JPS59153847A - Smelting method of zinc by blowing - Google Patents

Smelting method of zinc by blowing

Info

Publication number
JPS59153847A
JPS59153847A JP2460283A JP2460283A JPS59153847A JP S59153847 A JPS59153847 A JP S59153847A JP 2460283 A JP2460283 A JP 2460283A JP 2460283 A JP2460283 A JP 2460283A JP S59153847 A JPS59153847 A JP S59153847A
Authority
JP
Japan
Prior art keywords
zinc
slag
molten
smelting
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2460283A
Other languages
Japanese (ja)
Other versions
JPS6128730B2 (en
Inventor
Sakichi Goto
後藤 佐吉
Mitsuyoshi Fujikawa
充由 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOGYO SHINKOUKAI
Sumitomo Metal Mining Co Ltd
Toho Zinc Co Ltd
Dowa Holdings Co Ltd
Mitsubishi Metal Corp
Mitsui Mining and Smelting Co Ltd
Toho Aen KK
Eneos Corp
Original Assignee
NIPPON KOGYO SHINKOUKAI
Sumitomo Metal Mining Co Ltd
Toho Zinc Co Ltd
Mitsubishi Metal Corp
Mitsui Mining and Smelting Co Ltd
Nippon Mining Co Ltd
Toho Aen KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOGYO SHINKOUKAI, Sumitomo Metal Mining Co Ltd, Toho Zinc Co Ltd, Mitsubishi Metal Corp, Mitsui Mining and Smelting Co Ltd, Nippon Mining Co Ltd, Toho Aen KK, Dowa Mining Co Ltd filed Critical NIPPON KOGYO SHINKOUKAI
Priority to JP2460283A priority Critical patent/JPS59153847A/en
Publication of JPS59153847A publication Critical patent/JPS59153847A/en
Publication of JPS6128730B2 publication Critical patent/JPS6128730B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To continue a steady operation in a condenser while decreasing the generation of dross and improving a winning rate of zinc by floating lumped or granular coke at all times on the matte surface in a smelting furnace and sealing the slag surface. CONSTITUTION:Sintered zinc ore is changed together with a reducing agent and air enriched with oxygen into a smelting furnace and is smelted. The formed zinc vapor is condensed and captured with a condenser provided integrally with the smelting furnace. Coke powder and/or pulverized coal, etc. are used as a reducing agent in the smelting stage and the top surface of the slag phase formed in the smelting chamber of the smelting furnace is covered with said coke powder or pulverized coal. Then, a substantial injection depth is assured and even if the sintered zinc ore and reducing agent floats temporarily on the matte surface, these powder materials are captured by the coke layer and the scattering thereof to the condenser is prevented.

Description

【発明の詳細な説明】 本発明は亜鉛焼鉱を還元剤および酸素冨化壁気と共に溶
錬炉に吹き込み熔錬し、生成した亜鉛蒋気を熔i炉と一
体に設けた凝縮器により効率よく凝縮回収すると共に排
ガスの燃焼熱量を高カロリーに維持してこれを再利用す
る製鉄法について、その改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that zinc sintered ore is blown into a smelting furnace together with a reducing agent and oxygen-enriched gas to melt it, and the produced zinc sinter is efficiently processed by using a condenser installed integrally with the smelting furnace. This invention relates to improvements in iron manufacturing methods that allow good condensation and recovery, maintain the combustion heat of exhaust gas at a high calorie level, and reuse it.

一般に」二記熔針炉は上吹きのランス方式で操業される
。ずなわち、亜鉛焼鉱及び粉状の還元剤は酸素富化空気
と共に高速で緩中に吹き込まれる。その過程で、粉状の
粉コークス汲ひ/又は粉炭は吹き込み気体中の酸素及び
スラグ中の酸化亜鉛と反応し、COあるいはCOPとな
る。
In general, a needle furnace is operated using a top-blown lance method. That is, the zinc calcined ore and the powdered reducing agent are slowly blown in at high speed together with oxygen-enriched air. In the process, the powdered coke powder and/or powdered coal reacts with oxygen in the blown gas and zinc oxide in the slag to form CO or COP.

