキシ樹脂組成物として好適であった。 The initial viscosity and curing rate of the prepared epoxy resin composition at 25 ° C. were evaluated according to the above <method for measuring the viscosity of the epoxy resin composition at 25 ° C.> and <method for evaluating the curing time of the epoxy resin composition>. The initial viscosity was 8.3 Pa · s and the curing time was 33 minutes, which was suitable as an epoxy resin composition for tow prepreg.

このエポキシ樹脂組成物について、上記<エポキシ樹脂硬化物の吸水性の評価方法>、<エポキシ樹脂硬化物の引張破断伸度の評価方法>、<エポキシ樹脂硬化物の靱性値の評価方法>に従い、吸水率、引張破断伸度、靱性値を評価したところ、吸水率が4.2%、引張破断伸度が11%、破壊靱性値が2.2MPa・m0.5と、いずれも良好であった。 With respect to this epoxy resin composition, according to the above <method for evaluating the water absorption of the cured epoxy resin>, <method for evaluating the tensile elongation at break of the cured epoxy resin>, and <method for evaluating the toughness value of the cured epoxy resin>. When the water absorption rate, the tensile elongation at break and the toughness value were evaluated, the water absorption rate was 4.2%, the tensile elongation at break was 11%, and the fracture toughness value was 2.2 MPa · m 0.5 , all of which were good. rice field.

また、耐熱性についても、上記<ガラス転移温度の測定方法>に従って評価したところ、ガラス転移温度は131℃と良好であった。 The heat resistance was also evaluated according to the above <method for measuring the glass transition temperature>, and the glass transition temperature was as good as 131 ° C.

(実施例2~9)
樹脂組成をそれぞれ表1に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表1に示した様に、全ての項目で良好な結果が得られた。
(Examples 2 to 9)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 1. As for the evaluation results, as shown in Table 1, good results were obtained in all the items.

(実施例10)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。しかし、成分[A2]の配合量が3質量部よりも少ないため、引張破断伸度と靱性値のバランスは実施例1~9の方が優れていた。
(Example 10)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. However, since the blending amount of the component [A2] was less than 3 parts by mass, the balance between the tensile elongation at break and the toughness value was superior in Examples 1 to 9.

(実施例11)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。しかし、成分[A2]の配合量が18質量部よりも多いため、引張破断伸度、靱性値、ガラス転移点温度のバランスは実施例1~10の方が優れていた。
(Example 11)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. However, since the blending amount of the component [A2] was larger than 18 parts by mass, the balance between the tensile elongation at break, the toughness value, and the glass transition point temperature was better in Examples 1 to 10.

(実施例12)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。しかし、成分[C]の配合量が25質量部よりも多いため、25℃における粘度42Pa・sと実施例1~11と比較して大きくなった。
(Example 12)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. However, since the blending amount of the component [C] was larger than 25 parts by mass, the viscosity at 25 ° C. was 42 Pa · s, which was larger than that of Examples 1 to 11.

(実施例13)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。しかし、成分[C]の配合量が4質量部よりも少ないため、引張破断伸度、靱性値のバランスは実施例1~12の方が優れていた。
(Example 13)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. However, since the blending amount of the component [C] was less than 4 parts by mass, the balance between the tensile elongation at break and the toughness value was superior in Examples 1 to 12.

(実施例14)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。
(Example 14)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items.

(実施例15、16)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。特に、ガラス転移点温度と粘度のバランスが実施例1~14よりも優れており、ジシクロペンタジエン型エポキシ樹脂の効果が示されていた。
(Examples 15 and 16)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. In particular, the balance between the glass transition point temperature and the viscosity was superior to that of Examples 1 to 14, indicating the effect of the dicyclopentadiene type epoxy resin.

(実施例17)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。しかし、ジシクロペンタジエン型エポキシ樹脂の配合量が5質量部よりも少ないため、ガラス転移点温度の向上効果は実施例15、16と比較して小さかった。
(Example 17)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. However, since the blending amount of the dicyclopentadiene type epoxy resin was less than 5 parts by mass, the effect of improving the glass transition point temperature was smaller than that of Examples 15 and 16.

