JPS59153934A - Fuel injection quantity control method for internal-combustion engine for vehicle - Google Patents

Fuel injection quantity control method for internal-combustion engine for vehicle

Info

Publication number
JPS59153934A
JPS59153934A JP2672583A JP2672583A JPS59153934A JP S59153934 A JPS59153934 A JP S59153934A JP 2672583 A JP2672583 A JP 2672583A JP 2672583 A JP2672583 A JP 2672583A JP S59153934 A JPS59153934 A JP S59153934A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
engine
combustion engine
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2672583A
Other languages
Japanese (ja)
Inventor
Yukio Yoshioka
吉岡 幸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2672583A priority Critical patent/JPS59153934A/en
Publication of JPS59153934A publication Critical patent/JPS59153934A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Abstract

PURPOSE:To reduce influence of deposit adhered in the vicinity of suction port by accumulating working time of internal-combustion engine or travel distance then correcting fuel injection quantity on the basis of said accumulated value. CONSTITUTION:Fuel injection quantity is operated in accordance with the operating condition of engine. Then working time or travel distance is accumulated, to correct fuel injection quantity on the basis of said accumulated value. When accelerating, fuel injection is increased while considering such fuel as absorbed to deposit in the vicinity of suction port while when decelerating, it is reduced as compared with conventional one. Consequently disturbance of air-fuel ratio occurring under acceleration/deceleration can be suppressed.

Description

【発明の詳細な説明】 「技術分野] 本発明は、車両用内燃機関の燃わl lIr1剣m制陣
方法、訂し・((,1該内燃)幾関の使用期間に応じて
変化りる1幾関状態に対応して、該内瘤(機関にげ1射
される燃料の?in正を行う車両用内燃機関の燃料噴I
’J^1制御方法に関Jるものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a combustion engine formation method for a vehicle internal combustion engine, which changes depending on the period of use of the internal combustion engine. In response to certain conditions, fuel injection for a vehicle internal combustion engine is performed to correct the amount of fuel injected into the engine.
'J^1 This is related to the control method.

[従来技術] 従来、燃わ1噴躬装置を備えた車両用内燃機関において
は、燃料噴射量を制御する際に、該内燃機関(]ンジン
)の冷却水温やエンジンの負荷状態を表わす例えば、吸
気管負圧、あるいはスロットルバルブのバルブ開度(ス
[1ツ1〜ル開度)等をパラメータとして演算を行い、
その演算結果に基づいて燃料唱剣用の制御を行っていた
[Prior Art] Conventionally, in a vehicle internal combustion engine equipped with a combustion injection device, when controlling the fuel injection amount, the engine cooling water temperature and the engine load state are expressed by, for example, Calculations are performed using intake pipe negative pressure or throttle valve opening (opening) as parameters.
Based on the calculation results, the fuel chanting sword was controlled.

また、燃料囁射吊をより適正化すべく、エンジンにて燃
焼後の排ガス中の残存酸素を酸素レジ1ノにて検出し、
当該検出結果に基づいて前記演算で求められた11f1
を補正し−C燃オ゛31噴剣川を調節づるど言ったいわ
ゆる空燃比(空気と燃料の重帛比)のフィードバック制
DII :b行われている。
In addition, in order to optimize fuel injection, the oxygen register 1 detects residual oxygen in the exhaust gas after combustion in the engine.
11f1 obtained by the calculation based on the detection result
A so-called air-fuel ratio (air-to-fuel ratio) feedback system DII:b is used to correct and adjust the -C fuel oil.

しかしながら、一般に車両の各部は、使用づることにJ
:ってその特性等が経ロラ的に変化し、−1ンジンに、
t3いてもエンジンの吸気ボー1−1吸気マニホールド
、吸気バルブ等(こ(’J R’iづるカーボン等の堆
積物のために、運転状態に応じて演算され燃¥jllI
11躬弁にり噴射される燃料の串を示づ演停値、つまり
エンジンの藍求値と、気筒に実際に供給される燃料の吊
(実供給(iri )とが巽なった値となる。
However, in general, each part of a vehicle is
: The characteristics etc. change gradually, and it becomes -1 engine,
t3 Even if the engine's intake bow 1-1 intake manifold, intake valve, etc.
11 It is a value that indicates the amount of fuel injected into the valve, which is a combination of the engine's desired value and the amount of fuel actually supplied to the cylinder (actual supply (iri)). .

叩ら、燃料1n射吊の大きい加速状態にd3い((,1
、噴q」された燃わ1の一部が11を槓物に吸着され、
その結果第1図〈イ)ぐ示1ように演囲値より少ない実
供給鎮の燃11が」ンジンに供給される口とから、空燃
比(ま目的とする値J:りもリーン(希e>になるとい
う言う問題が生ずる。
d3 ((,1
, a part of the ejected combustion 11 is adsorbed by the molten material,
As a result, as shown in FIG. The problem arises that e>.