焼鉱の一部は固体のままCOにより還元さね。Some of the burnt ore remains solid and is reduced by CO.

亜鉛蒸気となるが大lb分は鰭中に捕集され、跋に溶解
する。、亜鉛焼鉱及び粉状の還元剤が未反応のまま跋表
面に浮上すると、溶錬炉と一体化したコンデンサーまで
飛散する。これら未反応物は、それ自体、亜鉛の採収率
を低下させるが。
Large lbs of zinc vapor is collected in the fins and dissolved in the flax. If unreacted zinc sinter and powdered reducing agent float to the surface, they will scatter to the condenser integrated with the smelting furnace. These unreacted substances themselves reduce the yield of zinc.

コンデンサー内で、亜鉛の未絣縮核を形成し。Inside the capacitor, an unmarried core of zinc is formed.

ドロスとなり、コンデンサーでの亜鉛の凝縮率を著しく
態化させる。伸鉛焼鉱及び粉状還元剤を未反応の1ま暖
表面に浮上させないプ(めにはこれらの原1Fヲ高速で
吹き込み充分なインジェクション深さを保ち、上記反応
をスラグ中で完結させる必四かを)る。
It becomes dross and significantly changes the rate of zinc condensation in the condenser. In order to prevent the elongated lead burnt ore and the powdered reducing agent from floating to the unreacted surface of the slag, it is necessary to inject these raw materials at high speed into the 1F to maintain a sufficient injection depth and complete the above reaction in the slag. Do four things.

これを満足する吹き込みスピード、ランス高さ等の吹き
込み争「トが各々の溶錬炉について設定されているが、
操業の途中Vこおいて、スラグ組成、スラグ湯面の変動
等により光分なインジェクション深さが得られず、コノ
テツサードロスが急激に増加することがあった。
The blowing speed, lance height, etc. that satisfy this requirement are set for each smelting furnace.
During operation, due to fluctuations in the slag composition, slag level, etc., a sufficient injection depth could not be obtained, resulting in a sudden increase in connotesser loss.

本発明の目的は、ドロスの発生を減少させ。The purpose of the invention is to reduce the generation of dross.

亜鉛の採収率を向上し、コンデンサーでの順調な操業を
継続することである。
The aim is to improve the zinc recovery rate and continue smooth operations at the condenser.

このために、本発明者らは、従来の溶錬炉のスラグui
i上に常時塊又社粒コークスを浮かべ。
To this end, the present inventors have developed a conventional smelting furnace slag ui.
A lump of coke is constantly floating on top of the i.

鎌面を7−ルする操業方法1表成した。この方法によれ
は、一時的に111鉛焼鉱及び粉状の還元剤が跋面に浮
上しても、これら粉状wJはコークス(ツvこ捕集され
、コンテノリ−−への飛散は防止できることがわかった
A method of operating 7-hole Kamamen has been presented. With this method, even if 111 lead burnt ore and powdered reducing agent temporarily float to the surface, these powdered wJ will be collected as coke and will be prevented from scattering into the container. I found out that it can be done.

鰭面上のコークス廿が厚いほと、シール効果は太きいが
、吹き込み原1斗のスラグへのインジェクションを阻V
イするため、厚みには限度がめり、50〜・250 F
7:  程度が適当であった。また炉内のコルj気性を
確保するためには、塊コークスのサイズUIO〜・50
k・程度が望ましい。
The thicker the coke layer on the fin surface, the stronger the sealing effect, but it also prevents injection into the slag of the blowing field.
Because of this, there is a limit to the thickness, 50~・250F
7: The level was appropriate. In addition, in order to ensure the coke temperature in the furnace, the size of the lump coke must be UIO~・50.
K. degree is desirable.

塊コークス中のカーボンの−?VB Uスラグ中のZn
OI!:接触し、次の反応 ZnO+ C−+ Zn(1)+ CQ       
、、、 ■により、Zn蒸気とcmカスに一発生する。
− of carbon in lump coke? VB Zn in U slag
OI! : Contact, next reaction ZnO+ C-+ Zn(1)+ CQ
As a result of , , , Zn vapor and cm residue are generated.