(実施例18)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。しかし、ジシクロペンタジエン型エポキシ樹脂の配合量が30質量部よりも多いため、ガラス転移点温度の向上効果は大きいものの、25℃における初期粘度が74Pa・sと大きくなった。
(Example 18)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. However, since the amount of the dicyclopentadiene type epoxy resin compounded is more than 30 parts by mass, the effect of improving the glass transition temperature is large, but the initial viscosity at 25 ° C. is as large as 74 Pa · s.

(実施例19)
樹脂組成をそれぞれ表2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表2に示した様に、全ての項目で良好な結果が得られた。しかし、ジシクロペンタジエン型エポキシ樹脂の含有量が40質量部よりも多いため、ガラス転移点温度の向上効果は最も大きいものの、25℃における粘度が153Pa・sと大きくなりすぎてしまい、トウプリプレグの作製時に加熱が必要であった。
(Example 19)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the resin compositions were changed as shown in Table 2. As for the evaluation results, as shown in Table 2, good results were obtained in all the items. However, since the content of the dicyclopentadiene type epoxy resin is more than 40 parts by mass, the effect of improving the glass transition temperature is the greatest, but the viscosity at 25 ° C. becomes too large at 153 Pa · s, and the tow prepreg Heating was required during production.

(比較例1)
成分[A2]を含まない以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、引張破断伸度が7.7%、靱性値が1.8MPa・m0.5と不十分であった。
(Comparative Example 1)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the component [A2] was not contained. As shown in Table 3, the evaluation results were insufficient with a tensile elongation at break of 7.7% and a toughness value of 1.8 MPa · m 0.5 .

(比較例2、3)
HSPが9.8(cal/cm0.5を超える脂肪族エポキシ樹脂を配合した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、吸水率が著しく増加した。
(Comparative Examples 2 and 3)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that an aliphatic epoxy resin having an HSP of 9.8 ( cal / cm 3 ) or more was blended. As a result of the evaluation, as shown in Table 3, the water absorption rate increased remarkably.

(比較例4)
HSPが9.0(cal/cm0.5未満の脂肪族エポキシ樹脂を配合した以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、ガラス転移点温度が著しく低下した。
(Comparative Example 4)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that an aliphatic epoxy resin having an HSP of less than 9.0 ( cal / cm 3 ) was blended. As a result of the evaluation, as shown in Table 3, the glass transition temperature was significantly lowered.

(比較例5)
成分[B]を含まない以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、引張破断伸度が7.4%、靱性値が1.6MPa・m0.5と不十分であった。
(Comparative Example 5)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the component [B] was not contained. As shown in Table 3, the evaluation results were insufficient with a tensile elongation at break of 7.4% and a toughness value of 1.6 MPa · m 0.5 .

(比較例6)
成分[C]を含まない以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、引張破断伸度が5.3%、靱性値が1.8MPa・m0.5と不十分であった。
(Comparative Example 6)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the component [C] was not contained. As shown in Table 3, the evaluation results were insufficient with a tensile elongation at break of 5.3% and a toughness value of 1.8 MPa · m 0.5 .

(比較例7)
成分[E]のウレア基のモル数に対する、成分[D]のモル数の比を9.0よりも大きくした以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、引張破断伸度が12%、靱性値が2.3MPa・m0.5であり、良好な結果であった。しかし、吸水率が5.8%と、実施例と比較して著しく悪化した。
(Comparative Example 7)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the ratio of the number of moles of the component [D] to the number of moles of the urea group of the component [E] was larger than 9.0. As shown in Table 3, the evaluation results were good, with a tensile elongation at break of 12% and a toughness value of 2.3 MPa · m 0.5 . However, the water absorption rate was 5.8%, which was significantly worse than that of the examples.

(比較例8)
成分[E]のウレア基のモル数に対する、エポキシ基のモル数を9.0よりも大きくした以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、引張破断伸度が11%、靱性値が2.1MPa・m0.5であり、良好な結果であった。しかし、硬化時間が54分と実施例と比較して著しく悪化した。
(Comparative Example 8)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the number of moles of the epoxy group was larger than 9.0 with respect to the number of moles of the urea group of the component [E]. As shown in Table 3, the evaluation results were good, with a tensile elongation at break of 11% and a toughness value of 2.1 MPa · m 0.5 . However, the curing time was 54 minutes, which was significantly worse than that of the examples.