また、燃1′81噴剣早の小さい減速状態においては、
jtr槓物に蓄積された燃オ′31がIf日n物から気
化されることにより、同図(口〉で示すように空燃比(
、j、目的とづるtijf J:りもリッチ(澗1ワ)
になるという問題が生ずる。
In addition, in the small deceleration state of fuel 1'81 jetting,
As the fuel o'31 accumulated in the jtr debris is vaporized from the Ifn debris, the air-fuel ratio (
, j, purpose and tijf J: Rimo Rich (Kan 1 Wa)
The problem arises that

例え、空燃比のフィードバック制御をhう−」、ンジン
ぐあっても、負荷や1−ンジン回転数が一定の定速7F
行状態ではフィードバック制御によって空燃比I:L適
正lこ保Iこれるものの、加速時や減速時の過渡時にお
い(は、フィードバック制御がその状態に応答′Cきす
、同様の問題が生じ、空燃比は乱れる。
Even if the feedback control of the air-fuel ratio is performed, the load and engine speed are constant, even if the engine speed is constant.
Although the air-fuel ratio I:L can be maintained at an appropriate level by feedback control in the running state, during transients during acceleration or deceleration, the feedback control responds to that state, and a similar problem occurs and the air-fuel ratio is The fuel ratio will be disturbed.

「発明の目的1 本発明の目的とするところは、J−述の問題を解決すべ
く、玉ンジン内部の1「梢物にJ:って生ずる空燃比の
乱れを防いだ小雨用内燃(幾関の燃籾噴射伝制御方法を
提供することにある。
``Object of the Invention 1 The object of the present invention is to solve the problem described in J. An object of the present invention is to provide a fuel injection transmission control method.

[発明の114成コ かかる目的を達成するための、本発明の11+1或は、
第2図の構成を表わず)D −’f−j+−トで示すよ
うに、 (Pl)車両用内燃機関の運転状態に応じて、(P2)
燃料噴用量を演算し、 (P3〉ぞの)すi停結宋に従って燃オ′31噴川弁J
、り噴射される燃料を制御号−る前配車両用内燃(幾関
の燃J’8Il!l’l銅m制御方法において、(P4
)前記車両用内燃機関の稼動時間若しくは車両走行距前
のいずれかを積算し、 (P 5 )当該積Q値に基づいて前記演のされた燃第
31噴剣■の補正を行うことを14徴どづる車両用内燃
機関の燃11哨削吊制御方法を要旨としている。
[114th aspect of the invention To achieve the above object, 11+1 of the present invention or,
(Pl) Depending on the operating state of the vehicle internal combustion engine, (P2)
Calculate the amount of fuel injection, and set the fuel oil '31 Fukawa valve J according to (P3)
In the internal combustion control method for the front vehicle that controls the injected fuel, (P4
14) Integrate either the operating time of the vehicle internal combustion engine or the vehicle mileage, and (P5) correct the calculated fuel No. 31 blower ■ based on the product Q value. The gist of this paper is a method for controlling the suspension of combustion engines for internal combustion engines for vehicles.

[実施例] Lス下に本発明を、実施例を挙げて図面どバに説明覆る
[Example] The present invention will be explained below with reference to the drawings and examples.

まり゛第3図は本発明方法が適用される]−ンジン及び
イの周辺共買を表わ7J11λ略系統図Cある。
There is a schematic systematic diagram C of 7J11λ showing the peripheral joint purchase of engines and engines to which the method of the present invention is applied.

1t、1、上ンジン、2はビス1〜ン、3(よ点火プラ
グ、4は1)1気マーホールド、5は排気マニホールド
1に備えられ、IJIガス中の残存酸素温度を検出りる
酸素廿ンリ−16はLンジン本体1の吸入空気中に燃J
’ilを噴射づる燃料噴割片、7は吸気マニホールド、
7aは吸気マニホールド7の接続される吸気ホー1〜.
7bは吸気バ)レブ、8は吸気マニホールド7に備えら
れ、]−29211本に’1.Yiられる吸入空気の温
度を検出する吸気温レノ1ノ、9は−1−ンジンの玲1
41水ト1へを検出Jる水温センリ、10 C;Lス1
]ッ1−ルバルノ、11はスロツI〜ルバルゾ10に連
動し、ス[]ツトルバルブ10の開度に応じたイ1−g
を出力づるス11ツ1〜ルポジイニ1ンレンリ、12は
ス[1ツ1ヘルバルブ10を迂回りる空気通路であるバ
イパス路、13はバイパス路12の間口面積を制御して
アイドル回転数を制御Jるアイドルスピード:、+ ン
l−1] −ルバ)Vl(ISCV) 、1 /H;l
:吸大空気早を測定づるエアフローメータ、15は吸入
空気を?′fI化りるエアクリーナをそれぞれ表わし−
Cいる。
1t, 1 upper engine, 2 screws 1 to 3, 4 spark plug, 1 gas hold, 5 oxygen installed in exhaust manifold 1 to detect residual oxygen temperature in IJI gas. The fuel tank 16 contains fuel in the intake air of the L engine main body 1.
7 is the intake manifold,
7a are intake holes 1 to 7 to which the intake manifold 7 is connected.
7b is an intake bar) rev, 8 is provided in the intake manifold 7, ]-29211 has '1. Intake temperature to detect the temperature of the intake air, 9 is -1-engine's Rei 1
41 Detect water temperature 1, 10 C; L 1
] 1 - Lubarno, 11 is interlocked with slots I to Lubarzo 10, and I1-g according to the opening of the slot
12 is a bypass passage which is an air passage that bypasses the valve 10, and 13 is a bypass passage which is an air passage that bypasses the bypass passage 12 to control the idle speed. Idle speed: , + nl-1] - luba) Vl(ISCV), 1 /H;l
: Air flow meter that measures the intake air velocity, 15 is the intake air? ``Representing each air cleaner that becomes fI-
There is C.