またスラグ中に吹き込まrした原Hの反応により生じる
CO2ガスとも反応し、COガスを発生する。
It also reacts with CO2 gas produced by the reaction of raw H blown into the slag, generating CO gas.

C−+−CQ2→2CO・・■ これらの反応により炉内塊コークスは消費されるため、
間けつ的に塊コークスを補充し、當にスラグ面上に塊コ
ークスが−Tのノリみに存在する様にする。また、■■
の反応は、いずれも吸熱反応でbるから、溶錬炉全体の
熱ノ(ランスを俄るために、ランスより吹き込む酸素量
をランスより吹き込む粉状還元剤に附して、多口に設定
する。
C-+-CQ2→2CO...■ These reactions consume the lump coke in the furnace, so
Lump coke is replenished intermittently so that the lump coke is present on the slag surface in the -T groove. Also, ■■
Since both of the reactions are endothermic reactions, the amount of oxygen blown in from the lance is added to the powdered reducing agent blown in from the lance, and the amount of oxygen is set to be large in order to reduce the heat of the entire smelting furnace. do.

さらに、ドロスの発生を減少させるために、本発明者ら
は、フラツクスを添加し、スラグの組成をFeO/S 
t021〜3.5.FeO/CaO1,5〜10の範囲
に設定シフ、スラグの粘性を低くすることにより、スラ
グへのインジェクション深さを確保し、未反応物の飛散
をおさえる方法をtllくした。
Furthermore, to reduce the generation of dross, we added flux and changed the composition of the slag to FeO/S.
t021~3.5. By setting the FeO/CaO in the range of 1.5 to 10 and lowering the viscosity of the slag, the injection depth into the slag was ensured and the method of suppressing the scattering of unreacted substances was made possible.

焼鉱中に113分が高い場合には比較的粘度の低いスラ
グを形成するが、鉄分が不足する場合には、ダライ粉等
による補充が有効であることが判明しf76 前記の塊又は粒状コークスを被覆する方法と併用すれは
、さらに効果い増加する。
If 113 min is high during sintering, a slag with relatively low viscosity is formed, but if the iron content is insufficient, it has been found that replenishment with dust powder etc. is effective. If used in combination with a coating method, the effectiveness will further increase.

笑施例1 溶錬炉として外形2m、長さ5.9mのクロムマグネノ
アレンガ内張筒型炉2用いた。この炉に20tの熔融ス
ラグeN持し、それぞれ−200メツンユ80%パス程
度に粉砕した。鉛の少ない亜鉛焼鉱、粉コークスをI!
tり素富化9気と共に上部からそう人したランスより吹
き込んだ。また溶錬炉上部のンユートから塊コークスを
間けつ的に投入した。操業開始前に約1tの塊コークス
を装入し、その後30分ごとに125Kgの塊コークス
を補充し、スラグ面上に常に約2(1!の塊コークス層
を形成させた。用いたスラグ。
Example 1 A chrome magne noa brick lined cylindrical furnace 2 having an external diameter of 2 m and a length of 5.9 m was used as a smelting furnace. This furnace held 20 tons of molten slag eN, and each slag was pulverized to about -200 mtsuyu 80% pass. I use zinc sintered ore and coke powder with low lead content!
It was blown in from the top with 9 qi from the lance. In addition, lump coke was intermittently introduced from the unit at the top of the smelting furnace. Approximately 1 ton of lump coke was charged before the start of operation, and thereafter 125 kg of lump coke was replenished every 30 minutes, so that about 2 (1!) lump coke layer was always formed on the slag surface.

焼鉱、粉コークスの組成を示す。Shows the composition of burnt ore and coke breeze.

イ)装入焼鉱組成(wt%) 口)粉コークス組5’x、 (wt ’lb )ハ)ス
ラグ組成 表IVIcその他の茶汁と抄業粘束ケ示す。
a) Charged burning ore composition (wt%) mouth) coke powder set 5'x, (wt 'lb) c) slag composition table IVIc Other tea juice and papermaking viscosity are shown.