(比較例9)
成分[E]のウレア基のモル数に対する、エポキシ基のモル数を2.0よりも小さくした以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、引張破断伸度が7.2%、靱性値が1.6MPa・m0.5、ガラス転移点温度が113℃と実施例と比較して著しく悪化した。
(Comparative Example 9)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the number of moles of the epoxy group was smaller than 2.0 with respect to the number of moles of the urea group of the component [E]. As shown in Table 3, the evaluation results showed a tensile elongation at break of 7.2%, a toughness value of 1.6 MPa · m 0.5 , and a glass transition point temperature of 113 ° C., which were significantly worse than those of Examples. did.

(比較例10)
成分[E]のウレア基のモル数に対する、エポキシ基のモル数を2.0よりも小さくした以外は、実施例1と同じ方法でエポキシ樹脂組成物を作製、評価した。評価結果は、表3に示した様に、引張破断伸度が7.4%、靱性値が1.7MPa・m0.5、ガラス転移点温度が114℃、硬化時間が47分と実施例と比較して著しく悪化した。
(Comparative Example 10)
An epoxy resin composition was prepared and evaluated by the same method as in Example 1 except that the number of moles of the epoxy group was smaller than 2.0 with respect to the number of moles of the urea group of the component [E]. As shown in Table 3, the evaluation results showed that the tensile elongation at break was 7.4%, the toughness value was 1.7 MPa · m 0.5 , the glass transition temperature was 114 ° C., and the curing time was 47 minutes. It was significantly worse than that.

Figure 2022039265000007
Figure 2022039265000007

Figure 2022039265000008
Figure 2022039265000008

Figure 2022039265000009
Figure 2022039265000009

なお、表中の各成分の単位は質量部である。 The unit of each component in the table is a mass part.

本発明のエポキシ樹脂組成物は、変形能力と破壊靱性を高いレベルで両立し、かつ、耐熱性に優れ、吸水性が低いエポキシ樹脂硬化物を与える。そのため、該エポキシ樹脂組成物からなる繊維強化複合材料は、破壊強度と疲労特性といった長期耐久性だけでなく、高温多湿条件での耐久性にも優れる。加えて、本発明のエポキシ樹脂組成物は、速硬化性にも優れるため、繊維強化複合材料の生産性を高めることができる。このような繊維強化複合材料は、圧力容器などの、一般産業用途に好適に用いることができる。 The epoxy resin composition of the present invention provides a cured epoxy resin composition having both deformability and fracture toughness at a high level, excellent heat resistance, and low water absorption. Therefore, the fiber-reinforced composite material made of the epoxy resin composition is excellent not only in long-term durability such as fracture strength and fatigue characteristics, but also in durability under high temperature and high humidity conditions. In addition, the epoxy resin composition of the present invention is also excellent in quick-curing property, so that the productivity of the fiber-reinforced composite material can be increased. Such a fiber-reinforced composite material can be suitably used for general industrial applications such as pressure vessels.

Claims (10)