また、16は貞火二Jイルを楯Iえ点火に8凹なl′)
電IFを出力づ−るイグナイタ、17は図示していむい
クランク軸に連動し上記イグナイタ16で発生した高電
圧を各気筒の点火プラグ3に分配供給づるディス1〜リ
ビユータ、184;Lディス1〜リビコータ17内に取
りト1()られ、ディス1〜リヒコータ17の1回転、
即ちクランク軸2回転に2/I発のパルス信号を出力す
る回Q’R角はンリ、19はディス1〜リビ、1−夕1
7の1回転に1発のパルス(R弓を出力りる気筒判別レ
ンリ、201よ重子制御回路、21は栢粋した走行用!
 (A号を出力づる走行距前訓、22は出力軸の回φ人
に応じて車速信号を出力する変速1幾をイれそれ表わし
ている。
In addition, 16 is a shield with two Jills and an 8-concave l') for ignition.
An igniter 17 that outputs the electric IF, shown in the figure, is connected to the crankshaft and distributes and supplies the high voltage generated by the igniter 16 to the spark plugs 3 of each cylinder. The disk 1 is taken in the rib coater 17, and the disk 1 to the rib coater 17 rotate once.
In other words, the time Q'R angle to output the pulse signal from 2/I for 2 revolutions of the crankshaft is NRI, 19 is Dis 1 - Revi, 1 - E 1.
One pulse per revolution of 7 (cylinder discrimination cylinder output R bow output, 201 and heavy control circuit, 21 is for smart running!
(22 represents the first speed change that outputs a vehicle speed signal depending on the rotation of the output shaft.

更に23は玉ンジン冷間時に、スロワ1〜ルバルブを迂
回して流れる空気の通路、即ち〕7・−ス1〜アイドル
用バイパス路を示()ている。イして2/Iはフフ?−
ストアイドル用バイパス路23を通る空気n%を制御り
るエアバルブを示している。尚エアバルブ24は]ニン
ジン冷間時に暖(幾運転に必要な−1−ンジン回φi、
数を確保Jるためにラフ・−ス1−アイト゛ル用バイパ
ス路23を間(J、うに作動する。
Further, 23 indicates a passage through which air flows by bypassing the thrower valve 1 to the idle valve when the engine is cold, that is, a bypass passage for idle. Is 2/I fufu? −
An air valve that controls n% of air passing through the idle bypass path 23 is shown. In addition, the air valve 24 is used to warm up the carrots when they are cold (-1-engine times φi,
In order to secure the number of vehicles, the bypass passage 23 for the rough space 1-item is operated in a short period of time (J).

次に第’I I?1は電子制御回路20のブ[」ツク図
を表わしくいる。
Next, 'II? 1 represents a block diagram of the electronic control circuit 20. FIG.