尚、比軟Hとして塊コークスがない場合の結束も併せ7
斤、ず。れ・、1表から明らかなように坤1コークスケ
浮7+)べることにより、コンテンサートロスリ、約2
73Vこ減少し、他船の採収率も8596(比較I’l
+ )から91 %に増加した。またコンテンツ−での
ローターのトラフ゛ルも減少し1月歓調な操業を継続′
1:きた。
In addition, the bundling in the case where there is no lump coke as the relative softness H is also 7.
Catty, zu. As is clear from Table 1, by adding 1 coke 7+), the contentor loss is approximately 2
73V decreased, and the recovery rate of other ships was 8596 (comparison I'l
+) to 91%. In addition, rotor trouble in the content area decreased, and operations continued to perform well in January.
1: It's here.

実施例2 笑m伸11とli・、l悼の熔針炉を用い、焼鉱にダラ
イ粉(鉄粉)及び石灰石粉(−100メツ〉z)を混合
し、スラグ中のFeO/5i02”2.5. F’eO
/CaO” 4.Qとなるよう’rA服し、a!業を続
けた。装入焼鉱及び粉コークス組成は実施例1と同様で
ある。下記にスラグ組成を示す。
Example 2 Using a molten needle furnace with 11 and 11, 100% of iron powder and limestone powder (-100%) were mixed with burnt ore to reduce FeO/5i02'' in the slag. 2.5.F'eO
/CaO" 4. The 'rA' operation was carried out so that Q was obtained, and the a! operation was continued. The charged sintered ore and coke breeze compositions were the same as in Example 1. The slag composition is shown below.

この場合もコンデンサードロスは減少し、スラグ組成の
効果があることがわかる。
In this case as well, the capacitor loss is reduced, indicating that the slag composition has an effect.

比較例 塊コークスを使用せず、その他は実施例1と同様のべT
Fに亜鉛回収を行った。この結束を第東京都中央区日本
橋室町2丁目 1番地1
Comparative Example Same as Example 1 except that no lump coke was used.
Zinc was recovered in F. 2-1-1 Nihonbashi Muromachi, Chuo-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] (1)溶錬室と凝縮室とが連続した炉を用い、予め熔針
室に亜鉛焼鉱中のp’ e/S t 02比に近い組成
のスラグ相と該スラグ相下部の粗鉛相とからなる¥?r
融浴を形成し、前記亜鉛焼鉱と還元剤を酸素富化窒気と
共に前記溶融浴に接触混合するように吹き込み、Zn蒸
気等より成る生成ガスを得る一方、前記亜鉛焼鉱中の有
価全域を前記粗鉛中に捕集する還元溶鉄工程と、前記熔
釧工程において生成したガスを凝縮室の溶融鉛又は溶融
亜鉛の噴霧中に導入せし−め、前記生成ガス中のZn蒸
気を前記溶融鉛又は溶融亜鉛中に凝縮捕集する凝縮工程
とから成る亜鉛製針法において、前記溶錬工程の還元剤
としてコークス粉及び/又は粉炭等を用いると共に該コ
ークス粉ないし粉炭によって上記スラグ相の上面を被傑
することを特徴とする吹き込み溶錬による亜鉛製針法。
(1) Using a furnace with a continuous smelting chamber and condensation chamber, a slag phase with a composition close to the p' e / S t 02 ratio in zinc burnt ore and a crude lead phase below the slag phase are prepared in advance in the melting needle chamber. ¥ consisting of? r
A molten bath is formed, and the zinc sintered ore and a reducing agent are blown into the molten bath together with oxygen-enriched nitrogen gas so as to be catalytically mixed to obtain a product gas consisting of Zn vapor, etc., while the valuable area in the zinc sintered ore is The reduced molten iron step in which Zn is collected in the crude lead and the gas produced in the melting step are introduced into the spray of molten lead or molten zinc in the condensation chamber, and the Zn vapor in the produced gas is In the zinc needle making method, which consists of a condensation step in which molten lead or molten zinc is condensed and collected, coke powder and/or pulverized coal is used as a reducing agent in the smelting step, and the coke powder or pulverized coal is used to reduce the slag phase. A zinc needle manufacturing method using blow smelting, which is characterized by the top surface being recessed.
(2)  スラグのFeO,5i02 、CaOについ
て、その組成をFeO/SiO2”” 1〜3.5 、
 Fed/Cab” 1.5〜10としたことを特徴と
する特許請求の範囲第1項記載の亜鉛製針法。
(2) Regarding FeO,5i02 and CaO of the slag, the composition is FeO/SiO2''1~3.5,
The zinc needle making method according to claim 1, characterized in that the Fed/Cab" is 1.5 to 10.
JP2460283A 1983-02-18 1983-02-18 Smelting method of zinc by blowing Granted JPS59153847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2460283A JPS59153847A (en) 1983-02-18 1983-02-18 Smelting method of zinc by blowing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2460283A JPS59153847A (en) 1983-02-18 1983-02-18 Smelting method of zinc by blowing