次の成分[A]~[E]を全て含み、条件[a]および[b]を満たす、エポキシ樹脂組成物。
[A]:少なくとも[A1]および[A2]を含む、エポキシ樹脂
[A1]:ビスフェノール型エポキシ樹脂
[A2]:下記化学式(I)で表され、かつ、化学式(I)中のXが下記(1)または(2)のいずれかを満たす、2官能の脂肪族エポキシ樹脂
Figure 2022039265000010
(1)炭素数4~10の直鎖または分岐のアルキレン
(2)炭素数4~10のシクロアルキルアルキレン
[B]:カルボキシル基末端ブタジエンニトリルゴム
[C]:コアシェル型ゴム粒子
[D]:ジシアンジアミド
[E]:芳香族ウレア
[a]:成分[A2]のHansen溶解度パラメーターが9.0~9.8(cal/cm0.5
[b]:成分[E]のウレア基のモル数に対する、成分[D]のモル数の比が2.0~9.0
An epoxy resin composition containing all of the following components [A] to [E] and satisfying the conditions [a] and [b].
[A]: Epoxy resin [A1] including at least [A1] and [A2]: Bisphenol type epoxy resin [A2]: Represented by the following chemical formula (I), and X in the chemical formula (I) is as follows ( Bifunctional aliphatic epoxy resin satisfying either 1) or (2)
Figure 2022039265000010
(1) Linear or branched alkylene having 4 to 10 carbon atoms (2) Cycloalkylalkylene [B] having 4 to 10 carbon atoms: carboxyl group-terminated butadiene nitrile rubber [C]: core-shell type rubber particles [D]: dicyandiamide [E]: Aromatic urea [a]: Hansen solubility parameter of component [A2] is 9.0 to 9.8 (cal / cm 3 ) 0.5 .
[B]: The ratio of the number of moles of the component [D] to the number of moles of the urea group of the component [E] is 2.0 to 9.0.
エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部中、成分[A2]を3~18質量部含む、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, which contains 3 to 18 parts by mass of the component [A2] in 100 parts by mass of the total epoxy resin component in the epoxy resin composition. エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部に対し、成分[C]を4~25質量部含む、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, which contains 4 to 25 parts by mass of the component [C] with respect to 100 parts by mass of the total epoxy resin component in the epoxy resin composition. 25℃における粘度が1~150Pa・sである、請求項1~3のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, which has a viscosity at 25 ° C. of 1 to 150 Pa · s. 50℃で24時間加熱した後の25℃における増粘倍率が1倍以上、2倍以下である、請求項1~4のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein the thickening ratio at 25 ° C. after heating at 50 ° C. for 24 hours is 1 time or more and 2 times or less. 消泡剤を含む、請求項1~5のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 5, which comprises a defoaming agent. エポキシ樹脂組成物中の全エポキシ樹脂成分100質量部中、ジシクロペンタジエン型エポキシ樹脂(成分[A3])を5~40質量部含む、請求項1~6のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, which contains 5 to 40 parts by mass of a dicyclopentadiene type epoxy resin (component [A3]) in 100 parts by mass of the total epoxy resin component in the epoxy resin composition. .. 成分[E]として、2,4-トルエンビス(3,3-ジメチルウレア)を含む、請求項1~7のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, which contains 2,4-toluenebis (3,3-dimethylurea) as the component [E]. 請求項1~8のいずれかに記載のエポキシ樹脂組成物を強化繊維に含浸させてなるトウプリプレグ。 A tow prepreg obtained by impregnating a reinforcing fiber with the epoxy resin composition according to any one of claims 1 to 8. 請求項9に記載のトウプリプレグを硬化させてなる繊維強化複合材料。 A fiber-reinforced composite material obtained by curing the tow prepreg according to claim 9.
JP2020144205A 2020-08-28 2020-08-28 Epoxy resin composition, tow prepreg and fiber-reinforced composite material Pending JP2022039265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020144205A JP2022039265A (en) 2020-08-28 2020-08-28 Epoxy resin composition, tow prepreg and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020144205A JP2022039265A (en) 2020-08-28 2020-08-28 Epoxy resin composition, tow prepreg and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2022039265A true JP2022039265A (en) 2022-03-10

Family

ID=80498363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020144205A Pending JP2022039265A (en) 2020-08-28 2020-08-28 Epoxy resin composition, tow prepreg and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2022039265A (en)

Similar Documents

Publication Publication Date Title
JP6812671B2 (en) Fiber reinforced composites, moldings and pressure vessels
CN108603009B (en) Epoxy resin composition, molding material, and fiber-reinforced composite material
JP6690240B2 (en) Epoxy resin composition and fiber reinforced composite material
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
EP2585512A2 (en) Curable epoxy resin compositions and composites made therefrom
JP6766888B2 (en) Thermosetting resin compositions, prepregs, and fiber-reinforced composite materials and methods for producing them.
WO2019065663A1 (en) Curable resin composition and tow prepreg using same
JP7135271B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
WO2014062530A2 (en) Toughened epoxy thermosets containing core shell rubbers and polyols
JP7139572B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
WO2019167579A1 (en) Heat-curable resin composition, prepreg, and fiber-reinforced composite material
JP5017794B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006291094A (en) Epoxy resin composition for reinforced composite material
WO2020217894A1 (en) Epoxy resin composition, intermediate substrate, and fiber-reinforced composite material
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JP2022039265A (en) Epoxy resin composition, tow prepreg and fiber-reinforced composite material
JP2022039264A (en) Epoxy resin composition, tow prepreg and fiber-reinforced composite material
JP2008013711A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material intermediate
JP7059000B2 (en) Curing method of epoxy resin composition
JP2020158716A (en) Curable resin composition and two-prepreg using the same
JP2022039266A (en) Epoxy resin composition, intermediate base material, tow prepreg and fiber-reinforced composite material
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
WO2021095627A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2022039263A (en) Towpreg
WO2021095629A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material