301よ各レン]ノより出力されるデータを制′O11
ブL1グラムに従っ丈人力及び演専り−ると共に、燃わ
1噴則弁6、l5CV13等の各種装置を作動制御等す
るlこめの処理を行うレン[・ラルプロセシング二ノニ
ツ1〜(以「単にCPUと呼、S−) 、31は前記制
御ブ[」グラlx (ゝ)燃11噴剣吊演粋のためのマ
ツプ貿のデータが格納されるリードΔンリメしり(以上
!11にROMと呼ぶ、)、32I;L電子制御回路2
0に入力されるフ゛−タヤ)演(>制御に必要なデータ
が一時的に読みXJ′4さされるランダムj/クレスメ
[す(以下中にRAMとrJ’;S−)、33は図示け
ぬキースーイッヂがAノされても以後のエンジン作動に
必要な学習値j゛−夕等を保持りるよう、バラ)−りに
よ−)(゛バックアップされたバックアップランダムj
′クレスメモリ(1ス下!11にバックアップ[<AM
と呼ぶ) 、34 i;L図示してい%い入力ボート〜
1)必要に応じて設りられる波形整形回路、各レンリの
出力仁弓をCI) U 30に選択的に出ノ〕づるマル
fルクリ、ア)rIIグ信gをデジタル信号に変換づる
A/[〕変換器、等が備えられた人力部をそれぞれ表わ
している。35は図示しCいない入力ポー1−等の他に
出力ボートが設+JIうれその他必要に応じて燃r1唱
剣弁6.1scV13等ヲCP U 30の制御信号に
従って駆動覆るに駆動回路等が備えられた入・出力部、
36はCPU30.ROM31等の各木工及び入力部3
/1人・出力部35を結び各データが送られるハスライ
ンをてれそれ表わしCいる。
301, each lens] to control the data output from the
In addition to dedicating human power and performance according to the L1 program, Ren [Ral Processing Ninonitsu 1 ~ (hereinafter referred to as ``Ral Processing Ninonitsu 1 ~ (hereinafter referred to as ``Ral Processing Ninonitsu 1~'') performs extensive processing such as controlling the operation of various devices such as the fuel injection valve 6 and l5CV13. ``Simply referred to as CPU, S-), 31 is the control block [''Gla lx (ゝ) Lead Δnrimashiri (above! 11 is ROM ), 32I;L electronic control circuit 2
Data necessary for control is temporarily read and inserted into random j/cresme (RAM and rJ'; S- in the following), 33 is not shown in the figure. Even if the key switch is A-no, the learned value necessary for subsequent engine operation will be maintained, so that the learned value necessary for subsequent engine operation will be maintained.
'Cress memory (1 step below! Backup to 11 [<AM
, 34 i;L figure not shown % input port~
1) A waveform shaping circuit installed as necessary, a circuit that converts the output signal of each signal into a digital signal (CI) U30, a) A/A that converts the rII signal g into a digital signal. [] Each represents a human power section equipped with a converter, etc. 35 is equipped with an output port in addition to the input port 1-, which is not shown in the figure, and a drive circuit, etc., which is driven according to the control signal of the CPU 30. input/output section,
36 is CPU30. Each woodwork such as ROM31 and input section 3
/1 person/C represents the hash line that connects the output unit 35 and sends each data.

十記CPU30による燃料nl川用(3の制御(よ、演
口された燃判唱剣晴に相当りる111間だり高レベルと
4【るパルスIR弓を燃お1噴射弁6に出力ηることに
J:り丈行きれる。
The fuel output by the CPU 30 is controlled by the CPU 30, which outputs a pulsed IR bow to the injector 6 with a high level between 111 and 4, which corresponds to the fuel flow rate. Especially J: I can go to length.

第5図に本発明実施例制御ブ[lグラ18の)1]−ヂ
ャー1−を示づ。
FIG. 5 shows a control block (18) of the embodiment of the present invention.

:(、ず、100は(燃料用In ffi演算」ルーチ
ンを示り制御プ[」グラムCあり、回転角レンリ18及
び気筒判別レンリ19からの1t;5″3をもとにクラ
ンク軸の回転に同期しく処理が実行される1ノブルーブ
ン、または、車両の制御処理を行う制御プログラムのメ
インルーチンの一部としてROM31内に格納されでい
る。
:(, zu, 100 indicates the (Fuel In ffi calculation) routine, there is a control program C, and the crankshaft rotation is calculated based on 1t;5″3 from the rotation angle wrench 18 and cylinder discrimination wrench 19. The routine is stored in the ROM 31 as a one-knob routine whose processing is executed in synchronization with the ROM 31 or as part of the main routine of a control program that performs vehicle control processing.

「燃1131噴川fjl a量i粁」ルーチン100の
処理が開始されると、110で示づ「過渡時補正吊演算
」ルーチンの処理が行われ、車両の加速あるいは減速の
行われる過渡時にd3りる燃わlll11剣鞘の補i「
平の演算が行われる。
When the process of the ``fuel 1131 fukawa fjl a quantity i 甁'' routine 100 is started, the process of the ``transient correction suspension calculation'' routine shown at 110 is performed, and d3 is Riru Mowallll11 Sword Sheath Supplement I"
A flat operation is performed.

「過渡11、’l ?ili正昂演障」ルーチン11O
の処理が開始されると、まずステップ111にd3いで
、スI−Iツ1−ルボジシ・1ンレン゛す11より出力
されるス1−Jツ1ヘル17t1度信弓より車両が加速
状態にあるか、ilつるいは減速状態にあるかが判断さ
れる。即ち、前−回助木ルーヂンの処理における時点の
ス[]ツ1ヘル聞開度0と今回の本ルーチンの処理にお
けるス[コツ1−ル開度θ1とを比較し「θ1−00−
Δθ」としくス[]]ツ1−ル開度変化痺″Δを求め、
八〇≧Oならば加速状態であると判…iされて、ステッ
プ112の処JIJ!に移行する。
"Transient 11,'l ?ili 正昭动子" Routine 11O
When the process starts, first, in step 111, at d3, the vehicle is accelerated from the S1-J T1 HELD 17T1 degree signal output from the S1-I T1-R body 1 range 11. It is determined whether the vehicle is in a slow or decelerating state. That is, by comparing the thread opening degree 0 at the time of the previous process of the Sukeki Roujin with the thread opening degree θ1 in the current processing of this routine, we obtain "θ1-00-
Find the change in the opening angle of the tool ``Δθ'',
If 80≧O, it is determined that the state is in an acceleration state...i, and the process of step 112 is JIJ! to move to.