Publications (2)

Publication Number Publication Date
JPS59153847A true JPS59153847A (en) 1984-09-01
JPS6128730B2 JPS6128730B2 (en) 1986-07-02

Family

ID=12142695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2460283A Granted JPS59153847A (en) 1983-02-18 1983-02-18 Smelting method of zinc by blowing

Country Status (1)

Country Link
JP (1) JPS59153847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002373A (en) * 2015-07-31 2015-10-28 龙桂山 Energy-saving crude zinc smelting furnace
CN105018746A (en) * 2015-07-31 2015-11-04 龙桂山 Spelter smelting furnace with dust sucking function
CN115807167A (en) * 2023-01-29 2023-03-17 中南大学 Method and device for recovering metal zinc from high-zinc material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597595Y2 (en) * 1992-09-30 1999-07-05 株式会社東芝 Recording paper supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002373A (en) * 2015-07-31 2015-10-28 龙桂山 Energy-saving crude zinc smelting furnace
CN105018746A (en) * 2015-07-31 2015-11-04 龙桂山 Spelter smelting furnace with dust sucking function
CN115807167A (en) * 2023-01-29 2023-03-17 中南大学 Method and device for recovering metal zinc from high-zinc material
CN115807167B (en) * 2023-01-29 2023-06-02 中南大学 Method and device for recovering metallic zinc from high-zinc material

Also Published As

Publication number Publication date
JPS6128730B2 (en) 1986-07-02

Similar Documents

Publication Publication Date Title
CA2304618C (en) Direct smelting process for producing metals from metal oxides
CN100510127C (en) Method for extracting iron titanium vanadium from high-titanium iron concentrate
US4519836A (en) Method of processing lead sulphide or lead-zinc sulphide ores, or sulphide concentrates, or mixtures thereof
SU1544829A1 (en) Method of processing fine-grain lead and lead-zinc copper-containing sulfide concentrates
JP2002519517A (en) Direct smelting method
JPS6359965B2 (en)
JPS59153847A (en) Smelting method of zinc by blowing
CN107557597A (en) A kind of method that antimony is smelted
JPH03191031A (en) Manufacture of zinc by reduction with iron compound
JP3682166B2 (en) Method for smelting copper sulfide concentrate
US4588438A (en) Moulded object of alumina matter-containing raw material for aluminum smelting by blast furnace method
JPS5855207B2 (en) Composition for blowing dephosphorization of hot metal
US3666445A (en) Auxiliary composition for steel-making furnaces
EP0855448A1 (en) Operation of lead/zinc blast furnaces
JP5369848B2 (en) Operation method of vertical melting furnace
JPS61531A (en) Method for smelting copper sulfide ore
US1428061A (en) Manufacture of iron and steel
US2814558A (en) Method of reducing iron ores containing titanium
US210020A (en) Improvement in working nickel ores and manufacture of nickel
JP3848453B2 (en) Manufacturing method of metallic iron
Dutta et al. Blast Furnace Reactions
US2792299A (en) Process for smelting of ores to recover iron
JPS63176407A (en) Production of molten iron
JPH08253308A (en) Production of mixture of manganese carbide and iron carbide
SU1157107A1 (en) Method of melting carbon ferromanganese from poor ores