ステップ112においては、加速+1.mのスロワし・
ル開度変化率△θに応じ−で、例えば第6図第1象限に
表わされる如きグラフに示り(若しくは近似づる)関数
f+(△θ)に基づさ、あるいは同グラフを表わすデー
タマツプに阜づきス[−1ツトル間度変化率ΔOに対応
づる補正m K 1を求め、次ステツプ113に移行づ
る。尚、図中Δθ1に指づ以上の変化率は実質的にスa
 y l−ルバルブ10の全開状態を表わすのr ?i
li rlE mは一定にされる。
In step 112, acceleration +1. Thrower of m
For example, based on the function f+(△θ) shown in the graph shown in the first quadrant of FIG. 6 (or approximated), or based on the data map representing the same graph Then, the correction mK1 corresponding to the rate of change ΔO between torques is determined, and the process proceeds to the next step 113. In addition, the rate of change greater than Δθ1 in the figure is substantially equal to
y l-represents the fully open state of the valve 10? i
li rlE m is kept constant.

ステップ113においては、水fJ!lレンリ9の検出
部Σじに基づいて検出される加速1.′l冷却水温T 
11Wに対応Jる補正量に2を、前スラッf112同様
、第7図実線のグラフに承り(若しくは近似覆る)関v
1.(] +  (T N W ) 、’J: i= 
ハ同’;f ラフ ヲ8 ワづデータマツプによって求
める。
In step 113, water fJ! Acceleration detected based on the detection unit Σ of the l-axis 9 1. 'l Cooling water temperature T
Add 2 to the correction amount J corresponding to 11W, and as with the previous slug f112, accept (or approximately cover) the graph of the solid line in Figure 7.
1. (] + (TNW),'J: i=
Ha same'; f Rough wo 8 Find it using the data map.

一部ステップ111にJ3いて△θ<Q、即ち減速状態
であると判断されたならばステップ114の処理に移行
する。
If it is determined at step 111 that Δθ<Q, that is, the vehicle is in a deceleration state, the process proceeds to step 114.

ステップ11 /I ’rは、減速11.5のス[」ツ
1−ル開度変化字△θに応じて、スフツブ112ど同様
に第6図第3g!1lljのグラフに示づ(若しくは3
1′L似づる)関数「2〈△θ)、あるい同グラフを表
ゎずデータ7ツブに基づき補正用に1を求め次ステツプ
115に移行づる。尚、図中Δθ2に示づ以−1−の変
化率は実質的にスト1ツトルバルブ1oの仝閉状態を表
わすので補JTX吊は一定にされる。
Step 11 /I'r is determined in the same manner as in step 112 in accordance with the speed reduction 11.5 speed change character △θ in FIG. 6, 3g! As shown in the graph of 1llj (or 3
1'L (resembling) function "2〈△θ)" or the same graph, 1 is calculated for correction based on the 7 pieces of data and the process moves to the next step 115. Since the rate of change of 1- substantially represents the closed state of the throttle valve 1o, the supplementary JTX suspension is kept constant.

ステップ115においては、減速時の冷)Jl水渦丁1
−IWに対応ηる補正用1〈2を、第7図破線のグラフ
に示づ(若しくは近似づる)関数(!2(−rllW)
、または同グラフを表ゎづデータマツプによって求めら
れる。
In step 115, the cold water vortex 1 during deceleration is
The correction 1<2 corresponding to η corresponding to -IW is shown (or approximated) by the broken line graph in Figure 7 using the function (!2(-rllW)
, or can be obtained using a data map that represents the same graph.

ステップ113またはステップ115の処理が実行され
/j lに行われるステップ116の処理においては、
走行用ml r、+ 21 J:り出力される走行距離
の(l\樟値立に応じで、第8図のグラフに示す(君し
く(J近似ブる)関数m (立)あるいは、同グラフを
表わづデータマツプに基づき補正ft1.X 3が求め
られる。
In the process of step 116, which is performed at /j l, the process of step 113 or step 115 is executed.
Traveling ml r, + 21 J: Depending on the traveling distance (l\樟value), the function m (J approximation) shown in the graph of Figure 8 (J approximation) or the same Correction ft1.X3 is determined based on the data map representing the graph.

尚、第8図において補正用[く3が走行用〜11000
0 km (実際には、」ンジンの中種によって、約5
0001v−150001un稈(D 811/II 
’c pなルlftどされる)を越えると補正用が一定
どされているが、これは、l[積換が王の走行距離で飽
和点に達し、それ以上の堆積が行われないことを表わし
、ぞれ以、1−の走行距離を走行しくも補正用は一定の
値とされる。
In addition, in Fig. 8, for correction [3 is for running ~ 11000]
0 km (actually, depending on the middle class of the engine, it is about 5 km)
0001v-150001un culm (D 811/II
The correction amount is set constant when the value exceeds ``cp, lftd), but this is because l[transshipment reaches the saturation point at the distance traveled and no further accumulation occurs. In each case, even if the vehicle travels a mileage of 1-, the correction value is set to a constant value.

また、補正ff1KBを走行用illに基づいて求めて
いるが、−■−ンジン1の稼1動旧間を悄咋して計時り
 。
In addition, the correction ff1KB is calculated based on the illumination for running, but the time is measured by running the engine 1 while it is running.

るタイ7を設(〕(電子制御回路2o内にラフ1〜タイ
マーを設(プても良い)、該タイマーの出カイ1)舅に
基づいて補正用1〈3を定めてもよい。
The correction 1<3 may be determined based on the tie 7 (set the rough 1 to timer in the electronic control circuit 2o, and the output 1 of the timer).

続くステップ117にJ−3い(は、前述ス)−ツブ1
12ないし11Gで求められた補正用に+、K2、K3
を乗じCぞの積を一つの補正用、即ち、過渡時補正ff
1K4としc’ RA M 32内の所定のレジスタに
記憶し、本ルーヂン110の処理を終える。
In the following step 117, J-3 (see step 1)
+, K2, K3 for correction determined by 12 to 11G
Multiply the product of C for one correction, that is, transient correction ff
1K4 and is stored in a predetermined register in the c' RAM 32, and the processing of this routine 110 is completed.

そして、続く処理は[燃わ1噴躬吊)Fi棹」ルーチン
1.00のステップ120に移り、酸素レンリ5や吸気
溜ルンリ8等の検11目8号に基づいて従来より哨用帛
の補正に供されている補正量1<、を求めると共に、前
記過渡時補正焔1<4ど補正量を、例えば加のりること
(、:J、って最終的な補正用Kを輝出する。
Then, the subsequent processing moves to step 120 of the "Fi rod" routine 1.00, and based on the inspection 11th No. 8 of the oxygen level 5, intake reservoir level 8, etc. Find the correction amount 1<, which is used for correction, and add, for example, the correction amount 1<4 for the transient correction. .

次にスフツブ130に、13いでは、公知の911<回
転角ヒンリ18J:り検出されたエンジン回転数とJア
フロ−メータ14ににって検出された吸入空気量どから
所定の油筒式に従ってその時の運転状態に応じた燃N′
+1のり水q1射lj l−pが演算される。
Next, in step 13, the engine rotation speed detected by the known engine rotation speed and the intake air amount detected by the J aflow meter 14 are determined according to a predetermined oil cylinder formula. Fuel N' depending on the operating condition at that time
+1 water q1 morphism lj l-p is calculated.

続くステップ140においCは前スララフ130℃求め
られた)、L木唱用吊TPとスーラッゾ120(・求め
られた最柊補正甲1くとの積が油筒され、イの)Iiτ
;I伯を最終的な117’i川吊(実際は駅間31噴躬
弁6の間ブi I+、’7間)−1ΔUを表わづ値とし
て唱q・1吊を記憶りるレジスタに格納し、本ルーブン
100の処理を終了する。
In the subsequent step 140, C is the front slurruff 130°C), the product of the L wood chanting hanging TP and the surazo 120 (the product of the obtained Saihiragi correction A1 is calculated as the oil cylinder, and A) Iiτ
; Set I to the final 117'i river suspension (actually between station 31, jet valve 6, '7) - 1ΔU as a value and store it in the register that stores q・1 suspension. Then, the processing of this Louven 100 ends.

そしく、塩1’8Il右川弁6を開弁し燃第31の噴射
をbう図示せぬ制御処理ルーチンにおい(、クランク軸
の回転に同期したタイミングC,7,’iツブ140に
おいて演算された噴用吊−rAUで表わづ燃1!lが吸
気ボー1−78に向【Jて噴q1される。
Then, in a control processing routine (not shown), the salt 1'8I1 right river valve 6 is opened and the 31st fuel injection is performed. The fuel 1!l is injected toward the intake bow 1-78, represented by the injection suspension -rAU.

その結束、加速時にa3いては従来例第1図(イ)で示
す演紳値の他に、エンジン1の各気筒内へ実際に供給さ
れる実供給値とaf g> 1irjどの差ΔQに相当
する燃料が前回されて噴口・1されることとなる。
During acceleration, a3 corresponds to the difference ΔQ between the actual supply value actually supplied to each cylinder of the engine 1 and the difference ΔQ shown in FIG. The fuel that was previously used will be poured into the nozzle.

従−)で実際に合気111に供給される実供給値も増加
づることから、従来加速時において吸気ボー1〜7a 
(j+近σ月11梢物に吸収されて不足勝ちであった燃
料は、車両の要求り゛る値を讃覆J、うになる。
Since the actual supply value actually supplied to the Aiki 111 increases with
(J+Nearly σ Month 11 The fuel, which was absorbed by treetops and was in short supply, now exceeds the value required by the vehicle.

同様に減速時においては、第1図(ロ)で示づ]ンジン
1の各気筒内へ実際に(j!、給される′大供給lft
ど演算(「1く要求1ir4 >どの差△Q′に相当覆
る燃わが従来の演紳値より更に減じられてIlハ剣され
ることどなる。従つ−C丈供給1iQ ′bぞの分減少
でることから、従来減速前において、吸気ボーl−7a
 (=J近のICffi物にり気化される分が加わって
過剰気味【・あった燃おl l;L 、エンジン]の要
求りる1直にJて゛1戚吊されるようになる。
Similarly, during deceleration, the large supply lft that is actually supplied (j!, shown in FIG. 1(b)) into each cylinder of engine 1 is
Which calculation ('1 request 1ir4 > which difference △Q' corresponds to the difference △Q' is further reduced from the conventional calculation value and Il is reduced. Therefore -C length supply 1iQ 'b' is reduced. Conventionally, before deceleration, the intake ball l-7a
(=The amount of gas vaporized by the ICffi near J is added, and the amount of fuel that was vaporized is added, and the amount of fuel that was present in the L, engine) is increased to 1st shift required by J.

尚、本実施例においては、補正量1(1を求めるにあた
りスI’]ツ1−ル聞庶変化率ΔOを求めているが吸入
空気量の変化率あるい(、jl、吸気マニホールド7に
負月しンリを段りて該負圧レンリより検出される吸気マ
ニホールド負H−の変化率を求め、当該吸入空気量変化
率あるいは吸気マニホールド負圧変化率に基づいて補正
量1<1を求めるようにしても良い。また補i]−吊に
3は第8図中破線で示づ如ぎ走行距匹(に応じて段状に
増加りるものて−あっても良い。
In this embodiment, in order to obtain the correction amount 1 (1), the rate of change ΔO between the two wheels is determined, but the rate of change of the intake air amount (, jl, Find the rate of change in the intake manifold negative H- detected from the negative pressure level by increasing the negative pressure level, and find the correction amount 1<1 based on the intake air amount change rate or intake manifold negative pressure change rate. It is also possible to increase the distance in steps according to the distance traveled (as shown by the broken line in FIG. 8).

「発明の効果〕 以」、訂述しICように本発明の車両用内燃1浅関の燃
III I!i’l!劃吊制御方側によれば、加速性に
おいては吸気ボー1−イ1近に付f+ L7 ICj1
ト積物に吸収される燃石分を見込lυC燃v1の唱13
1吊を従来J、り多くし、また減速においては、前記J
ff Mi物に−B吸収された後減速時の燃料の希薄状
態においてIff積物上り気化される塩11分を見込ん
で燃わ1の唱剣量を従来より少% < L/、従来加減
速時に発生しCいた空燃比の乱11を抑制Jることが可
能どなる。
``Effects of the Invention'' Hereinafter, as detailed below, the internal combustion engine for vehicles of the present invention is as follows. i'l! According to the suspension control side, in terms of acceleration, f + L7 ICj1 is near the intake bow 1-I1.
Anticipating the amount of fuel that will be absorbed by the cargo, lυC fuel v1 chant 13
Increasing one suspension by J compared to the conventional method, and in deceleration, the above-mentioned J
ff In the lean state of fuel during deceleration after -B is absorbed by the Mi object, the amount of the sword of Burn 1 is reduced by % less than before, considering the 11 minutes of salt vaporized when the Iff product rises and decelerates. It becomes possible to suppress the air-fuel ratio disturbances that occur at times.

また、特別の装置を必要としないのぐ従来使用されてい
る燃13+ 1!fl川%置を備えた内燃機関に容易に
適用づることがでさる。
In addition, the conventionally used fuel 13+1! does not require any special equipment. It can be easily applied to an internal combustion engine equipped with a fl river% position.

【図面の簡単な説明】 第1図は従来の問題点を説明りる説明図、第2図は本発
明の構成を表ねづノローブp −1−1第3図は本発明
の適用されに〜実施例の車両用内燃機関を表わづ概略系
Uc図、第1図は同じく電了制切1回路を表わづブロッ
ク図、第5図(よ11制御プログラムを表わづフローヂ
ト−1〜、第6図は同じく補正量]く1を説明づるグラ
フ、第7図(、L同じく補正量1り2を説明するグラフ
、耐乏3図は補正ffIK aを説明するグラフをそれ
ぞれ表わしている。 1・・・エンジン 7・・・吸気マニホールド 7a ・・吸気ポー1− 7b・・・吸気パル/ 9・・・水温セン4) 10・・・スロワ1〜ルバルブ 11・・・ス■ツトルボジシ゛、1ンレンリ14・・・
1ノ7ノ11−メータ 21・・・走(−i 71−1色It ii1代理人 
弁理」 定立 勉 他1名 第1図 (イ) 慢II領 実僅玲値 (苛永雀) う情Q算イ(き 1ゼイ5も沁4α) (萼棄値)
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is an explanatory diagram for explaining the conventional problems, Fig. 2 shows the configuration of the present invention, and Fig. 3 shows the configuration of the present invention. 〜A schematic system Uc diagram showing the vehicle internal combustion engine of the embodiment, FIG. 1 is a block diagram showing the power cutoff circuit 1, and FIG. ~, Figure 6 is a graph explaining the correction amount 1, Figure 7 is a graph explaining the correction amount 1 and 2, and Figure 3 is a graph explaining the correction ffIK a. 1...Engine 7...Intake manifold 7a...Intake port 1-7b...Intake pulse/9...Water temperature sensor 4) 10...Thrower 1 to valve 11...Street body, 1 Nrenri 14...
1 no 7 no 11-meter 21... run (-i 71-1 color It ii1 agent
``Patent Attorney'' Tsutomu Seitate and 1 other person Figure 1 (a) Arrogant II territory Real only value (Yai Eijaku) Ujou Q calculation (Ki 1 they 5 also 沁4α) (Calyx depletion value)

Claims (1)

【特許請求の範囲】[Claims] 車両用内燃機関の運転状態に応じて燃料噴射量を演陣し
、その演算結果に従って燃判噴用弁より噴射される燃わ
)を制建11する前記車両用内燃機関の燃1′!1哨D
A吊制御方法にa3いて、前記車両用内燃は関の稼動時
間若しくは中両走行距因1のいfれかを積陣し、当該梢
紳値に基づいて前記演Di1された炊iη’il nr
I川用用補正を行うことを′41微とづる車両用内燃機
関の燃料11i)IJ吊副制御方法
The fuel injection amount of the vehicle internal combustion engine is determined according to the operating state of the vehicle internal combustion engine, and the fuel injected from the fuel injection valve is determined according to the calculation result. 1st post D
In the A suspension control method a3, the internal combustion engine for the vehicle is calculated based on either the operating time of the engine or the mileage factor 1, and the calculated engine speed is determined based on the above-mentioned engine speed value. nr
11i) IJ suspension sub-control method for vehicle internal combustion engine fuel that requires correction for I river use
JP2672583A 1983-02-19 1983-02-19 Fuel injection quantity control method for internal-combustion engine for vehicle Pending JPS59153934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2672583A JPS59153934A (en) 1983-02-19 1983-02-19 Fuel injection quantity control method for internal-combustion engine for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2672583A JPS59153934A (en) 1983-02-19 1983-02-19 Fuel injection quantity control method for internal-combustion engine for vehicle

Publications (1)

Publication Number Publication Date
JPS59153934A true JPS59153934A (en) 1984-09-01

Family

ID=12201297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2672583A Pending JPS59153934A (en) 1983-02-19 1983-02-19 Fuel injection quantity control method for internal-combustion engine for vehicle

Country Status (1)

Country Link
JP (1) JPS59153934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116041A (en) * 1984-11-09 1986-06-03 Honda Motor Co Ltd Method of controlling air-fuel ratio feedback control of internal-combustion engine
WO1994000740A1 (en) * 1992-06-26 1994-01-06 Kabushiki Kaisha Komatsu Seisakusho Device for detecting amount done by excavator/loader

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116041A (en) * 1984-11-09 1986-06-03 Honda Motor Co Ltd Method of controlling air-fuel ratio feedback control of internal-combustion engine
JPH0480220B2 (en) * 1984-11-09 1992-12-18 Honda Motor Co Ltd
WO1994000740A1 (en) * 1992-06-26 1994-01-06 Kabushiki Kaisha Komatsu Seisakusho Device for detecting amount done by excavator/loader
US5714719A (en) * 1992-06-26 1998-02-03 Kabushiki Kaisha Komatsu Seisakusho Workload detecting system for excavating and loading apparatus

Similar Documents

Publication Publication Date Title
US4718016A (en) Method of and system for controlling idling speed in electronically controlled engine
JPS59153934A (en) Fuel injection quantity control method for internal-combustion engine for vehicle
JPS6223557A (en) Study control method for internal-combustion engine
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0151895B2 (en)
JPH0684735B2 (en) Fuel injection control method
JPH0442535B2 (en)
JPS59147871A (en) Ignition timing controller for internal-combustion engine
JPS61155638A (en) Method for controling idle rotating number
JPH0626391A (en) Fuel control device for engine
JPS59168266A (en) Ignition timing control device for internal-combustion engine
JP2722810B2 (en) Air supply device for internal combustion engine
JP6304051B2 (en) Hybrid car
JP2503055Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2887927B2 (en) Fuel supply system for spark ignition engine
JPS59188045A (en) Asynchronous fuel-feed controller for acceleration of internal-combustion engine
JP3139824B2 (en) Engine fuel control device
JP3536310B2 (en) Engine fuel control device
JP2894043B2 (en) Evaporative fuel processing control device
JPS5828554A (en) Electronic controller for engine with fuel injection
JPS61118544A (en) Fuel injection control for internal-combustion engine
JPH0357881A (en) Control device of internal combustion engine for vehicle
JPH06185388A (en) Electronic control unit for internal combustion engine
JPS6032963A (en) Electronic control type fuel injector
JPS59141730A (en) Method of controlling fuel injection quantity of internal-combustion engine